1 /////////////////////////////////////////////////////////////////////////
2 // $Id: tasking.cc,v 1.63 2008/09/22 19:53:47 sshwarts Exp $
3 /////////////////////////////////////////////////////////////////////////
5 // Copyright (C) 2001 MandrakeSoft S.A.
9 // 75002 Paris - France
10 // http://www.linux-mandrake.com/
11 // http://www.mandrakesoft.com/
13 // This library is free software; you can redistribute it and/or
14 // modify it under the terms of the GNU Lesser General Public
15 // License as published by the Free Software Foundation; either
16 // version 2 of the License, or (at your option) any later version.
18 // This library is distributed in the hope that it will be useful,
19 // but WITHOUT ANY WARRANTY; without even the implied warranty of
20 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 // Lesser General Public License for more details.
23 // You should have received a copy of the GNU Lesser General Public
24 // License along with this library; if not, write to the Free Software
25 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 /////////////////////////////////////////////////////////////////////////
28 #define NEED_CPU_REG_SHORTCUTS 1
31 #define LOG_THIS BX_CPU_THIS_PTR
36 // ======================
37 // 286 Task State Segment
38 // ======================
39 // dynamic item | hex dec offset
40 // 0 task LDT selector | 2a 42
41 // 1 DS selector | 28 40
42 // 1 SS selector | 26 38
43 // 1 CS selector | 24 36
44 // 1 ES selector | 22 34
53 // 1 flag word | 10 16
54 // 1 IP (entry point) | 0e 14
55 // 0 SS for CPL 2 | 0c 12
56 // 0 SP for CPL 2 | 0a 10
57 // 0 SS for CPL 1 | 08 08
58 // 0 SP for CPL 1 | 06 06
59 // 0 SS for CPL 0 | 04 04
60 // 0 SP for CPL 0 | 02 02
61 // back link selector to TSS | 00 00
64 // ======================
65 // 386 Task State Segment
66 // ======================
67 // |31 16|15 0| hex dec
68 // |I/O Map Base |000000000000000000000|T| 64 100 static
69 // |0000000000000000| LDT | 60 96 static
70 // |0000000000000000| GS selector | 5c 92 dynamic
71 // |0000000000000000| FS selector | 58 88 dynamic
72 // |0000000000000000| DS selector | 54 84 dynamic
73 // |0000000000000000| SS selector | 50 80 dynamic
74 // |0000000000000000| CS selector | 4c 76 dynamic
75 // |0000000000000000| ES selector | 48 72 dynamic
76 // | EDI | 44 68 dynamic
77 // | ESI | 40 64 dynamic
78 // | EBP | 3c 60 dynamic
79 // | ESP | 38 56 dynamic
80 // | EBX | 34 52 dynamic
81 // | EDX | 30 48 dynamic
82 // | ECX | 2c 44 dynamic
83 // | EAX | 28 40 dynamic
84 // | EFLAGS | 24 36 dynamic
85 // | EIP (entry point) | 20 32 dynamic
86 // | CR3 (PDPR) | 1c 28 static
87 // |000000000000000 | SS for CPL 2 | 18 24 static
88 // | ESP for CPL 2 | 14 20 static
89 // |000000000000000 | SS for CPL 1 | 10 16 static
90 // | ESP for CPL 1 | 0c 12 static
91 // |000000000000000 | SS for CPL 0 | 08 08 static
92 // | ESP for CPL 0 | 04 04 static
93 // |000000000000000 | back link to prev TSS | 00 00 dynamic (updated only when return expected)
96 // ==================================================
97 // Effect of task switch on Busy, NT, and Link Fields
98 // ==================================================
100 // Field jump call/interrupt iret
101 // ------------------------------------------------------
102 // new busy bit Set Set No change
103 // old busy bit Cleared No change Cleared
104 // new NT flag No change Set No change
105 // old NT flag No change No change Cleared
106 // new link No change old TSS selector No change
107 // old link No change No change No change
108 // CR0.TS Set Set Set
110 // Note: I checked 386, 486, and Pentium, and they all exhibited
111 // exactly the same behaviour as above. There seems to
112 // be some misprints in the Intel docs.
114 void BX_CPU_C::task_switch(bx_selector_t
*tss_selector
,
115 bx_descriptor_t
*tss_descriptor
, unsigned source
,
116 Bit32u dword1
, Bit32u dword2
)
118 Bit32u obase32
; // base address of old TSS
119 Bit32u nbase32
; // base address of new TSS
120 Bit32u temp32
, newCR3
;
121 Bit16u raw_cs_selector
, raw_ss_selector
, raw_ds_selector
, raw_es_selector
,
122 raw_fs_selector
, raw_gs_selector
, raw_ldt_selector
;
123 Bit16u temp16
, trap_word
;
124 bx_selector_t cs_selector
, ss_selector
, ds_selector
, es_selector
,
125 fs_selector
, gs_selector
, ldt_selector
;
126 bx_descriptor_t cs_descriptor
, ss_descriptor
, ldt_descriptor
;
127 Bit32u old_TSS_max
, new_TSS_max
, old_TSS_limit
, new_TSS_limit
;
128 Bit32u newEAX
, newECX
, newEDX
, newEBX
;
129 Bit32u newESP
, newEBP
, newESI
, newEDI
;
130 Bit32u newEFLAGS
, newEIP
;
132 BX_DEBUG(("TASKING: ENTER"));
134 invalidate_prefetch_q();
136 // Discard any traps and inhibits for new context; traps will
137 // resume upon return.
