fix doc example typo
[boost.git] / boost / accumulators / statistics / weighted_extended_p_square.hpp
blob61163034eb9c17125de13d2e634b7ee293a92f7e
1 ///////////////////////////////////////////////////////////////////////////////
2 // weighted_extended_p_square.hpp
3 //
4 // Copyright 2005 Daniel Egloff. Distributed under the Boost
5 // Software License, Version 1.0. (See accompanying file
6 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
8 #ifndef BOOST_ACCUMULATORS_STATISTICS_WEIGHTED_EXTENDED_P_SQUARE_HPP_DE_01_01_2006
9 #define BOOST_ACCUMULATORS_STATISTICS_WEIGHTED_EXTENDED_P_SQUARE_HPP_DE_01_01_2006
11 #include <vector>
12 #include <functional>
13 #include <boost/range/begin.hpp>
14 #include <boost/range/end.hpp>
15 #include <boost/range/iterator_range.hpp>
16 #include <boost/iterator/transform_iterator.hpp>
17 #include <boost/iterator/counting_iterator.hpp>
18 #include <boost/iterator/permutation_iterator.hpp>
19 #include <boost/parameter/keyword.hpp>
20 #include <boost/mpl/placeholders.hpp>
21 #include <boost/accumulators/framework/accumulator_base.hpp>
22 #include <boost/accumulators/framework/extractor.hpp>
23 #include <boost/accumulators/numeric/functional.hpp>
24 #include <boost/accumulators/framework/parameters/sample.hpp>
25 #include <boost/accumulators/framework/depends_on.hpp>
26 #include <boost/accumulators/statistics_fwd.hpp>
27 #include <boost/accumulators/statistics/count.hpp>
28 #include <boost/accumulators/statistics/sum.hpp>
29 #include <boost/accumulators/statistics/times2_iterator.hpp>
30 #include <boost/accumulators/statistics/extended_p_square.hpp>
32 namespace boost { namespace accumulators
35 namespace impl
37 ///////////////////////////////////////////////////////////////////////////////
38 // weighted_extended_p_square_impl
39 // multiple quantile estimation with weighted samples
40 /**
41 @brief Multiple quantile estimation with the extended \f$P^2\f$ algorithm for weighted samples
43 This version of the extended \f$P^2\f$ algorithm extends the extended \f$P^2\f$ algorithm to
44 support weighted samples. The extended \f$P^2\f$ algorithm dynamically estimates several
45 quantiles without storing samples. Assume that \f$m\f$ quantiles
46 \f$\xi_{p_1}, \ldots, \xi_{p_m}\f$ are to be estimated. Instead of storing the whole sample
47 cumulative distribution, the algorithm maintains only \f$m+2\f$ principal markers and
48 \f$m+1\f$ middle markers, whose positions are updated with each sample and whose heights
49 are adjusted (if necessary) using a piecewise-parablic formula. The heights of the principal
50 markers are the current estimates of the quantiles and are returned as an iterator range.
52 For further details, see
54 K. E. E. Raatikainen, Simultaneous estimation of several quantiles, Simulation, Volume 49,
55 Number 4 (October), 1986, p. 159-164.
57 The extended \f$ P^2 \f$ algorithm generalizess the \f$ P^2 \f$ algorithm of
59 R. Jain and I. Chlamtac, The P^2 algorithmus for dynamic calculation of quantiles and
60 histograms without storing observations, Communications of the ACM,
61 Volume 28 (October), Number 10, 1985, p. 1076-1085.
63 @param extended_p_square_probabilities A vector of quantile probabilities.
65 template<typename Sample, typename Weight>
66 struct weighted_extended_p_square_impl
67 : accumulator_base
69 typedef typename numeric::functional::multiplies<Sample, Weight>::result_type weighted_sample;
70 typedef typename numeric::functional::average<weighted_sample, std::size_t>::result_type float_type;
71 typedef std::vector<float_type> array_type;
72 // for boost::result_of
73 typedef iterator_range<
74 detail::lvalue_index_iterator<
75 permutation_iterator<
76 typename array_type::const_iterator
77 , detail::times2_iterator
80 > result_type;
82 template<typename Args>
83 weighted_extended_p_square_impl(Args const &args)
84 : probabilities(
85 boost::begin(args[extended_p_square_probabilities])
86 , boost::end(args[extended_p_square_probabilities])
88 , heights(2 * probabilities.size() + 3)
89 , actual_positions(heights.size())
90 , desired_positions(heights.size())
94 template<typename Args>
95 void operator ()(Args const &args)
97 std::size_t cnt = count(args);
98 std::size_t sample_cell = 1; // k
99 std::size_t num_quantiles = this->probabilities.size();
101 // m+2 principal markers and m+1 middle markers
102 std::size_t num_markers = 2 * num_quantiles + 3;
104 // first accumulate num_markers samples
105 if(cnt <= num_markers)
107 this->heights[cnt - 1] = args[sample];
108 this->actual_positions[cnt - 1] = args[weight];
110 // complete the initialization of heights (and actual_positions) by sorting
111 if(cnt == num_markers)
113 // TODO: we need to sort the initial samples (in heights) in ascending order and
114 // sort their weights (in actual_positions) the same way. The following lines do
115 // it, but there must be a better and more efficient way of doing this.
