sync
[bitrig.git] / lib / libm / src / s_log1p.c
blob62b2450f2d9816a069a2476fc41e60fb61a27dcf
1 /* @(#)s_log1p.c 5.1 93/09/24 */
2 /*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
13 /* double log1p(double x)
15 * Method :
16 * 1. Argument Reduction: find k and f such that
17 * 1+x = 2^k * (1+f),
18 * where sqrt(2)/2 < 1+f < sqrt(2) .
20 * Note. If k=0, then f=x is exact. However, if k!=0, then f
21 * may not be representable exactly. In that case, a correction
22 * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
23 * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
24 * and add back the correction term c/u.
25 * (Note: when x > 2**53, one can simply return log(x))
27 * 2. Approximation of log1p(f).
28 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
29 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
30 * = 2s + s*R
31 * We use a special Remes algorithm on [0,0.1716] to generate
32 * a polynomial of degree 14 to approximate R The maximum error
33 * of this polynomial approximation is bounded by 2**-58.45. In
34 * other words,
35 * 2 4 6 8 10 12 14
36 * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
37 * (the values of Lp1 to Lp7 are listed in the program)
38 * and
39 * | 2 14 | -58.45
40 * | Lp1*s +...+Lp7*s - R(z) | <= 2
41 * | |
42 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
43 * In order to guarantee error in log below 1ulp, we compute log
44 * by
45 * log1p(f) = f - (hfsq - s*(hfsq+R)).
47 * 3. Finally, log1p(x) = k*ln2 + log1p(f).
48 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
49 * Here ln2 is split into two floating point number:
50 * ln2_hi + ln2_lo,
51 * where n*ln2_hi is always exact for |n| < 2000.
53 * Special cases:
54 * log1p(x) is NaN with signal if x < -1 (including -INF) ;
55 * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
56 * log1p(NaN) is that NaN with no signal.
58 * Accuracy:
59 * according to an error analysis, the error is always less than
60 * 1 ulp (unit in the last place).
62 * Constants:
63 * The hexadecimal values are the intended ones for the following
64 * constants. The decimal values may be used, provided that the
65 * compiler will convert from decimal to binary accurately enough
66 * to produce the hexadecimal values shown.
68 * Note: Assuming log() return accurate answer, the following
69 * algorithm can be used to compute log1p(x) to within a few ULP:
71 * u = 1+x;
72 * if(u==1.0) return x ; else
73 * return log(u)*(x/(u-1.0));
75 * See HP-15C Advanced Functions Handbook, p.193.
78 #include <float.h>
79 #include <math.h>
81 #include "math_private.h"
83 static const double
84 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
85 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
86 two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
87 Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
88 Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
89 Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
90 Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
91 Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
92 Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
93 Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
95 static const double zero = 0.0;
97 double
98 log1p(double x)
100 double hfsq,f,c,s,z,R,u;
101 int32_t k,hx,hu,ax;
103 GET_HIGH_WORD(hx,x);
104 ax = hx&0x7fffffff;
106 k = 1;
107 if (hx < 0x3FDA827A) { /* x < 0.41422 */
108 if(ax>=0x3ff00000) { /* x <= -1.0 */
109 if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
110 else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
112 if(ax<0x3e200000) { /* |x| < 2**-29 */
113 if(two54+x>zero /* raise inexact */
114 &&ax<0x3c900000) /* |x| < 2**-54 */
115 return x;
116 else
117 return x - x*x*0.5;
119 if(hx>0||hx<=((int32_t)0xbfd2bec3)) {
120 k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */
122 if (hx >= 0x7ff00000) return x+x;
123 if(k!=0) {
124 if(hx<0x43400000) {
125 u = 1.0+x;
126 GET_HIGH_WORD(hu,u);
127 k = (hu>>20)-1023;
128 c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
129 c /= u;
130 } else {
131 u = x;
132 GET_HIGH_WORD(hu,u);
133 k = (hu>>20)-1023;
134 c = 0;
136 hu &= 0x000fffff;
137 if(hu<0x6a09e) {
138 SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
139 } else {
140 k += 1;
141 SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */
142 hu = (0x00100000-hu)>>2;
144 f = u-1.0;
146 hfsq=0.5*f*f;
147 if(hu==0) { /* |f| < 2**-20 */
148 if(f==zero) if(k==0) return zero;
149 else {c += k*ln2_lo; return k*ln2_hi+c;}
150 R = hfsq*(1.0-0.66666666666666666*f);
151 if(k==0) return f-R; else
152 return k*ln2_hi-((R-(k*ln2_lo+c))-f);
154 s = f/(2.0+f);
155 z = s*s;
156 R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
157 if(k==0) return f-(hfsq-s*(hfsq+R)); else
158 return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
161 #if LDBL_MANT_DIG == 53
162 __strong_alias(log1pl, log1p);
163 #endif /* LDBL_MANT_DIG == 53 */