138 BX_CPU_THIS_PTR debug_trap
= 0;
139 BX_CPU_THIS_PTR inhibit_mask
= 0;
141 // STEP 1: The following checks are made before calling task_switch(),
142 // for JMP & CALL only. These checks are NOT made for exceptions,
143 // interrupts & IRET.
145 // 1) TSS DPL must be >= CPL
146 // 2) TSS DPL must be >= TSS selector RPL
147 // 3) TSS descriptor is not busy.
149 // TSS must be present, else #NP(TSS selector)
150 if (tss_descriptor
->p
==0) {
151 BX_ERROR(("task_switch: TSS descriptor is not present !"));
152 exception(BX_NP_EXCEPTION
, tss_selector
->value
& 0xfffc, 0);
155 // STEP 2: The processor performs limit-checking on the target TSS
156 // to verify that the TSS limit is greater than or equal
157 // to 67h (2Bh for 16-bit TSS).
159 // Gather info about old TSS
160 if (BX_CPU_THIS_PTR tr
.cache
.type
<= 3) {
166 // Gather info about new TSS
167 if (tss_descriptor
->type
<= 3) { // {1,3}
170 else { // tss_descriptor->type = {9,11}
174 obase32
= (Bit32u
) BX_CPU_THIS_PTR tr
.cache
.u
.system
.base
; // old TSS.base
175 old_TSS_limit
= BX_CPU_THIS_PTR tr
.cache
.u
.system
.limit_scaled
;
176 nbase32
= (Bit32u
) tss_descriptor
->u
.system
.base
; // new TSS.base
177 new_TSS_limit
= tss_descriptor
->u
.system
.limit_scaled
;
179 // TSS must have valid limit, else #TS(TSS selector)
180 if (tss_selector
->ti
|| tss_descriptor
->valid
==0 ||
181 new_TSS_limit
< new_TSS_max
)
183 BX_ERROR(("task_switch(): new TSS limit < %d", new_TSS_max
));
184 exception(BX_TS_EXCEPTION
, tss_selector
->value
& 0xfffc, 0);
187 if (old_TSS_limit
< old_TSS_max
) {
188 BX_ERROR(("task_switch(): old TSS limit < %d", old_TSS_max
));
189 exception(BX_TS_EXCEPTION
, BX_CPU_THIS_PTR tr
.selector
.value
& 0xfffc, 0);
192 if (obase32
== nbase32
) {
193 BX_INFO(("TASK SWITCH: switching to the same TSS !"));
196 // Check that old TSS, new TSS, and all segment descriptors
197 // used in the task switch are paged in.
198 if (BX_CPU_THIS_PTR cr0
.get_PG())
200 dtranslate_linear(obase32
, 0, BX_WRITE
); // new TSS
201 dtranslate_linear(obase32
+ old_TSS_max
, 0, BX_WRITE
);
202 dtranslate_linear(nbase32
, 0, BX_READ
); // old TSS
203 dtranslate_linear(nbase32
+ new_TSS_max
, 0, BX_READ
);
205 // ??? Humm, we check the new TSS region with READ above,
206 // but sometimes we need to write the link field in that
207 // region. We also sometimes update other fields, perhaps
208 // we need to WRITE check them here also, so that we keep
209 // the written state consistent (ie, we don't encounter a
210 // page fault in the middle).
212 if (source
== BX_TASK_FROM_CALL_OR_INT
)
214 dtranslate_linear(nbase32
, 0, BX_WRITE
);
215 dtranslate_linear(nbase32
+ 2, 0, BX_WRITE
);
219 // Privilege and busy checks done in CALL, JUMP, INT, IRET
221 // STEP 3: Save the current task state in the TSS. Up to this point,
222 // any exception that occurs aborts the task switch without
223 // changing the processor state.