116 typename array_type::iterator it_begin, it_end, it_min;
118 it_begin = this->heights.begin();
119 it_end = this->heights.end();
121 std::size_t pos = 0;
123 while (it_begin != it_end)
125 it_min = std::min_element(it_begin, it_end);
126 std::size_t d = std::distance(it_begin, it_min);
127 std::swap(*it_begin, *it_min);
128 std::swap(this->actual_positions[pos], this->actual_positions[pos + d]);
129 ++it_begin;
130 ++pos;
133 // calculate correct initial actual positions
134 for (std::size_t i = 1; i < num_markers; ++i)
136 actual_positions[i] += actual_positions[i - 1];
140 else
142 if(args[sample] < this->heights[0])
144 this->heights[0] = args[sample];
145 this->actual_positions[0] = args[weight];
146 sample_cell = 1;
148 else if(args[sample] >= this->heights[num_markers - 1])
150 this->heights[num_markers - 1] = args[sample];
151 sample_cell = num_markers - 1;
153 else
155 // find cell k = sample_cell such that heights[k-1] <= sample < heights[k]
157 typedef typename array_type::iterator iterator;
158 iterator it = std::upper_bound(
159 this->heights.begin()
160 , this->heights.end()
161 , args[sample]
164 sample_cell = std::distance(this->heights.begin(), it);
167 // update actual position of all markers above sample_cell
168 for(std::size_t i = sample_cell; i < num_markers; ++i)
170 this->actual_positions[i] += args[weight];
173 // compute desired positions
175 this->desired_positions[0] = this->actual_positions[0];
176 this->desired_positions[num_markers - 1] = sum_of_weights(args);
177 this->desired_positions[1] = (sum_of_weights(args) - this->actual_positions[0]) * probabilities[0]
178 / 2. + this->actual_positions[0];
179 this->desired_positions[num_markers - 2] = (sum_of_weights(args) - this->actual_positions[0])
180 * (probabilities[num_quantiles - 1] + 1.)
181 / 2. + this->actual_positions[0];
183 for (std::size_t i = 0; i < num_quantiles; ++i)
185 this->desired_positions[2 * i + 2] = (sum_of_weights(args) - this->actual_positions[0])
186 * probabilities[i] + this->actual_positions[0];
189 for (std::size_t i = 1; i < num_quantiles; ++i)
191 this->desired_positions[2 * i + 1] = (sum_of_weights(args) - this->actual_positions[0])
192 * (probabilities[i - 1] + probabilities[i])
193 / 2. + this->actual_positions[0];
197 // adjust heights and actual_positions of markers 1 to num_markers - 2 if necessary
198 for (std::size_t i = 1; i <= num_markers - 2; ++i)
200 // offset to desired position
201 float_type d = this->desired_positions[i] - this->actual_positions[i];
203 // offset to next position
204 float_type dp = this->actual_positions[i + 1] - this->actual_positions[i];
206 // offset to previous position
207 float_type dm = this->actual_positions[i - 1] - this->actual_positions[i];
209 // height ds
210 float_type hp = (this->heights[i + 1] - this->heights[i]) / dp;
211 float_type hm = (this->heights[i - 1] - this->heights[i]) / dm;
213 if((d >= 1 && dp > 1) || (d <= -1 && dm < -1))
215 short sign_d = static_cast<short>(d / std::abs(d));
217 float_type h = this->heights[i] + sign_d / (dp - dm) * ((sign_d - dm)*hp + (dp - sign_d) * hm);
219 // try adjusting heights[i] using p-squared formula
220 if(this->heights[i - 1] < h && h < this->heights[i + 1])
222 this->heights[i] = h;
224 else
226 // use linear formula
227 if(d > 0)
229 this->heights[i] += hp;
231 if(d < 0)
233 this->heights[i] -= hm;
236 this->actual_positions[i] += sign_d;
242 result_type result(dont_care) const
244 // for i in [1,probabilities.size()], return heights[i * 2]
245 detail::times2_iterator idx_begin = detail::make_times2_iterator(1);
246 detail::times2_iterator idx_end = detail::make_times2_iterator(this->probabilities.size() + 1);
248 return result_type(
249 make_permutation_iterator(this->heights.begin(), idx_begin)
250 , make_permutation_iterator(this->heights.begin(), idx_end)
254 private:
255 array_type probabilities; // the quantile probabilities
256 array_type heights; // q_i
257 array_type actual_positions; // n_i
258 array_type desired_positions; // d_i
261 } // namespace impl
263 ///////////////////////////////////////////////////////////////////////////////
264 // tag::weighted_extended_p_square
266 namespace tag
268 struct weighted_extended_p_square
269 : depends_on<count, sum_of_weights>
270 , extended_p_square_probabilities
272 typedef accumulators::impl::weighted_extended_p_square_impl<mpl::_1, mpl::_2> impl;
276 ///////////////////////////////////////////////////////////////////////////////
277 // extract::weighted_extended_p_square
279 namespace extract
281 extractor<tag::weighted_extended_p_square> const weighted_extended_p_square = {};
284 using extract::weighted_extended_p_square;
286 }} // namespace boost::accumulators
288 #endif