- compare disk size with the size calculated from geometry to avoid image
[bochs-mirror.git] / pc_system.cc
blob78a36f7dcff71de530a58af8fd6493786e142d51
1 /////////////////////////////////////////////////////////////////////////
2 // $Id: pc_system.cc,v 1.65 2006/09/17 20:37:27 vruppert Exp $
3 /////////////////////////////////////////////////////////////////////////
4 //
5 // Copyright (C) 2002 MandrakeSoft S.A.
6 //
7 // MandrakeSoft S.A.
8 // 43, rue d'Aboukir
9 // 75002 Paris - France
10 // http://www.linux-mandrake.com/
11 // http://www.mandrakesoft.com/
13 // This library is free software; you can redistribute it and/or
14 // modify it under the terms of the GNU Lesser General Public
15 // License as published by the Free Software Foundation; either
16 // version 2 of the License, or (at your option) any later version.
18 // This library is distributed in the hope that it will be useful,
19 // but WITHOUT ANY WARRANTY; without even the implied warranty of
20 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 // Lesser General Public License for more details.
23 // You should have received a copy of the GNU Lesser General Public
24 // License along with this library; if not, write to the Free Software
25 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28 #include "bochs.h"
29 #include "cpu/cpu.h"
30 #include "iodev/iodev.h"
31 #define LOG_THIS bx_pc_system.
33 #ifdef WIN32
34 #ifndef __MINGW32__
35 // #include <winsock2.h> // +++
36 #include <winsock.h>
37 #endif
38 #endif
40 #if defined(PROVIDE_M_IPS)
41 double m_ips; // Millions of Instructions Per Second
42 #endif
44 // Option for turning off BX_TIMER_DEBUG?
45 // Check out m_ips and ips
47 #define SpewPeriodicTimerInfo 0
48 #define MinAllowableTimerPeriod 1
50 #if BX_SUPPORT_ICACHE
51 const Bit64u bx_pc_system_c::NullTimerInterval = ICacheWriteStampStart;
52 #else
53 // This must be the maximum 32-bit unsigned int value, NOT (Bit64u) -1.
54 const Bit64u bx_pc_system_c::NullTimerInterval = 0xffffffff;
55 #endif
57 // constructor
58 bx_pc_system_c::bx_pc_system_c()
60 this->put("SYS");
62 BX_ASSERT(numTimers == 0);
64 // Timer[0] is the null timer. It is initialized as a special
65 // case here. It should never be turned off or modified, and its
66 // duration should always remain the same.
67 ticksTotal = 0; // Reset ticks since emulator started.
68 timer[0].inUse = 1;
69 timer[0].period = NullTimerInterval;
70 timer[0].active = 1;
71 timer[0].continuous = 1;
72 timer[0].funct = nullTimer;
73 timer[0].this_ptr = this;
74 numTimers = 1; // So far, only the nullTimer.
77 void bx_pc_system_c::initialize(Bit32u ips)
79 ticksTotal = 0;
80 timer[0].timeToFire = NullTimerInterval;
81 currCountdown = NullTimerInterval;
82 currCountdownPeriod = NullTimerInterval;
83 lastTimeUsec = 0;
84 usecSinceLast = 0;
85 triggeredTimer = 0;
86 HRQ = 0;
87 kill_bochs_request = 0;
89 // parameter 'ips' is the processor speed in Instructions-Per-Second
90 m_ips = double(ips) / 1000000.0L;
92 BX_DEBUG(("ips = %u", (unsigned) ips));
95 void bx_pc_system_c::set_HRQ(bx_bool val)
97 HRQ = val;
98 if (val)
99 BX_CPU(0)->async_event = 1;
102 void bx_pc_system_c::set_INTR(bx_bool value)
104 if (bx_dbg.interrupts)
105 BX_INFO(("pc_system: Setting INTR=%d on bootstrap processor %d", (int)value, BX_BOOTSTRAP_PROCESSOR));
106 BX_CPU(BX_BOOTSTRAP_PROCESSOR)->set_INTR(value);
110 // Read from the IO memory address space
113 Bit32u BX_CPP_AttrRegparmN(2)
114 bx_pc_system_c::inp(Bit16u addr, unsigned io_len)
116 Bit32u ret = bx_devices.inp(addr, io_len);
117 return ret;
121 // Write to the IO memory address space.