225 /* save current machine state in old task's TSS */
227 Bit32u oldEFLAGS
= read_eflags();
229 /* if moving to busy task, clear NT bit */
230 if (tss_descriptor
->type
== BX_SYS_SEGMENT_BUSY_286_TSS
||
231 tss_descriptor
->type
== BX_SYS_SEGMENT_BUSY_386_TSS
)
233 oldEFLAGS
&= ~EFlagsNTMask
;
236 if (BX_CPU_THIS_PTR tr
.cache
.type
<= 3) {
237 temp16
= IP
; access_write_linear(Bit32u(obase32
+ 14), 2, 0, &temp16
);
238 temp16
= oldEFLAGS
; access_write_linear(Bit32u(obase32
+ 16), 2, 0, &temp16
);
239 temp16
= AX
; access_write_linear(Bit32u(obase32
+ 18), 2, 0, &temp16
);
240 temp16
= CX
; access_write_linear(Bit32u(obase32
+ 20), 2, 0, &temp16
);
241 temp16
= DX
; access_write_linear(Bit32u(obase32
+ 22), 2, 0, &temp16
);
242 temp16
= BX
; access_write_linear(Bit32u(obase32
+ 24), 2, 0, &temp16
);
243 temp16
= SP
; access_write_linear(Bit32u(obase32
+ 26), 2, 0, &temp16
);
244 temp16
= BP
; access_write_linear(Bit32u(obase32
+ 28), 2, 0, &temp16
);
245 temp16
= SI
; access_write_linear(Bit32u(obase32
+ 30), 2, 0, &temp16
);
246 temp16
= DI
; access_write_linear(Bit32u(obase32
+ 32), 2, 0, &temp16
);
247 temp16
= BX_CPU_THIS_PTR sregs
[BX_SEG_REG_ES
].selector
.value
;
248 access_write_linear(Bit32u(obase32
+ 34), 2, 0, &temp16
);
249 temp16
= BX_CPU_THIS_PTR sregs
[BX_SEG_REG_CS
].selector
.value
;
250 access_write_linear(Bit32u(obase32
+ 36), 2, 0, &temp16
);
251 temp16
= BX_CPU_THIS_PTR sregs
[BX_SEG_REG_SS
].selector
.value
;
252 access_write_linear(Bit32u(obase32
+ 38), 2, 0, &temp16
);
253 temp16
= BX_CPU_THIS_PTR sregs
[BX_SEG_REG_DS
].selector
.value
;
254 access_write_linear(Bit32u(obase32
+ 40), 2, 0, &temp16
);
257 temp32
= EIP
; access_write_linear(Bit32u(obase32
+ 0x20), 4, 0, &temp32
);
258 temp32
= oldEFLAGS
; access_write_linear(Bit32u(obase32
+ 0x24), 4, 0, &temp32
);
259 temp32
= EAX
; access_write_linear(Bit32u(obase32
+ 0x28), 4, 0, &temp32
);
260 temp32
= ECX
; access_write_linear(Bit32u(obase32
+ 0x2c), 4, 0, &temp32
);
261 temp32
= EDX
; access_write_linear(Bit32u(obase32
+ 0x30), 4, 0, &temp32
);
262 temp32
= EBX
; access_write_linear(Bit32u(obase32
+ 0x34), 4, 0, &temp32
);
263 temp32
= ESP
; access_write_linear(Bit32u(obase32
+ 0x38), 4, 0, &temp32
);
264 temp32
= EBP
; access_write_linear(Bit32u(obase32
+ 0x3c), 4, 0, &temp32
);
265 temp32
= ESI
; access_write_linear(Bit32u(obase32
+ 0x40), 4, 0, &temp32
);
266 temp32
= EDI
; access_write_linear(Bit32u(obase32
+ 0x44), 4, 0, &temp32
);
267 temp16
= BX_CPU_THIS_PTR sregs
[BX_SEG_REG_ES
].selector
.value
;
268 access_write_linear(Bit32u(obase32
+ 0x48), 2, 0, &temp16
);
269 temp16
= BX_CPU_THIS_PTR sregs
[BX_SEG_REG_CS
].selector
.value
;
270 access_write_linear(Bit32u(obase32
+ 0x4c), 2, 0, &temp16
);
271 temp16
= BX_CPU_THIS_PTR sregs
[BX_SEG_REG_SS
].selector
.value
;
272 access_write_linear(Bit32u(obase32
+ 0x50), 2, 0, &temp16
);
273 temp16
= BX_CPU_THIS_PTR sregs
[BX_SEG_REG_DS
].selector
.value
;
274 access_write_linear(Bit32u(obase32
+ 0x54), 2, 0, &temp16
);
275 temp16
= BX_CPU_THIS_PTR sregs
[BX_SEG_REG_FS
].selector
.value
;
276 access_write_linear(Bit32u(obase32
+ 0x58), 2, 0, &temp16
);
277 temp16
= BX_CPU_THIS_PTR sregs
[BX_SEG_REG_GS
].selector
.value
;
278 access_write_linear(Bit32u(obase32
+ 0x5c), 2, 0, &temp16
);
281 // effect on link field of new task
282 if (source
== BX_TASK_FROM_CALL_OR_INT
)
284 // set to selector of old task's TSS
285 temp16
= BX_CPU_THIS_PTR tr
.selector
.value
;
286 access_write_linear(nbase32
, 2, 0, &temp16
);
289 // STEP 4: The new-task state is loaded from the TSS
291 if (tss_descriptor
->type
<= 3) {
292 newEIP
= system_read_word(Bit32u(nbase32
+ 14));
293 newEFLAGS
= system_read_word(Bit32u(nbase32
+ 16));
295 // incoming TSS is 16bit:
296 // - upper word of general registers is set to 0xFFFF
