fix doc example typo
[boost.git] / boost / interprocess / mem_algo / detail / simple_seq_fit_impl.hpp
blob19ed89d99e48b4a12ff23b5adbad97d4a677949b
1 //////////////////////////////////////////////////////////////////////////////
2 //
3 // (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
4 // Software License, Version 1.0. (See accompanying file
5 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6 //
7 // See http://www.boost.org/libs/interprocess for documentation.
8 //
9 //////////////////////////////////////////////////////////////////////////////
11 #ifndef BOOST_INTERPROCESS_MEM_ALGO_DETAIL_SIMPLE_SEQ_FIT_IMPL_HPP
12 #define BOOST_INTERPROCESS_MEM_ALGO_DETAIL_SIMPLE_SEQ_FIT_IMPL_HPP
14 #if (defined _MSC_VER) && (_MSC_VER >= 1200)
15 # pragma once
16 #endif
18 #include <boost/interprocess/detail/config_begin.hpp>
19 #include <boost/interprocess/detail/workaround.hpp>
21 #include <boost/pointer_to_other.hpp>
23 #include <boost/interprocess/interprocess_fwd.hpp>
24 #include <boost/interprocess/containers/allocation_type.hpp>
25 #include <boost/interprocess/offset_ptr.hpp>
26 #include <boost/interprocess/sync/interprocess_mutex.hpp>
27 #include <boost/interprocess/exceptions.hpp>
28 #include <boost/interprocess/detail/utilities.hpp>
29 #include <boost/interprocess/detail/min_max.hpp>
30 #include <boost/interprocess/detail/type_traits.hpp>
31 #include <boost/interprocess/sync/scoped_lock.hpp>
32 #include <boost/interprocess/mem_algo/detail/mem_algo_common.hpp>
33 #include <algorithm>
34 #include <utility>
35 #include <cstring>
36 #include <cassert>
37 #include <new>
39 //!\file
40 //!Describes sequential fit algorithm used to allocate objects in shared memory.
41 //!This class is intended as a base class for single segment and multi-segment
42 //!implementations.
44 namespace boost {
45 namespace interprocess {
46 namespace detail {
48 //!This class implements the simple sequential fit algorithm with a simply
49 //!linked list of free buffers.
50 //!This class is intended as a base class for single segment and multi-segment
51 //!implementations.
52 template<class MutexFamily, class VoidPointer>
53 class simple_seq_fit_impl
55 //Non-copyable
56 simple_seq_fit_impl();
57 simple_seq_fit_impl(const simple_seq_fit_impl &);
58 simple_seq_fit_impl &operator=(const simple_seq_fit_impl &);
60 public:
62 //!Shared interprocess_mutex family used for the rest of the Interprocess framework
63 typedef MutexFamily mutex_family;
64 //!Pointer type to be used with the rest of the Interprocess framework
65 typedef VoidPointer void_pointer;
66 typedef detail::basic_multiallocation_cached_slist<void_pointer> multialloc_cached;
67 typedef detail::basic_multiallocation_cached_counted_slist
68 <multialloc_cached> multiallocation_chain;
70 private:
71 class block_ctrl;
72 typedef typename boost::
73 pointer_to_other<void_pointer, block_ctrl>::type block_ctrl_ptr;
75 class block_ctrl;
76 friend class block_ctrl;
78 //!Block control structure
79 class block_ctrl
81 public:
82 //!Offset pointer to the next block.
83 block_ctrl_ptr m_next;
84 //!This block's memory size (including block_ctrl
85 //!header) in BasicSize units
86 std::size_t m_size;
88 std::size_t get_user_bytes() const
89 { return this->m_size*Alignment - BlockCtrlBytes; }
91 std::size_t get_total_bytes() const
92 { return this->m_size*Alignment; }
95 //!Shared interprocess_mutex to protect memory allocate/deallocate
96 typedef typename MutexFamily::mutex_type interprocess_mutex;
98 //!This struct includes needed data and derives from
99 //!interprocess_mutex to allow EBO when using null interprocess_mutex
100 struct header_t : public interprocess_mutex
102 //!Pointer to the first free block
103 block_ctrl m_root;
104 //!Allocated bytes for internal checking
105 std::size_t m_allocated;
106 //!The size of the memory segment
107 std::size_t m_size;
108 //!The extra size required by the segment
109 std::size_t m_extra_hdr_bytes;
110 } m_header;
112 friend class detail::memory_algorithm_common<simple_seq_fit_impl>;
114 typedef detail::memory_algorithm_common<simple_seq_fit_impl> algo_impl_t;
116 public:
117 //!Constructor. "size" is the total size of the managed memory segment,
118 //!"extra_hdr_bytes" indicates the extra bytes beginning in the sizeof(simple_seq_fit_impl)
119 //!offset that the allocator should not use at all.