124 void BX_CPP_AttrRegparmN(3)
125 bx_pc_system_c::outp(Bit16u addr, Bit32u value, unsigned io_len)
127 bx_devices.outp(addr, value, io_len);
130 #if BX_SUPPORT_A20
132 void bx_pc_system_c::set_enable_a20(bx_bool value)
134 bx_bool old_enable_a20 = enable_a20;
136 if (value) {
137 enable_a20 = 1;
138 #if BX_CPU_LEVEL < 2
139 a20_mask = 0xfffff;
140 #elif BX_CPU_LEVEL == 2
141 a20_mask = 0xffffff;
142 #else /* 386+ */
143 a20_mask = 0xffffffff;
144 #endif
146 else {
147 enable_a20 = 0;
148 a20_mask = 0xffefffff; /* mask off A20 address line */
151 BX_DBG_A20_REPORT(enable_a20);
153 BX_DEBUG(("A20: set() = %u", (unsigned) enable_a20));
155 // If there has been a transition, we need to notify the CPUs so
156 // they can potentially invalidate certain cache info based on
157 // A20-line-applied physical addresses.
158 if (old_enable_a20 != enable_a20) MemoryMappingChanged();
161 bx_bool bx_pc_system_c::get_enable_a20(void)
163 if (bx_dbg.a20)
164 BX_INFO(("A20: get() = %u", (unsigned) enable_a20));
166 return enable_a20;
169 #else
171 void bx_pc_system_c::set_enable_a20(bx_bool value)
173 BX_DEBUG(("set_enable_a20: ignoring: SUPPORT_A20 = 0"));
176 bx_bool bx_pc_system_c::get_enable_a20(void)
178 BX_DEBUG(("get_enable_a20: ignoring: SUPPORT_A20 = 0"));
179 return 1;
182 #endif // #if BX_SUPPORT_A20
184 void bx_pc_system_c::MemoryMappingChanged(void)
186 for (unsigned i=0; i<BX_SMP_PROCESSORS; i++)
187 BX_CPU(i)->TLB_flush(1);
190 int bx_pc_system_c::Reset(unsigned type)
192 // type is BX_RESET_HARDWARE or BX_RESET_SOFTWARE
193 BX_INFO(("bx_pc_system_c::Reset(%s) called",type==BX_RESET_HARDWARE?"HARDWARE":"SOFTWARE"));
195 set_enable_a20(1);
197 // Always reset cpu
198 for (int i=0; i<BX_SMP_PROCESSORS; i++) {
199 BX_CPU(i)->reset(type);
202 // Reset devices only on Hardware resets
203 if (type==BX_RESET_HARDWARE) {
204 DEV_reset_devices(type);
207 return(0);
210 Bit8u bx_pc_system_c::IAC(void)
212 return DEV_pic_iac();
215 void bx_pc_system_c::exit(void)
217 // delete all registered timers (exception: null timer and APIC timer)
218 numTimers = 1 + BX_SUPPORT_APIC;
219 bx_devices.exit();
220 if (bx_gui) {
221 bx_gui->cleanup();
222 bx_gui->exit();
226 #if BX_SUPPORT_SAVE_RESTORE
227 void bx_pc_system_c::register_state(void)
230 bx_list_c *list = new bx_list_c(SIM->get_sr_root(), "pc_system", "PC System State", 8);
231 BXRS_PARAM_BOOL(list, enable_a20, enable_a20);
232 BXRS_DEC_PARAM_SIMPLE(list, currCountdown);
233 BXRS_DEC_PARAM_SIMPLE(list, currCountdownPeriod);
234 BXRS_DEC_PARAM_SIMPLE(list, ticksTotal);
235 BXRS_DEC_PARAM_SIMPLE(list, lastTimeUsec);
236 BXRS_DEC_PARAM_SIMPLE(list, usecSinceLast);
237 BXRS_PARAM_BOOL(list, HRQ, HRQ);
239 bx_list_c *timers = new bx_list_c(list, "timer", numTimers);
240 for (unsigned i = 0; i < numTimers; i++) {
241 char name[4];
242 sprintf(name, "%d", i);
243 bx_list_c *bxtimer = new bx_list_c(timers, name, 5);
244 BXRS_PARAM_BOOL(bxtimer, inUse, timer[i].inUse);
245 BXRS_DEC_PARAM_FIELD(bxtimer, period, timer[i].period);
246 BXRS_DEC_PARAM_FIELD(bxtimer, timeToFire, timer[i].timeToFire);
247 BXRS_PARAM_BOOL(bxtimer, active, timer[i].active);
248 BXRS_PARAM_BOOL(bxtimer, continuous, timer[i].continuous);
251 #endif
254 // ================================================
255 // Bochs internal timer delivery framework features
256 // ================================================
258 int bx_pc_system_c::register_timer( void *this_ptr, void (*funct)(void *),
259 Bit32u useconds, bx_bool continuous, bx_bool active, const char *id)
261 // Convert useconds to number of ticks.