297 // - upper word of eflags is zero'd
298 // - FS, GS are zero'd
299 // - upper word of eIP is zero'd
300 temp16
= system_read_word(Bit32u(nbase32
+ 18));
301 newEAX
= 0xffff0000 | temp16
;
302 temp16
= system_read_word(Bit32u(nbase32
+ 20));
303 newECX
= 0xffff0000 | temp16
;
304 temp16
= system_read_word(Bit32u(nbase32
+ 22));
305 newEDX
= 0xffff0000 | temp16
;
306 temp16
= system_read_word(Bit32u(nbase32
+ 24));
307 newEBX
= 0xffff0000 | temp16
;
308 temp16
= system_read_word(Bit32u(nbase32
+ 26));
309 newESP
= 0xffff0000 | temp16
;
310 temp16
= system_read_word(Bit32u(nbase32
+ 28));
311 newEBP
= 0xffff0000 | temp16
;
312 temp16
= system_read_word(Bit32u(nbase32
+ 30));
313 newESI
= 0xffff0000 | temp16
;
314 temp16
= system_read_word(Bit32u(nbase32
+ 32));
315 newEDI
= 0xffff0000 | temp16
;
317 raw_es_selector
= system_read_word(Bit32u(nbase32
+ 34));
318 raw_cs_selector
= system_read_word(Bit32u(nbase32
+ 36));
319 raw_ss_selector
= system_read_word(Bit32u(nbase32
+ 38));
320 raw_ds_selector
= system_read_word(Bit32u(nbase32
+ 40));
321 raw_ldt_selector
= system_read_word(Bit32u(nbase32
+ 42));
323 raw_fs_selector
= 0; // use a NULL selector
324 raw_gs_selector
= 0; // use a NULL selector
325 // No CR3 change for 286 task switch
326 newCR3
= 0; // keep compiler happy (not used)
327 trap_word
= 0; // keep compiler happy (not used)
330 if (BX_CPU_THIS_PTR cr0
.get_PG())
331 newCR3
= system_read_dword(Bit32u(nbase32
+ 0x1c));
333 newCR3
= 0; // keep compiler happy (not used)
335 newEIP
= system_read_dword(Bit32u(nbase32
+ 0x20));
336 newEFLAGS
= system_read_dword(Bit32u(nbase32
+ 0x24));
337 newEAX
= system_read_dword(Bit32u(nbase32
+ 0x28));
338 newECX
= system_read_dword(Bit32u(nbase32
+ 0x2c));
339 newEDX
= system_read_dword(Bit32u(nbase32
+ 0x30));
340 newEBX
= system_read_dword(Bit32u(nbase32
+ 0x34));
341 newESP
= system_read_dword(Bit32u(nbase32
+ 0x38));
342 newEBP
= system_read_dword(Bit32u(nbase32
+ 0x3c));
343 newESI
= system_read_dword(Bit32u(nbase32
+ 0x40));
344 newEDI
= system_read_dword(Bit32u(nbase32
+ 0x44));
346 raw_es_selector
= system_read_word(Bit32u(nbase32
+ 0x48));
347 raw_cs_selector
= system_read_word(Bit32u(nbase32
+ 0x4c));
348 raw_ss_selector
= system_read_word(Bit32u(nbase32
+ 0x50));
349 raw_ds_selector
= system_read_word(Bit32u(nbase32
+ 0x54));
350 raw_fs_selector
= system_read_word(Bit32u(nbase32
+ 0x58));
351 raw_gs_selector
= system_read_word(Bit32u(nbase32
+ 0x5c));
352 raw_ldt_selector
= system_read_word(Bit32u(nbase32
+ 0x60));
353 trap_word
= system_read_word(Bit32u(nbase32
+ 0x64));
356 // Step 5: If CALL, interrupt, or JMP, set busy flag in new task's
357 // TSS descriptor. If IRET, leave set.
359 if (source
== BX_TASK_FROM_JUMP
|| source
== BX_TASK_FROM_CALL_OR_INT
)
361 // set the new task's busy bit
362 Bit32u laddr
= (Bit32u
)(BX_CPU_THIS_PTR gdtr
.base
) + (tss_selector
->index
<<3) + 4;
363 access_read_linear(laddr
, 4, 0, BX_READ
, &dword2
);
365 access_write_linear(laddr
, 4, 0, &dword2
);
368 // Step 6: If JMP or IRET, clear busy bit in old task TSS descriptor,
369 // otherwise leave set.
371 // effect on Busy bit of old task
372 if (source
== BX_TASK_FROM_JUMP
|| source
== BX_TASK_FROM_IRET
) {
374 Bit32u laddr
= (Bit32u
) BX_CPU_THIS_PTR gdtr
.base
+ (BX_CPU_THIS_PTR tr
.selector
.index
<<3) + 4;
375 access_read_linear(laddr
, 4, 0, BX_READ
, &temp32
);
377 access_write_linear(laddr
, 4, 0, &temp32
);
381 // Commit point. At this point, we commit to the new
382 // context. If an unrecoverable error occurs in further
383 // processing, we complete the task switch without performing
384 // additional access and segment availablility checks and
385 // generate the appropriate exception prior to beginning
386 // execution of the new task.