120 simple_seq_fit_impl (std::size_t size, std::size_t extra_hdr_bytes);
122 //!Destructor
123 ~simple_seq_fit_impl();
125 //!Obtains the minimum size needed by the algorithm
126 static std::size_t get_min_size (std::size_t extra_hdr_bytes);
128 //Functions for single segment management
130 //!Allocates bytes, returns 0 if there is not more memory
131 void* allocate (std::size_t nbytes);
133 /// @cond
135 //!Multiple element allocation, same size
136 multiallocation_chain
137 allocate_many(std::size_t elem_bytes, std::size_t num_elements)
139 //-----------------------
140 boost::interprocess::scoped_lock<interprocess_mutex> guard(m_header);
141 //-----------------------
142 return algo_impl_t::allocate_many(this, elem_bytes, num_elements);
145 //!Multiple element allocation, different size
146 multiallocation_chain
147 allocate_many(const std::size_t *elem_sizes, std::size_t n_elements, std::size_t sizeof_element)
149 //-----------------------
150 boost::interprocess::scoped_lock<interprocess_mutex> guard(m_header);
151 //-----------------------
152 return algo_impl_t::allocate_many(this, elem_sizes, n_elements, sizeof_element);
155 //!Multiple element deallocation
156 void deallocate_many(multiallocation_chain chain);
158 /// @endcond
160 //!Deallocates previously allocated bytes
161 void deallocate (void *addr);
163 //!Returns the size of the memory segment
164 std::size_t get_size() const;
166 //!Returns the number of free bytes of the memory segment
167 std::size_t get_free_memory() const;
169 //!Increases managed memory in extra_size bytes more
170 void grow(std::size_t extra_size);
172 //!Decreases managed memory as much as possible
173 void shrink_to_fit();
175 //!Returns true if all allocated memory has been deallocated
176 bool all_memory_deallocated();
178 //!Makes an internal sanity check and returns true if success
179 bool check_sanity();
181 //!Initializes to zero all the memory that's not in use.
182 //!This function is normally used for security reasons.
183 void zero_free_memory();
185 template<class T>
186 std::pair<T *, bool>
187 allocation_command (boost::interprocess::allocation_type command, std::size_t limit_size,
188 std::size_t preferred_size,std::size_t &received_size,
189 T *reuse_ptr = 0);
191 std::pair<void *, bool>
192 raw_allocation_command (boost::interprocess::allocation_type command, std::size_t limit_size,
193 std::size_t preferred_size,std::size_t &received_size,
194 void *reuse_ptr = 0, std::size_t sizeof_object = 1);
196 //!Returns the size of the buffer previously allocated pointed by ptr
197 std::size_t size(const void *ptr) const;
199 //!Allocates aligned bytes, returns 0 if there is not more memory.
200 //!Alignment must be power of 2
201 void* allocate_aligned (std::size_t nbytes, std::size_t alignment);
203 private:
205 //!Obtains the pointer returned to the user from the block control
206 static void *priv_get_user_buffer(const block_ctrl *block);
208 //!Obtains the block control structure of the user buffer
209 static block_ctrl *priv_get_block(const void *ptr);
211 //!Real allocation algorithm with min allocation option
212 std::pair<void *, bool> priv_allocate(boost::interprocess::allocation_type command
213 ,std::size_t min_size
214 ,std::size_t preferred_size
215 ,std::size_t &received_size
216 ,void *reuse_ptr = 0);
218 std::pair<void *, bool> priv_allocation_command(boost::interprocess::allocation_type command
219 ,std::size_t min_size
220 ,std::size_t preferred_size
221 ,std::size_t &received_size
222 ,void *reuse_ptr
223 ,std::size_t sizeof_object);
225 //!Returns the number of total units that a user buffer
226 //!of "userbytes" bytes really occupies (including header)
227 static std::size_t priv_get_total_units(std::size_t userbytes);
229 static std::size_t priv_first_block_offset(const void *this_ptr, std::size_t extra_hdr_bytes);
230 std::size_t priv_block_end_offset() const;
232 //!Returns next block if it's free.
233 //!Returns 0 if next block is not free.
