Export_3ds: Improved distance cue node search
[blender-addons.git] / mesh_tissue / numba_functions.py
blobe08ad3e0a155be39c8b11591542070d2bb2aa5fd
1 # SPDX-FileCopyrightText: 2019-2022 Blender Foundation
3 # SPDX-License-Identifier: GPL-2.0-or-later
5 import numpy as np
6 import time
7 import sys
9 bool_numba = False
11 try:
12 from .utils_pip import Pip
13 Pip._ensure_user_site_package()
14 from numba import jit, njit, guvectorize, float64, int32, prange
15 from numba.typed import List
16 bool_numba = True
17 except:
18 pass
19 '''
20 try:
21 from .utils_pip import Pip
22 #Pip.upgrade_pip()
23 Pip.install('llvmlite')
24 Pip.install('numba')
25 from numba import jit, njit, guvectorize, float64, int32, prange
26 bool_numba = True
27 print('Tissue: Numba successfully installed!')
28 except:
29 print('Tissue: Numba not loaded correctly. Try restarting Blender')
30 '''
32 if bool_numba:
33 #from numba import jit, njit, guvectorize, float64, int32, prange
36 @njit(parallel=True)
37 #@cuda.jit('void(float32[:,:], float32[:,:])')
38 def tex_laplacian(lap, arr):
39 arr2 = arr*2
40 diag = sqrt(2)/2
41 nx = arr.shape[0]
42 ny = arr.shape[1]
43 for i in prange(nx):
44 for j in prange(ny):
45 i0 = (i-1)%nx
46 j0 = (j-1)%ny
47 i1 = (i+1)%nx
48 j1 = (j+1)%ny
49 #lap[i+1,j+1] = arr[i, j+1] + arr[i+2, j+1] + arr[i+1, j] + arr[i+1, j+2] - 4*arr[i+1,j+1]
51 lap[i,j] = ((arr[i0, j] + arr[i1, j] - arr2[i,j]) + \
52 (arr[i, j0] + arr[i, j1] - arr2[i,j]) + \
53 (arr[i0, j0] + arr[i1, j1] - arr2[i,j])*diag + \
54 (arr[i1, j0] + arr[i0, j1] - arr2[i,j])*diag)*0.75
56 @njit(parallel=True)
57 def tex_laplacian_ani(lap, arr, VF):
58 arr2 = arr*2
59 nx = arr.shape[0]
60 ny = arr.shape[1]
61 i0 = np.arange(nx)-1
62 i0[0] = 1
63 i1 = np.arange(nx)+1
64 i1[nx-1] = nx-2
65 j0 = np.arange(ny)-1
66 j0[0] = 1
67 j1 = np.arange(ny)+1
68 j1[ny-1] = ny-2
69 for i in prange(nx):
70 for j in prange(ny):
71 lap[i,j] = (arr[i0[i], j] + arr[i1[i], j] - arr2[i,j])*VF[0,i,j] + \
72 (arr[i, j0[j]] + arr[i, j1[j]] - arr2[i,j])*VF[1,i,j] + \
73 (arr[i0[i], j0[j]] + arr[i1[i], j1[j]] - arr2[i,j])*VF[2,i,j] + \
74 (arr[i1[i], j0[j]] + arr[i0[i], j1[j]] - arr2[i,j])*VF[3,i,j]
75 #lap[0,:] = lap[1,:]
76 #lap[:,0] = lap[:,1]
77 #lap[-1,:] = lap[-2,:]
78 #lap[:,-1] = lap[:,-2]
80 #@cuda.jit(parallel=True)
81 @njit(parallel=True)
82 def run_tex_rd(A, B, lap_A, lap_B, diff_A, diff_B, f, k, dt, steps, brush):
83 for t in range(steps):
84 tex_laplacian(lap_A, A)
85 tex_laplacian(lap_B, B)
86 nx = A.shape[0]
87 ny = A.shape[1]
88 for i in prange(nx):
89 for j in prange(ny):
90 B[i,j] += brush[i,j]
91 ab2 = A[i,j]*B[i,j]**2
92 A[i,j] += (lap_A[i,j]*diff_A - ab2 + f*(1-A[i,j]))*dt
93 B[i,j] += (lap_B[i,j]*diff_B + ab2 - (k+f)*B[i,j])*dt
95 @njit(parallel=True)
96 def run_tex_rd_ani(A, B, lap_A, lap_B, diff_A, diff_B, f, k, dt, steps, vf1, vf2, brush):
97 for t in range(steps):
98 tex_laplacian_ani(lap_A, A, vf2)
99 #laplacian(lap_A, A)
100 tex_laplacian_ani(lap_B, B, vf1)
101 nx = A.shape[0]