389 // Step 7: Load the task register with the segment selector and
390 // descriptor for the new task TSS.
392 BX_CPU_THIS_PTR tr
.selector
= *tss_selector
;
393 BX_CPU_THIS_PTR tr
.cache
= *tss_descriptor
;
394 BX_CPU_THIS_PTR tr
.cache
.type
|= 2; // mark TSS in TR as busy
396 // Step 8: Set TS flag in the CR0 image stored in the new task TSS.
397 BX_CPU_THIS_PTR cr0
.set_TS(1);
399 // Task switch clears LE/L3/L2/L1/L0 in DR7
400 BX_CPU_THIS_PTR dr7
&= ~0x00000155;
402 // Step 9: If call or interrupt, set the NT flag in the eflags
403 // image stored in new task's TSS. If IRET or JMP,
404 // NT is restored from new TSS eflags image. (no change)
406 // effect on NT flag of new task
407 if (source
== BX_TASK_FROM_CALL_OR_INT
) {
408 newEFLAGS
|= EFlagsNTMask
; // NT flag is set
411 // Step 10: Load the new task (dynamic) state from new TSS.
412 // Any errors associated with loading and qualification of
413 // segment descriptors in this step occur in the new task's
414 // context. State loaded here includes LDTR, CR3,
415 // EFLAGS, EIP, general purpose registers, and segment
416 // descriptor parts of the segment registers.
418 BX_CPU_THIS_PTR prev_rip
= EIP
= newEIP
;
429 writeEFlags(newEFLAGS
, EFlagsValidMask
);
431 // Fill in selectors for all segment registers. If errors
432 // occur later, the selectors will at least be loaded.
433 parse_selector(raw_cs_selector
, &cs_selector
);
434 BX_CPU_THIS_PTR sregs
[BX_SEG_REG_CS
].selector
= cs_selector
;
435 parse_selector(raw_ss_selector
, &ss_selector
);
436 BX_CPU_THIS_PTR sregs
[BX_SEG_REG_SS
].selector
= ss_selector
;
437 parse_selector(raw_ds_selector
, &ds_selector
);
438 BX_CPU_THIS_PTR sregs
[BX_SEG_REG_DS
].selector
= ds_selector
;
439 parse_selector(raw_es_selector
, &es_selector
);
440 BX_CPU_THIS_PTR sregs
[BX_SEG_REG_ES
].selector
= es_selector
;
441 parse_selector(raw_fs_selector
, &fs_selector
);
442 BX_CPU_THIS_PTR sregs
[BX_SEG_REG_FS
].selector
= fs_selector
;
443 parse_selector(raw_gs_selector
, &gs_selector
);
444 BX_CPU_THIS_PTR sregs
[BX_SEG_REG_GS
].selector
= gs_selector
;
445 parse_selector(raw_ldt_selector
, &ldt_selector
);
446 BX_CPU_THIS_PTR ldtr
.selector
= ldt_selector
;
448 // Start out with invalid descriptor caches, fill in with
449 // values only as they are validated
450 BX_CPU_THIS_PTR ldtr
.cache
.valid
= 0;
451 BX_CPU_THIS_PTR sregs
[BX_SEG_REG_CS
].cache
.valid
= 0;
452 BX_CPU_THIS_PTR sregs
[BX_SEG_REG_SS
].cache
.valid
= 0;
453 BX_CPU_THIS_PTR sregs
[BX_SEG_REG_DS
].cache
.valid
= 0;
454 BX_CPU_THIS_PTR sregs
[BX_SEG_REG_ES
].cache
.valid
= 0;
455 BX_CPU_THIS_PTR sregs
[BX_SEG_REG_FS
].cache
.valid
= 0;
456 BX_CPU_THIS_PTR sregs
[BX_SEG_REG_GS
].cache
.valid
= 0;
458 if ((tss_descriptor
->type
>= 9) && BX_CPU_THIS_PTR cr0
.get_PG()) {
459 // change CR3 only if it actually modified
460 if (newCR3
!= BX_CPU_THIS_PTR cr3
) {
461 SetCR3(newCR3
); // Tell paging unit about new cr3 value
462 BX_DEBUG(("task_switch changing CR3 to 0x" FMT_PHY_ADDRX
, newCR3
));
463 BX_INSTR_TLB_CNTRL(BX_CPU_ID
, BX_INSTR_TASKSWITCH
, newCR3
);
468 if (ldt_selector
.ti
) {
469 // LDT selector must be in GDT
470 BX_INFO(("task_switch(exception after commit point): bad LDT selector TI=1"));
471 exception(BX_TS_EXCEPTION
, raw_ldt_selector
& 0xfffc, 0);
474 if ((raw_ldt_selector
& 0xfffc) != 0) {
475 bx_bool good