234 block_ctrl *priv_next_block_if_free(block_ctrl *ptr);
236 //!Check if this block is free (not allocated)
237 bool priv_is_allocated_block(block_ctrl *ptr);
239 //!Returns previous block's if it's free.
240 //!Returns 0 if previous block is not free.
241 std::pair<block_ctrl*, block_ctrl*>priv_prev_block_if_free(block_ctrl *ptr);
243 //!Real expand function implementation
244 bool priv_expand(void *ptr
245 ,std::size_t min_size, std::size_t preferred_size
246 ,std::size_t &received_size);
248 //!Real expand to both sides implementation
249 void* priv_expand_both_sides(boost::interprocess::allocation_type command
250 ,std::size_t min_size
251 ,std::size_t preferred_size
252 ,std::size_t &received_size
253 ,void *reuse_ptr
254 ,bool only_preferred_backwards);
256 //!Real private aligned allocation function
257 //void* priv_allocate_aligned (std::size_t nbytes, std::size_t alignment);
259 //!Checks if block has enough memory and splits/unlinks the block
260 //!returning the address to the users
261 void* priv_check_and_allocate(std::size_t units
262 ,block_ctrl* prev
263 ,block_ctrl* block
264 ,std::size_t &received_size);
265 //!Real deallocation algorithm
266 void priv_deallocate(void *addr);
268 //!Makes a new memory portion available for allocation
269 void priv_add_segment(void *addr, std::size_t size);
271 void priv_mark_new_allocated_block(block_ctrl *block);
273 public:
274 static const std::size_t Alignment = detail::alignment_of<detail::max_align>::value;
275 private:
276 static const std::size_t BlockCtrlBytes = detail::ct_rounded_size<sizeof(block_ctrl), Alignment>::value;
277 static const std::size_t BlockCtrlUnits = BlockCtrlBytes/Alignment;
278 static const std::size_t MinBlockUnits = BlockCtrlUnits;
279 static const std::size_t MinBlockSize = MinBlockUnits*Alignment;
280 static const std::size_t AllocatedCtrlBytes = BlockCtrlBytes;
281 static const std::size_t AllocatedCtrlUnits = BlockCtrlUnits;
282 static const std::size_t UsableByPreviousChunk = 0;
284 public:
285 static const std::size_t PayloadPerAllocation = BlockCtrlBytes;
288 template<class MutexFamily, class VoidPointer>
289 inline std::size_t simple_seq_fit_impl<MutexFamily, VoidPointer>
290 ::priv_first_block_offset(const void *this_ptr, std::size_t extra_hdr_bytes)
292 //First align "this" pointer
293 std::size_t uint_this = (std::size_t)this_ptr;
294 std::size_t uint_aligned_this = uint_this/Alignment*Alignment;
295 std::size_t this_disalignment = (uint_this - uint_aligned_this);
296 std::size_t block1_off =
297 detail::get_rounded_size(sizeof(simple_seq_fit_impl) + extra_hdr_bytes + this_disalignment, Alignment)
298 - this_disalignment;
299 algo_impl_t::assert_alignment(this_disalignment + block1_off);
300 return block1_off;
303 template<class MutexFamily, class VoidPointer>
304 inline std::size_t simple_seq_fit_impl<MutexFamily, VoidPointer>
305 ::priv_block_end_offset() const
307 //First align "this" pointer
308 std::size_t uint_this = (std::size_t)this;
309 std::size_t uint_aligned_this = uint_this/Alignment*Alignment;
310 std::size_t this_disalignment = (uint_this - uint_aligned_this);
311 std::size_t old_end =
312 detail::get_truncated_size(m_header.m_size + this_disalignment, Alignment)
313 - this_disalignment;
314 algo_impl_t::assert_alignment(old_end + this_disalignment);
315 return old_end;
318 template<class MutexFamily, class VoidPointer>
319 inline simple_seq_fit_impl<MutexFamily, VoidPointer>::
320 simple_seq_fit_impl(std::size_t size, std::size_t extra_hdr_bytes)
322 //Initialize sizes and counters
323 m_header.m_allocated = 0;
324 m_header.m_size = size;
325 m_header.m_extra_hdr_bytes = extra_hdr_bytes;
327 //Initialize pointers
328 std::size_t block1_off = priv_first_block_offset(this, extra_hdr_bytes);
330 m_header.m_root.m_next = reinterpret_cast<block_ctrl*>
331 ((reinterpret_cast<char*>(this) + block1_off));
332 algo_impl_t::assert_alignment(detail::get_pointer(m_header.m_root.m_next));
333 m_header.m_root.m_next->m_size = (size - block1_off)/Alignment;
334 m_header.m_root.m_next->m_next = &m_header.m_root;
337 template<class MutexFamily, class VoidPointer>
338 inline simple_seq_fit_impl<MutexFamily, VoidPointer>::~simple_seq_fit_impl()
340 //There is a memory leak!