262 Bit64u ticks = (Bit64u) (double(useconds) * m_ips);
264 return register_timer_ticks(this_ptr, funct, ticks, continuous, active, id);
267 int bx_pc_system_c::register_timer_ticks(void* this_ptr, bx_timer_handler_t funct,
268 Bit64u ticks, bx_bool continuous, bx_bool active, const char *id)
270 unsigned i;
272 // If the timer frequency is rediculously low, make it more sane.
273 // This happens when 'ips' is too low.
274 if (ticks < MinAllowableTimerPeriod) {
275 //BX_INFO(("register_timer_ticks: adjusting ticks of %llu to min of %u",
276 // ticks, MinAllowableTimerPeriod));
277 ticks = MinAllowableTimerPeriod;
280 // search for new timer for i=1, i=0 is reserved for NullTimer
281 for (i=1; i < numTimers; i++) {
282 if (timer[i].inUse == 0)
283 break;
286 #if BX_TIMER_DEBUG
287 if (i==0)
288 BX_PANIC(("register_timer: cannot register NullTimer again!"));
289 if (numTimers >= BX_MAX_TIMERS)
290 BX_PANIC(("register_timer: too many registered timers"));
291 if (this_ptr == NULL)
292 BX_PANIC(("register_timer_ticks: this_ptr is NULL!"));
293 if (funct == NULL)
294 BX_PANIC(("register_timer_ticks: funct is NULL!"));
295 #endif
297 timer[i].inUse = 1;
298 timer[i].period = ticks;
299 timer[i].timeToFire = (ticksTotal + Bit64u(currCountdownPeriod-currCountdown)) +
300 ticks;
301 timer[i].active = active;
302 timer[i].continuous = continuous;
303 timer[i].funct = funct;
304 timer[i].this_ptr = this_ptr;
305 strncpy(timer[i].id, id, BxMaxTimerIDLen);
306 timer[i].id[BxMaxTimerIDLen-1] = 0; // Null terminate if not already.
308 if (active) {
309 if (ticks < Bit64u(currCountdown)) {
310 // This new timer needs to fire before the current countdown.
311 // Skew the current countdown and countdown period to be smaller
312 // by the delta.
313 currCountdownPeriod -= (currCountdown - Bit32u(ticks));
314 currCountdown = Bit32u(ticks);
318 BX_DEBUG(("timer id %d registered for '%s'", i, id));
319 // If we didn't find a free slot, increment the bound, numTimers.
320 if (i==numTimers)
321 numTimers++; // One new timer installed.
323 // Return timer id.
324 return(i);
327 void bx_pc_system_c::countdownEvent(void)
329 unsigned i;
330 Bit64u minTimeToFire;
331 bx_bool triggered[BX_MAX_TIMERS];
333 // The countdown decremented to 0. We need to service all the active
334 // timers, and invoke callbacks from those timers which have fired.
335 #if BX_TIMER_DEBUG
336 if (currCountdown != 0)
337 BX_PANIC(("countdownEvent: ticks!=0"));
338 #endif
340 // Increment global ticks counter by number of ticks which have
341 // elapsed since the last update.
342 ticksTotal += Bit64u(currCountdownPeriod);
343 minTimeToFire = (Bit64u) -1;
345 for (i=0; i < numTimers; i++) {
346 triggered[i] = 0; // Reset triggered flag.