= fetch_raw_descriptor2(&ldt_selector
, &dword1
, &dword2
);
477 BX_ERROR(("task_switch(exception after commit point): bad LDT fetch"));
478 exception(BX_TS_EXCEPTION
, raw_ldt_selector
& 0xfffc, 0);
481 parse_descriptor(dword1
, dword2
, &ldt_descriptor
);
483 // LDT selector of new task is valid, else #TS(new task's LDT)
484 if (ldt_descriptor
.valid
==0 ||
485 ldt_descriptor
.type
!=BX_SYS_SEGMENT_LDT
||
486 ldt_descriptor
.segment
)
488 BX_ERROR(("task_switch(exception after commit point): bad LDT segment"));
489 exception(BX_TS_EXCEPTION
, raw_ldt_selector
& 0xfffc, 0);
492 // LDT of new task is present in memory, else #TS(new tasks's LDT)
493 if (! IS_PRESENT(ldt_descriptor
)) {
494 BX_ERROR(("task_switch(exception after commit point): LDT not present"));
495 exception(BX_TS_EXCEPTION
, raw_ldt_selector
& 0xfffc, 0);
498 // All checks pass, fill in LDTR shadow cache
499 BX_CPU_THIS_PTR ldtr
.cache
= ldt_descriptor
;
502 // NULL LDT selector is OK, leave cache invalid
506 // load seg regs as 8086 registers
507 load_seg_reg(&BX_CPU_THIS_PTR sregs
[BX_SEG_REG_SS
], raw_ss_selector
);
508 load_seg_reg(&BX_CPU_THIS_PTR sregs
[BX_SEG_REG_DS
], raw_ds_selector
);
509 load_seg_reg(&BX_CPU_THIS_PTR sregs
[BX_SEG_REG_ES
], raw_es_selector
);
510 load_seg_reg(&BX_CPU_THIS_PTR sregs
[BX_SEG_REG_FS
], raw_fs_selector
);
511 load_seg_reg(&BX_CPU_THIS_PTR sregs
[BX_SEG_REG_GS
], raw_gs_selector
);
512 load_seg_reg(&BX_CPU_THIS_PTR sregs
[BX_SEG_REG_CS
], raw_cs_selector
);
516 unsigned save_CPL
= CPL
;
517 /* set CPL to 3 to force a privilege level change and stack switch if SS
518 is not properly loaded */
522 if ((raw_ss_selector
& 0xfffc) != 0)
524 bx_bool good
= fetch_raw_descriptor2(&ss_selector
, &dword1
, &dword2
);
526 BX_ERROR(("task_switch(exception after commit point): bad SS fetch"));
527 exception(BX_TS_EXCEPTION
, raw_ss_selector
& 0xfffc, 0);
530 parse_descriptor(dword1
, dword2
, &ss_descriptor
);
532 // SS selector must be within its descriptor table limits else #TS(SS)
533 // SS descriptor AR byte must must indicate writable data segment,
535 if (ss_descriptor
.valid
==0 || ss_descriptor
.segment
==0 ||
536 IS_CODE_SEGMENT(ss_descriptor
.type
) ||
537 !IS_DATA_SEGMENT_WRITEABLE(ss_descriptor
.type
))
539 BX_ERROR(("task_switch(exception after commit point): SS not valid or writeable segment"));
540 exception(BX_TS_EXCEPTION
, raw_ss_selector
& 0xfffc, 0);
544 // Stack segment is present in memory, else #SS(new stack segment)
546 if (! IS_PRESENT(ss_descriptor
)) {
547 BX_ERROR(("task_switch(exception after commit point): SS not present"));
548 exception(BX_SS_EXCEPTION
, raw_ss_selector
& 0xfffc, 0);
551 // Stack segment DPL matches CS.RPL, else #TS(new stack segment)
552 if (ss_descriptor
.dpl
!= cs_selector
.rpl
) {
553 BX_ERROR(("task_switch(exception after commit point): SS.rpl != CS.RPL"));
554 exception(BX_TS_EXCEPTION
, raw_ss_selector
& 0xfffc, 0);
557 // Stack segment DPL matches selector RPL, else #TS(new stack segment)
558 if (ss_descriptor
.dpl
!= ss_selector
.rpl
) {
559 BX_ERROR(("task_switch(exception after commit point): SS.dpl != SS.rpl"));
560 exception(BX_TS_EXCEPTION
, raw_ss_selector
& 0xfffc, 0);
563 // All checks pass, fill in shadow cache
564 BX_CPU_THIS_PTR sregs
[BX_SEG_REG_SS
].cache
= ss_descriptor
;
567 // SS selector is valid, else #TS(new stack segment)