341 // assert(m_header.m_allocated == 0);
342 // assert(m_header.m_root.m_next->m_next == block_ctrl_ptr(&m_header.m_root));
345 template<class MutexFamily, class VoidPointer>
346 inline void simple_seq_fit_impl<MutexFamily, VoidPointer>::grow(std::size_t extra_size)
348 //Old highest address block's end offset
349 std::size_t old_end = this->priv_block_end_offset();
351 //Update managed buffer's size
352 m_header.m_size += extra_size;
354 //We need at least MinBlockSize blocks to create a new block
355 if((m_header.m_size - old_end) < MinBlockSize){
356 return;
359 //We'll create a new free block with extra_size bytes
361 block_ctrl *new_block = reinterpret_cast<block_ctrl*>
362 (reinterpret_cast<char*>(this) + old_end);
364 algo_impl_t::assert_alignment(new_block);
365 new_block->m_next = 0;
366 new_block->m_size = (m_header.m_size - old_end)/Alignment;
367 m_header.m_allocated += new_block->m_size*Alignment;
368 this->priv_deallocate(priv_get_user_buffer(new_block));
371 template<class MutexFamily, class VoidPointer>
372 void simple_seq_fit_impl<MutexFamily, VoidPointer>::shrink_to_fit()
374 //Get the root and the first memory block
375 block_ctrl *prev = &m_header.m_root;
376 block_ctrl *last = &m_header.m_root;
377 block_ctrl *block = detail::get_pointer(last->m_next);
378 block_ctrl *root = &m_header.m_root;
380 //No free block?
381 if(block == root) return;
383 //Iterate through the free block list
384 while(block != root){
385 prev = last;
386 last = block;
387 block = detail::get_pointer(block->m_next);
390 char *last_free_end_address = reinterpret_cast<char*>(last) + last->m_size*Alignment;
391 if(last_free_end_address != (reinterpret_cast<char*>(this) + priv_block_end_offset())){
392 //there is an allocated block in the end of this block
393 //so no shrinking is possible
394 return;
397 //Check if have only 1 big free block
398 void *unique_block = 0;
399 if(!m_header.m_allocated){
400 assert(prev == root);
401 std::size_t ignore;
402 unique_block = priv_allocate(boost::interprocess::allocate_new, 0, 0, ignore).first;
403 if(!unique_block)
404 return;
405 last = detail::get_pointer(m_header.m_root.m_next);
406 assert(last_free_end_address == (reinterpret_cast<char*>(last) + last->m_size*Alignment));
408 std::size_t last_units = last->m_size;
410 std::size_t received_size;
411 void *addr = priv_check_and_allocate(last_units, prev, last, received_size);
412 (void)addr;
413 assert(addr);
414 assert(received_size == last_units*Alignment - AllocatedCtrlBytes);
416 //Shrink it
417 m_header.m_size /= Alignment;
418 m_header.m_size -= last->m_size;
419 m_header.m_size *= Alignment;
420 m_header.m_allocated -= last->m_size*Alignment;
422 if(unique_block)
423 priv_deallocate(unique_block);
426 template<class MutexFamily, class VoidPointer>
427 inline void simple_seq_fit_impl<MutexFamily, VoidPointer>::
428 priv_mark_new_allocated_block(block_ctrl *new_block)
430 new_block->m_next = 0;
433 template<class MutexFamily, class VoidPointer>
434 inline
435 typename simple_seq_fit_impl<MutexFamily, VoidPointer>::block_ctrl *
436 simple_seq_fit_impl<MutexFamily, VoidPointer>::priv_get_block(const void *ptr)
438 return const_cast<block_ctrl*>(reinterpret_cast<const block_ctrl*>
439 (reinterpret_cast<const char*>(ptr) - AllocatedCtrlBytes));
442 template<class MutexFamily, class VoidPointer>
443 inline
444 void *simple_seq_fit_impl<MutexFamily, VoidPointer>::
445 priv_get_user_buffer(const typename simple_seq_fit_impl<MutexFamily, VoidPointer>::block_ctrl *block)
447 return const_cast<char*>(reinterpret_cast<const char*>(block) + AllocatedCtrlBytes);
450 template<class MutexFamily, class VoidPointer>
451 inline void simple_seq_fit_impl<MutexFamily, VoidPointer>::priv_add_segment(void *addr, std::size_t size)
453 algo_impl_t::assert_alignment(addr);
454 //Check size
455 assert(!(size < MinBlockSize));