347 if (timer[i].active) {
348 #if BX_TIMER_DEBUG
349 if (ticksTotal > timer[i].timeToFire)
350 BX_PANIC(("countdownEvent: ticksTotal > timeToFire[%u], D " FMT_LL "u", i,
351 timer[i].timeToFire-ticksTotal));
352 #endif
353 if (ticksTotal == timer[i].timeToFire) {
354 // This timer is ready to fire.
355 triggered[i] = 1;
357 if (timer[i].continuous==0) {
358 // If triggered timer is one-shot, deactive.
359 timer[i].active = 0;
361 else {
362 // Continuous timer, increment time-to-fire by period.
363 timer[i].timeToFire += timer[i].period;
364 if (timer[i].timeToFire < minTimeToFire)
365 minTimeToFire = timer[i].timeToFire;
368 else {
369 // This timer is not ready to fire yet.
370 if (timer[i].timeToFire < minTimeToFire)
371 minTimeToFire = timer[i].timeToFire;
376 // Calculate next countdown period. We need to do this before calling
377 // any of the callbacks, as they may call timer features, which need
378 // to be advanced to the next countdown cycle.
379 currCountdown = currCountdownPeriod =
380 Bit32u(minTimeToFire - ticksTotal);
382 for (i=0; i < numTimers; i++) {
383 // Call requested timer function. It may request a different
384 // timer period or deactivate etc.
385 if (triggered[i]) {
386 triggeredTimer = i;
387 timer[i].funct(timer[i].this_ptr);
388 triggeredTimer = 0;
393 void bx_pc_system_c::nullTimer(void* this_ptr)
395 // This function is always inserted in timer[0]. It is sort of
396 // a heartbeat timer. It ensures that at least one timer is
397 // always active to make the timer logic more simple, and has
398 // a duration of less than the maximum 32-bit integer, so that
399 // a 32-bit size can be used for the hot countdown timer. The
400 // rest of the timer info can be 64-bits. This is also a good
401 // place for some logic to report actual emulated
402 // instructions-per-second (IPS) data when measured relative to
403 // the host computer's wall clock.
405 UNUSED(this_ptr);
407 #if SpewPeriodicTimerInfo
408 BX_INFO(("==================================="));
409 for (unsigned i=0; i < bx_pc_system.numTimers; i++) {
410 if (bx_pc_system.timer[i].active) {
411 BX_INFO(("BxTimer(%s): period=" FMT_LL "u, continuous=%u",
412 bx_pc_system.timer[i].id, bx_pc_system.timer[i].period,
413 bx_pc_system.timer[i].continuous));
416 #endif
418 #if BX_SUPPORT_ICACHE
419 purgeICaches();
420 #endif
423 #if BX_DEBUGGER
424 void bx_pc_system_c::timebp_handler(void* this_ptr)
426 BX_CPU(0)->break_point = BREAK_POINT_TIME;
427 BX_DEBUG(("Time breakpoint triggered"));
429 if (timebp_queue_size > 1) {
430 Bit64s new_diff = timebp_queue[1] - bx_pc_system.time_ticks();
431 bx_pc_system.activate_timer_ticks(timebp_timer, new_diff, 1);
433 timebp_queue_size--;
434 for (int i = 0; i < timebp_queue_size; i++)
435 timebp_queue[i] = timebp_queue[i+1];
437 #endif // BX_DEBUGGER
439 Bit64u bx_pc_system_c::time_usec_sequential()
441 Bit64u this_time_usec = time_usec();
442 if(this_time_usec != lastTimeUsec) {
443 Bit64u diff_usec = this_time_usec-lastTimeUsec;
444 lastTimeUsec = this_time_usec;
445 if(diff_usec >= usecSinceLast) {
446 usecSinceLast = 0;
447 } else {
448 usecSinceLast -= diff_usec;
451 usecSinceLast++;
452 return (this_time_usec+usecSinceLast);
455 Bit64u bx_pc_system_c::time_usec()
457 return (Bit64u) (((double)(Bit64s)time_ticks()) / m_ips);
460 void bx_pc_system_c::start_timers(void) { }
462 void bx_pc_system_c::activate_timer_ticks(unsigned i, Bit64u ticks, bx_bool continuous)
464 #if BX_TIMER_DEBUG
465 if (i >= numTimers)
466 BX_PANIC(("activate_timer_ticks: timer %u OOB", i));
467 if (i == 0)
468 BX_PANIC(("activate_timer_ticks: timer 0 is the NullTimer!"));
469 if (timer[i].period < MinAllowableTimerPeriod)
470 BX_PANIC(("activate_timer_ticks: timer[%u].period of " FMT_LL "u < min of %u",
471 i, timer[i].period, MinAllowableTimerPeriod));
472 #endif
474 // If the timer frequency is rediculously low, make it more sane.