568 BX_ERROR(("task_switch(exception after commit point): SS NULL"));
569 exception(BX_TS_EXCEPTION
, raw_ss_selector
& 0xfffc, 0);
574 task_switch_load_selector(&BX_CPU_THIS_PTR sregs
[BX_SEG_REG_DS
],
575 &ds_selector
, raw_ds_selector
, cs_selector
.rpl
);
576 task_switch_load_selector(&BX_CPU_THIS_PTR sregs
[BX_SEG_REG_ES
],
577 &es_selector
, raw_es_selector
, cs_selector
.rpl
);
578 task_switch_load_selector(&BX_CPU_THIS_PTR sregs
[BX_SEG_REG_FS
],
579 &fs_selector
, raw_fs_selector
, cs_selector
.rpl
);
580 task_switch_load_selector(&BX_CPU_THIS_PTR sregs
[BX_SEG_REG_GS
],
581 &gs_selector
, raw_gs_selector
, cs_selector
.rpl
);
583 // if new selector is not null then perform following checks:
584 // index must be within its descriptor table limits else #TS(selector)
585 // AR byte must indicate data or readable code else #TS(selector)
586 // if data or non-conforming code then:
587 // DPL must be >= CPL else #TS(selector)
588 // DPL must be >= RPL else #TS(selector)
589 // AR byte must indicate PRESENT else #NP(selector)
590 // load cache with new segment descriptor and set valid bit
593 if ((raw_cs_selector
& 0xfffc) != 0) {
594 bx_bool good
= fetch_raw_descriptor2(&cs_selector
, &dword1
, &dword2
);
596 BX_ERROR(("task_switch(exception after commit point): bad CS fetch"));
597 exception(BX_TS_EXCEPTION
, raw_cs_selector
& 0xfffc, 0);
600 parse_descriptor(dword1
, dword2
, &cs_descriptor
);
602 // CS descriptor AR byte must indicate code segment else #TS(CS)
603 if (cs_descriptor
.valid
==0 || cs_descriptor
.segment
==0 ||
604 IS_DATA_SEGMENT(cs_descriptor
.type
))
606 BX_ERROR(("task_switch(exception after commit point): CS not valid executable seg"));
607 exception(BX_TS_EXCEPTION
, raw_cs_selector
& 0xfffc, 0);
610 // if non-conforming then DPL must equal selector RPL else #TS(CS)
611 if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor
.type
) &&
612 cs_descriptor
.dpl
!= cs_selector
.rpl
)
614 BX_ERROR(("task_switch(exception after commit point): non-conforming: CS.dpl!=CS.RPL"));
615 exception(BX_TS_EXCEPTION
, raw_cs_selector
& 0xfffc, 0);
618 // if conforming then DPL must be <= selector RPL else #TS(CS)
619 if (IS_CODE_SEGMENT_CONFORMING(cs_descriptor
.type
) &&
620 cs_descriptor
.dpl
> cs_selector
.rpl
)
622 BX_ERROR(("task_switch(exception after commit point): conforming: CS.dpl>RPL"));
623 exception(BX_TS_EXCEPTION
, raw_cs_selector
& 0xfffc, 0);
626 // Code segment is present in memory, else #NP(new code segment)
627 if (! IS_PRESENT(cs_descriptor
)) {
628 BX_ERROR(("task_switch(exception after commit point): CS.p==0"));
629 exception(BX_NP_EXCEPTION
, raw_cs_selector
& 0xfffc, 0);
632 // All checks pass, fill in shadow cache
633 BX_CPU_THIS_PTR sregs
[BX_SEG_REG_CS
].cache
= cs_descriptor
;
636 // If new cs selector is null #TS(CS)
637 BX_ERROR(("task_switch(exception after commit point): CS NULL"));
638 exception(BX_TS_EXCEPTION
, raw_cs_selector
& 0xfffc, 0);
641 updateFetchModeMask();
643 #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
644 handleAlignmentCheck(); // task switch, CPL was modified
649 if ((tss_descriptor
->type
>=9) && (trap_word
& 0x1)) {
650 BX_CPU_THIS_PTR debug_trap
|= 0x00008000; // BT flag in DR6
651 BX_CPU_THIS_PTR async_event
= 1; // so processor knows to check
652 BX_INFO(("task_switch: T bit set in new TSS"));
656 // Step 14: Begin execution of new task.