102 ny = A.shape[1]
103 for i in prange(nx):
104 for j in prange(ny):
105 B[i,j] += brush[i,j]
106 ab2 = A[i ,j]*B[i,j]**2
107 A[i,j] += (lap_A[i,j]*diff_A[i,j] - ab2 + f[i,j]*(1-A[i,j]))*dt
108 B[i,j] += (lap_B[i,j]*diff_B[i,j] + ab2 - (k[i,j]+f[i,j])*B[i,j])*dt
111 @njit(parallel=True)
112 def numba_reaction_diffusion(n_verts, n_edges, edge_verts, a, b, brush, diff_a, diff_b, f, k, dt, time_steps):
113 arr = np.arange(n_edges)
114 id0 = edge_verts[arr*2]
115 id1 = edge_verts[arr*2+1]
116 for i in range(time_steps):
117 lap_a, lap_b = rd_init_laplacian(n_verts)
118 numba_rd_laplacian(id0, id1, a, b, lap_a, lap_b)
119 numba_rd_core(a, b, lap_a, lap_b, diff_a, diff_b, f, k, dt)
120 numba_set_ab(a,b,brush)
121 return a,b
123 @njit(parallel=False)
124 def integrate_field(n_edges, id0, id1, values, edge_flow, mult, time_steps):
125 #n_edges = len(edge_flow)
126 for i in range(time_steps):
127 values0 = values
128 for j in range(n_edges):
129 v0 = id0[j]
130 v1 = id1[j]
131 values[v0] -= values0[v1] * edge_flow[j] * 0.001#mult[v1]
132 values[v1] += values0[v0] * edge_flow[j] * 0.001#mult[v0]
133 for j in range(n_edges):
134 v0 = id0[j]
135 v1 = id1[j]
136 values[v0] = max(values[v0],0)
137 values[v1] = max(values[v1],0)
138 return values
140 @njit(parallel=True)
141 def numba_reaction_diffusion_anisotropic(n_verts, n_edges, edge_verts, a, b, brush, diff_a, diff_b, f, k, dt, time_steps, field_mult):
142 arr = np.arange(n_edges)
143 id0 = edge_verts[arr*2]
144 id1 = edge_verts[arr*2+1]
145 mult = field_mult[arr]
146 for i in range(time_steps):
147 lap_a, lap_b = rd_init_laplacian(n_verts)
148 numba_rd_laplacian_anisotropic(id0, id1, a, b, lap_a, lap_b, mult)
149 numba_rd_core(a, b, lap_a, lap_b, diff_a, diff_b, f, k, dt)
150 numba_set_ab(a,b,brush)
151 return a,b
153 #@guvectorize(['(float64[:] ,float64[:] , float64[:], float64[:], float64[:], float64[:], float64[:], float64[:], float64)'],'(n),(n),(n),(n),(n),(n),(n),(n),()',target='parallel')
154 @njit(parallel=True)
155 def numba_rd_core(a, b, lap_a, lap_b, diff_a, diff_b, f, k, dt):
156 n = len(a)
157 _f = np.full(n, f[0]) if len(f) == 1 else f
158 _k = np.full(n, k[0]) if len(k) == 1 else k
159 _diff_a = np.full(n, diff_a[0]) if len(diff_a) == 1 else diff_a
160 _diff_b = np.full(n, diff_b[0]) if len(diff_b) == 1 else diff_b
162 for i in prange(n):
163 fi = _f[i]
164 ki = _k[i]
165 diff_ai = _diff_a[i]
166 diff_bi = _diff_b[i]
167 ab2 = a[i]*b[i]**2
168 a[i] += (diff_ai * lap_a[i] - ab2 + fi*(1-a[i]))*dt
169 b[i] += (diff_bi * lap_b[i] + ab2 - (ki+fi)*b[i])*dt
171 @njit(parallel=True)
172 def numba_rd_core_(a, b, lap_a, lap_b, diff_a, diff_b, f, k, dt):
173 ab2 = a*b**2
174 a += (diff_a*lap_a - ab2 + f*(1-a))*dt
175 b += (diff_b*lap_b + ab2 - (k+f)*b)*dt
177 @njit(parallel=True)
178 def numba_set_ab(a, b, brush):
179 n = len(a)
180 _brush = np.full(n, brush[0]) if len(brush) == 1 else brush
181 for i in prange(len(b)):
182 b[i] += _brush[i]
183 if b[i] < 0: b[i] = 0