475 // This happens when 'ips' is too low.
476 if (ticks < MinAllowableTimerPeriod) {
477 //BX_INFO(("activate_timer_ticks: adjusting ticks of %llu to min of %u",
478 // ticks, MinAllowableTimerPeriod));
479 ticks = MinAllowableTimerPeriod;
482 timer[i].period = ticks;
483 timer[i].timeToFire = (ticksTotal + Bit64u(currCountdownPeriod-currCountdown)) +
484 ticks;
485 timer[i].active = 1;
486 timer[i].continuous = continuous;
488 if (ticks < Bit64u(currCountdown)) {
489 // This new timer needs to fire before the current countdown.
490 // Skew the current countdown and countdown period to be smaller
491 // by the delta.
492 currCountdownPeriod -= (currCountdown - Bit32u(ticks));
493 currCountdown = Bit32u(ticks);
497 void bx_pc_system_c::activate_timer(unsigned i, Bit32u useconds, bx_bool continuous)
499 Bit64u ticks;
501 #if BX_TIMER_DEBUG
502 if (i >= numTimers)
503 BX_PANIC(("activate_timer: timer %u OOB", i));
504 if (i == 0)
505 BX_PANIC(("activate_timer: timer 0 is the nullTimer!"));
506 #endif
508 // if useconds = 0, use default stored in period field
509 // else set new period from useconds
510 if (useconds==0) {
511 ticks = timer[i].period;
513 else {
514 // convert useconds to number of ticks
515 ticks = (Bit64u) (double(useconds) * m_ips);
517 // If the timer frequency is rediculously low, make it more sane.
518 // This happens when 'ips' is too low.
519 if (ticks < MinAllowableTimerPeriod) {
520 //BX_INFO(("activate_timer: adjusting ticks of %llu to min of %u",
521 // ticks, MinAllowableTimerPeriod));
522 ticks = MinAllowableTimerPeriod;
525 timer[i].period = ticks;
528 activate_timer_ticks(i, ticks, continuous);
531 void bx_pc_system_c::deactivate_timer(unsigned i)
533 #if BX_TIMER_DEBUG
534 if (i >= numTimers)
535 BX_PANIC(("deactivate_timer: timer %u OOB", i));
536 if (i == 0)
537 BX_PANIC(("deactivate_timer: timer 0 is the nullTimer!"));
538 #endif
540 timer[i].active = 0;
543 bx_bool bx_pc_system_c::unregisterTimer(unsigned timerIndex)
545 #if BX_TIMER_DEBUG
546 if (timerIndex >= numTimers)
547 BX_PANIC(("unregisterTimer: timer %u OOB", timerIndex));
548 if (timerIndex == 0)
549 BX_PANIC(("unregisterTimer: timer 0 is the nullTimer!"));
550 if (timer[timerIndex].inUse == 0)
551 BX_PANIC(("unregisterTimer: timer %u is not in-use!", timerIndex));
552 #endif
554 if (timer[timerIndex].active) {
555 BX_PANIC(("unregisterTimer: timer '%s' is still active!", timer[timerIndex].id));
556 return(0); // Fail.
559 // Reset timer fields for good measure.
560 timer[timerIndex].inUse = 0; // No longer registered.
561 timer[timerIndex].period = BX_MAX_BIT64S; // Max value (invalid)
562 timer[timerIndex].timeToFire = BX_MAX_BIT64S; // Max value (invalid)
563 timer[timerIndex].continuous = 0;
564 timer[timerIndex].funct = NULL;
565 timer[timerIndex].this_ptr = NULL;
566 memset(timer[timerIndex].id, 0, BxMaxTimerIDLen);
568 if (timerIndex == (numTimers-1)) numTimers--;
570 return(1); // OK