658 BX_DEBUG(("TASKING: LEAVE"));
661 void BX_CPU_C::task_switch_load_selector(bx_segment_reg_t
*seg
,
662 bx_selector_t
*selector
, Bit16u raw_selector
, Bit8u cs_rpl
)
664 bx_descriptor_t descriptor
;
665 Bit32u dword1
, dword2
;
667 // NULL selector is OK, will leave cache invalid
668 if ((raw_selector
& 0xfffc) != 0)
670 bx_bool good
= fetch_raw_descriptor2(selector
, &dword1
, &dword2
);
672 BX_ERROR(("task_switch(%s): bad selector fetch !", strseg(seg
)));
673 exception(BX_TS_EXCEPTION
, raw_selector
& 0xfffc, 0);
676 parse_descriptor(dword1
, dword2
, &descriptor
);
678 /* AR byte must indicate data or readable code segment else #TS(selector) */
679 if (descriptor
.segment
==0 || (IS_CODE_SEGMENT(descriptor
.type
) &&
680 IS_CODE_SEGMENT_READABLE(descriptor
.type
) == 0))
682 BX_ERROR(("task_switch(%s): not data or readable code !", strseg(seg
)));
683 exception(BX_TS_EXCEPTION
, raw_selector
& 0xfffc, 0);
686 /* If data or non-conforming code, then both the RPL and the CPL
687 * must be less than or equal to DPL in AR byte else #GP(selector) */
688 if (IS_DATA_SEGMENT(descriptor
.type
) ||
689 IS_CODE_SEGMENT_NON_CONFORMING(descriptor
.type
))
691 if ((selector
->rpl
> descriptor
.dpl
) || (cs_rpl
> descriptor
.dpl
)) {
692 BX_ERROR(("load_seg_reg(%s): RPL & CPL must be <= DPL", strseg(seg
)));
693 exception(BX_TS_EXCEPTION
, raw_selector
& 0xfffc, 0);
697 if (! IS_PRESENT(descriptor
)) {
698 BX_ERROR(("task_switch(%s): descriptor not present !", strseg(seg
)));
699 exception(BX_NP_EXCEPTION
, raw_selector
& 0xfffc, 0);
702 // All checks pass, fill in shadow cache
703 seg
->cache
= descriptor
;
707 void BX_CPU_C::get_SS_ESP_from_TSS(unsigned pl
, Bit16u
*ss
, Bit32u
*esp
)
709 if (BX_CPU_THIS_PTR tr
.cache
.valid
==0)
710 BX_PANIC(("get_SS_ESP_from_TSS: TR.cache invalid"));
712 if (BX_CPU_THIS_PTR tr
.cache
.type
==BX_SYS_SEGMENT_AVAIL_386_TSS
||
713 BX_CPU_THIS_PTR tr
.cache
.type
==BX_SYS_SEGMENT_BUSY_386_TSS
)
716 Bit32u TSSstackaddr
= 8*pl
+ 4;
717 if ((TSSstackaddr
+7) > BX_CPU_THIS_PTR tr
.cache
.u
.system
.limit_scaled
) {
718 BX_DEBUG(("get_SS_ESP_from_TSS(386): TSSstackaddr > TSS.LIMIT"));
719 exception(BX_TS_EXCEPTION
, BX_CPU_THIS_PTR tr
.selector
.value
& 0xfffc, 0);
721 *ss
= system_read_word (BX_CPU_THIS_PTR tr
.cache
.u
.system
.base
+ TSSstackaddr
+ 4);
722 *esp
= system_read_dword(BX_CPU_THIS_PTR tr
.cache
.u
.system
.base
+ TSSstackaddr
);
724 else if (BX_CPU_THIS_PTR tr
.cache
.type
==BX_SYS_SEGMENT_AVAIL_286_TSS
||
725 BX_CPU_THIS_PTR tr
.cache
.type
==BX_SYS_SEGMENT_BUSY_286_TSS
)
728 Bit32u TSSstackaddr
= 4*pl
+ 2;
729 if ((TSSstackaddr
+3) > BX_CPU_THIS_PTR tr
.cache
.u
.system
.limit_scaled
) {
730 BX_DEBUG(("get_SS_ESP_from_TSS(286): TSSstackaddr > TSS.LIMIT"));
731 exception(BX_TS_EXCEPTION
, BX_CPU_THIS_PTR tr
.selector
.value
& 0xfffc, 0);
733 *ss
= system_read_word(BX_CPU_THIS_PTR tr
.cache
.u
.system
.base
+ TSSstackaddr
+ 2);
734 *esp
= (Bit32u
) system_read_word(BX_CPU_THIS_PTR tr
.cache
.u
.system
.base
+ TSSstackaddr
);
737 BX_PANIC(("get_SS_ESP_from_TSS: TR is bogus type (%u)",
738 (unsigned) BX_CPU_THIS_PTR tr
.cache
.type
));
742 #if BX_SUPPORT_X86_64
743 Bit64u
BX_CPU_C::get_RSP_from_TSS(unsigned pl
)
745 if (BX_CPU_THIS_PTR tr
.cache
.valid
==0)
746 BX_PANIC(("get_RSP_from_TSS: TR.cache invalid"));
749 Bit32u TSSstackaddr
= 8*pl
+ 4;
750 if ((TSSstackaddr
+7) > BX_CPU_THIS_PTR tr
.cache
.u
.system
.limit_scaled
) {
751 BX_DEBUG(("get_RSP_from_TSS(): TSSstackaddr > TSS.LIMIT"));
752 exception(BX_TS_EXCEPTION
, BX_CPU_THIS_PTR tr
.selector
.value
& 0xfffc, 0);
755 Bit64u rsp
= system_read_qword(BX_CPU_THIS_PTR tr
.cache
.u
.system
.base
+ TSSstackaddr
);
758 #endif // #if BX_SUPPORT_X86_64