184 elif b[i] > 1: b[i] = 1
185 if a[i] < 0: a[i] = 0
186 elif a[i] > 1: a[i] = 1
188 @njit(parallel=True)
189 def numba_rd_laplacian(id0, id1, a, b, lap_a, lap_b):
190 for i in prange(len(id0)):
191 v0 = id0[i]
192 v1 = id1[i]
193 lap_a[v0] += (a[v1] - a[v0])
194 lap_a[v1] += (a[v0] - a[v1])
195 lap_b[v0] += (b[v1] - b[v0])
196 lap_b[v1] += (b[v0] - b[v1])
197 #return lap_a, lap_b
199 @njit(parallel=True)
200 def numba_rd_laplacian_anisotropic(id0, id1, a, b, lap_a, lap_b, mult):
201 for i in prange(len(id0)):
202 v0 = id0[i]
203 v1 = id1[i]
204 multiplier = mult[i]
205 lap_a[v0] += (a[v1] - a[v0])# * multiplier
206 lap_a[v1] += (a[v0] - a[v1])# * multiplier
207 lap_b[v0] += (b[v1] - b[v0]) * multiplier
208 lap_b[v1] += (b[v0] - b[v1]) * multiplier
209 #return lap_a, lap_b
211 @njit(parallel=True)
212 def numba_rd_neigh_vertices(edge_verts):
213 n_edges = len(edge_verts)/2
214 id0 = np.zeros(n_edges)
215 id1 = np.zeros(n_edges)
216 for i in prange(n_edges):
217 id0[i] = edge_verts[i*2] # first vertex indices for each edge
218 id1[i] = edge_verts[i*2+1] # second vertex indices for each edge
219 return id0, id1
221 #@guvectorize(['(float64[:] ,float64[:] , float64[:], float64[:], float64[:])'],'(m),(n),(n),(n),(n)',target='parallel')
222 @njit(parallel=True)
223 #@njit
224 def numba_rd_laplacian_(edge_verts, a, b, lap_a, lap_b):
225 for i in prange(len(edge_verts)/2):
226 v0 = edge_verts[i*2]
227 v1 = edge_verts[i*2+1]
228 lap_a[v0] += a[v1] - a[v0]
229 lap_a[v1] += a[v0] - a[v1]
230 lap_b[v0] += b[v1] - b[v0]
231 lap_b[v1] += b[v0] - b[v1]
232 #return lap_a, lap_b
234 @njit(parallel=True)
235 def rd_fill_laplacian(lap_a, lap_b, id0, id1, lap_a0, lap_b0):
236 #for i, j, la0, lb0 in zip(id0,id1,lap_a0,lap_b0):
237 for index in prange(len(id0)):
238 i = id0[index]
239 j = id1[index]
240 la0 = lap_a0[index]
241 lb0 = lap_b0[index]
242 lap_a[i] += la0
243 lap_b[i] += lb0
244 lap_a[j] -= la0
245 lap_b[j] -= lb0
247 @njit(parallel=True)
248 def rd_init_laplacian(n_verts):
249 lap_a = np.zeros(n_verts)
250 lap_b = np.zeros(n_verts)
251 return lap_a, lap_b
254 @jit
255 def numba_reaction_diffusion(n_verts, n_edges, edge_verts, a, b, diff_a, diff_b, f, k, dt, time_steps, db):
256 arr = np.arange(n_edges)*2
257 id0 = edge_verts[arr] # first vertex indices for each edge
258 id1 = edge_verts[arr+1] # second vertex indices for each edge
259 #dgrad = abs(grad[id1] - grad[id0])
260 for i in range(time_steps):
261 lap_a = np.zeros(n_verts)
262 lap_b = np.zeros(n_verts)
263 b += db
264 lap_a0 = a[id1] - a[id0] # laplacian increment for first vertex of each edge
265 lap_b0 = b[id1] - b[id0] # laplacian increment for first vertex of each edge
266 #lap_a0 *= dgrad
267 #lap_b0 *= dgrad
269 for i, j, la0, lb0 in zip(id0,id1,lap_a0,lap_b0):
270 lap_a[i] += la0
271 lap_b[i] += lb0
272 lap_a[j] -= la0
273 lap_b[j] -= lb0
274 ab2 = a*b**2
275 #a += eval("(diff_a*lap_a - ab2 + f*(1-a))*dt")
276 #b += eval("(diff_b*lap_b + ab2 - (k+f)*b)*dt")
277 a += (diff_a*lap_a - ab2 + f*(1-a))*dt
278 b += (diff_b*lap_b + ab2 - (k+f)*b)*dt
279 return a, b
282 @njit(parallel=True)
283 def numba_lerp2_(v00, v10, v01, v11, vx, vy):
284 sh = v00.shape
285 co2 = np.zeros((sh[0],len(vx),sh[-1]))
286 for i in prange(len(v00)):
287 for j in prange(len(vx)):
288 for k in prange(len(v00[0][0])):
289 co0 = v00[i][0][k] + (v10[i][0][k] - v00[i][0][k]) * vx[j][0]
290 co1 = v01[i][0][k] + (v11[i][0][k] - v01[i][0][k]) * vx[j][0]
291 co2[i][j][k] = co0 + (co1 - co0) * vy[j][0]
292 return co2
295 @njit(parallel=True)
296 def numba_lerp2_vec(v0, vx, vy):
297 n_faces = v0.shape[0]
298 co2 = np.zeros((n_faces,len(vx),3))
299 for i in prange(n_faces):
300 for j in prange(len(vx)):
301 for k in prange(3):
302 co0 = v0[i][0][k] + (v0[i][1][k] - v0[i][0][k]) * vx[j][0]
303 co1 = v0[i][3][k] + (v0[i][2][k] - v0[i][3][k]) * vx[j][0]
304 co2[i][j][k] = co0 + (co1 - co0) * vy[j][0]
305 return co2
307 @njit(parallel=True)
308 def numba_lerp2__(val, vx, vy):
309 n_faces = len(val)
310 co2 = np.zeros((n_faces,len(vx),1))
311 for i in prange(n_faces):
312 for j in prange(len(vx)):
313 co0 = val[i][0] + (val[i][1] - val[i][0]) * val[j][0]
314 co1 = val[i][3] + (val[i][2] - val[i][3]) * val[j][0]
315 co2[i][j][0] = co0 + (co1 - co0) * vy[j][0]
316 return co2
319 @njit(parallel=True)
320 def numba_combine_and_flatten(arrays):
321 n_faces = len(arrays)
322 n_verts = len(arrays[0])
323 new_list = [0.0]*n_faces*n_verts*3
324 for i in prange(n_faces):
325 for j in prange(n_verts):
326 for k in prange(3):
327 new_list[i*n_verts*3+j*3+k] = arrays[i][j,k]
328 return new_list
330 @njit(parallel=True)
331 def numba_calc_thickness_area_weight(co2,n2,vz,a,weight):
332 shape = co2.shape
333 n_patches = shape[0]
334 n_verts = shape[1]
335 n_co = shape[2]
336 nn = n2.shape[1]-1
337 na = a.shape[1]-1
338 nw = weight.shape[1]-1
339 co3 = np.zeros((n_patches,n_verts,n_co))
340 for i in prange(n_patches):
341 for j in prange(n_verts):
342 for k in prange(n_co):
343 co3[i,j,k] = co2[i,j,k] + n2[i,min(j,nn),k] * vz[0,j,0] * a[i,min(j,na),0] * weight[i,min(j,nw),0]
344 return co3
346 @njit(parallel=True)
347 def numba_calc_thickness_area(co2,n2,vz,a):
348 shape = co2.shape
349 n_patches = shape[0]
350 n_verts = shape[1]
351 n_co = shape[2]
352 #co3 = [0.0]*n_patches*n_verts*n_co #np.zeros((n_patches,n_verts,n_co))
353 co3 = np.zeros((n_patches,n_verts,n_co))
354 for i in prange(n_patches):
355 for j in prange(n_verts):
356 for k in prange(n_co):
357 #co3[i,j,k] = co2[i,j,k] + n2[i,j,k] * vz[0,j,0] * a[i,j,0]
358 co3[i,j,k] = co2[i,j,k] + n2[i,min(j,nor_len),k] * vz[0,j,0] * a[i,j,0]
359 return co3
361 @njit(parallel=True)
362 def numba_calc_thickness_weight(co2,n2,vz,weight):
363 shape = co2.shape
364 n_patches = shape[0]
365 n_verts = shape[1]
366 n_co = shape[2]
367 nn = n2.shape[1]-1
368 nw = weight.shape[1]-1
369 co3 = np.zeros((n_patches,n_verts,n_co))
370 for i in prange(n_patches):
371 for j in prange(n_verts):
372 for k in prange(n_co):
373 co3[i,j,k] = co2[i,j,k] + n2[i,min(j,nn),k] * vz[0,j,0] * weight[i,min(j,nw),0]
374 return co3
376 @njit(parallel=True)
377 def numba_calc_thickness(co2,n2,vz):
378 shape = co2.shape
379 n_patches = shape[0]
380 n_verts = shape[1]
381 n_co = shape[2]
382 nn = n2.shape[1]-1
383 co3 = np.zeros((n_patches,n_verts,n_co))
384 for i in prange(n_patches):
385 for j in prange(n_verts):
386 for k in prange(n_co):
387 co3[i,j,k] = co2[i,j,k] + n2[i,min(j,nn),k] * vz[0,j,0]
388 return co3
390 @njit(parallel=True)
391 def numba_interp_points(v00, v10, v01, v11, vx, vy):
392 n_patches = v00.shape[0]
393 n_verts = vx.shape[1]
394 n_verts0 = v00.shape[1]
395 n_co = v00.shape[2]
396 vxy = np.zeros((n_patches,n_verts,n_co))
397 for i in prange(n_patches):
398 for j in prange(n_verts):
399 j0 = min(j,n_verts0-1)
400 for k in prange(n_co):
401 co0 = v00[i,j0,k] + (v10[i,j0,k] - v00[i,j0,k]) * vx[0,j,0]
402 co1 = v01[i,j0,k] + (v11[i,j0,k] - v01[i,j0,k]) * vx[0,j,0]
403 vxy[i,j,k] = co0 + (co1 - co0) * vy[0,j,0]
404 return vxy
406 @njit(parallel=True)
407 def numba_interp_points_sk(v00, v10, v01, v11, vx, vy):
408 n_patches = v00.shape[0]
409 n_sk = v00.shape[1]
410 n_verts = v00.shape[2]
411 n_co = v00.shape[3]
412 vxy = np.zeros((n_patches,n_sk,n_verts,n_co))
413 for i in prange(n_patches):
414 for sk in prange(n_sk):
415 for j in prange(n_verts):
416 for k in prange(n_co):
417 co0 = v00[i,sk,j,k] + (v10[i,sk,j,k] - v00[i,sk,j,k]) * vx[0,sk,j,0]
418 co1 = v01[i,sk,j,k] + (v11[i,sk,j,k] - v01[i,sk,j,k]) * vx[0,sk,j,0]
419 vxy[i,sk,j,k] = co0 + (co1 - co0) * vy[0,sk,j,0]
420 return vxy
422 @njit
423 def numba_lerp(v0, v1, x):
424 return v0 + (v1 - v0) * x
426 @njit
427 def numba_lerp2(v00, v10, v01, v11, vx, vy):
428 co0 = numba_lerp(v00, v10, vx)
429 co1 = numba_lerp(v01, v11, vx)
430 co2 = numba_lerp(co0, co1, vy)
431 return co2
433 @njit(parallel=True)
434 def numba_lerp2_________________(v00, v10, v01, v11, vx, vy):
435 ni = len(v00)
436 nj = len(v00[0])
437 nk = len(v00[0][0])
438 co2 = np.zeros((ni,nj,nk))
439 for i in prange(ni):
440 for j in prange(nj):
441 for k in prange(nk):
442 _v00 = v00[i,j,k]
443 _v01 = v01[i,j,k]
444 _v10 = v10[i,j,k]
445 _v11 = v11[i,j,k]
446 co0 = _v00 + (_v10 - _v00) * vx[i,j,k]
447 co1 = _v01 + (_v11 - _v01) * vx[i,j,k]
448 co2[i,j,k] = co0 + (co1 - co0) * vy[i,j,k]
449 return co2
451 @njit(parallel=True)
452 def numba_lerp2_4(v00, v10, v01, v11, vx, vy):
453 ni = len(v00)
454 nj = len(v00[0])
455 nk = len(v00[0][0])
456 nw = len(v00[0][0][0])
457 co2 = np.zeros((ni,nj,nk,nw))
458 for i in prange(ni):
459 for j in prange(nj):
460 for k in prange(nk):
461 for w in prange(nw):
462 _v00 = v00[i,j,k]
463 _v01 = v01[i,j,k]
464 _v10 = v10[i,j,k]
465 _v11 = v11[i,j,k]
466 co0 = _v00 + (_v10 - _v00) * vx[i,j,k]
467 co1 = _v01 + (_v11 - _v01) * vx[i,j,k]
468 co2[i,j,k] = co0 + (co1 - co0) * vy[i,j,k]
469 return co2
472 #except:
473 # print("Tissue: Numba cannot be installed. Try to restart Blender.")
474 # pass