456 if(size < MinBlockSize)
457 return;
458 //Construct big block using the new segment
459 block_ctrl *new_block = static_cast<block_ctrl *>(addr);
460 new_block->m_size = size/Alignment;
461 new_block->m_next = 0;
462 //Simulate this block was previously allocated
463 m_header.m_allocated += new_block->m_size*Alignment;
464 //Return block and insert it in the free block list
465 this->priv_deallocate(priv_get_user_buffer(new_block));
468 template<class MutexFamily, class VoidPointer>
469 inline std::size_t simple_seq_fit_impl<MutexFamily, VoidPointer>::get_size() const
470 { return m_header.m_size; }
472 template<class MutexFamily, class VoidPointer>
473 inline std::size_t simple_seq_fit_impl<MutexFamily, VoidPointer>::get_free_memory() const
475 return m_header.m_size - m_header.m_allocated -
476 algo_impl_t::multiple_of_units(sizeof(*this) + m_header.m_extra_hdr_bytes);
479 template<class MutexFamily, class VoidPointer>
480 inline std::size_t simple_seq_fit_impl<MutexFamily, VoidPointer>::
481 get_min_size (std::size_t extra_hdr_bytes)
483 return detail::get_rounded_size(sizeof(simple_seq_fit_impl),Alignment) +
484 detail::get_rounded_size(extra_hdr_bytes,Alignment)
485 + MinBlockSize;
488 template<class MutexFamily, class VoidPointer>
489 inline bool simple_seq_fit_impl<MutexFamily, VoidPointer>::
490 all_memory_deallocated()
492 //-----------------------
493 boost::interprocess::scoped_lock<interprocess_mutex> guard(m_header);
494 //-----------------------
495 return m_header.m_allocated == 0 &&
496 detail::get_pointer(m_header.m_root.m_next->m_next) == &m_header.m_root;
499 template<class MutexFamily, class VoidPointer>
500 inline void simple_seq_fit_impl<MutexFamily, VoidPointer>::zero_free_memory()
502 //-----------------------
503 boost::interprocess::scoped_lock<interprocess_mutex> guard(m_header);
504 //-----------------------
505 block_ctrl *block = detail::get_pointer(m_header.m_root.m_next);
507 //Iterate through all free portions
509 //Just clear user the memory part reserved for the user
510 std::memset( priv_get_user_buffer(block)
512 , block->get_user_bytes());
513 block = detail::get_pointer(block->m_next);
515 while(block != &m_header.m_root);
518 template<class MutexFamily, class VoidPointer>
519 inline bool simple_seq_fit_impl<MutexFamily, VoidPointer>::
520 check_sanity()
522 //-----------------------
523 boost::interprocess::scoped_lock<interprocess_mutex> guard(m_header);
524 //-----------------------
525 block_ctrl *block = detail::get_pointer(m_header.m_root.m_next);
527 std::size_t free_memory = 0;
529 //Iterate through all blocks obtaining their size
530 while(block != &m_header.m_root){
531 algo_impl_t::assert_alignment(block);
532 if(!algo_impl_t::check_alignment(block))
533 return false;
534 //Free blocks's next must be always valid
535 block_ctrl *next = detail::get_pointer(block->m_next);
536 if(!next){
537 return false;
539 free_memory += block->m_size*Alignment;
540 block = next;
543 //Check allocated bytes are less than size
544 if(m_header.m_allocated > m_header.m_size){
545 return false;
548 //Check free bytes are less than size
549 if(free_memory > m_header.m_size){
550 return false;
552 return true;
555 template<class MutexFamily, class VoidPointer>
556 inline void* simple_seq_fit_impl<MutexFamily, VoidPointer>::
557 allocate(std::size_t nbytes)
559 //-----------------------
560 boost::interprocess::scoped_lock<interprocess_mutex> guard(m_header);
561 //-----------------------
562 std::size_t ignore;
563 return priv_allocate(boost::interprocess::allocate_new, nbytes, nbytes, ignore).first;
566 template<class MutexFamily, class VoidPointer>
567 inline void* simple_seq_fit_impl<MutexFamily, VoidPointer>::
568 allocate_aligned(std::size_t nbytes, std::size_t alignment)
570 //-----------------------
571 boost::interprocess::scoped_lock<interprocess_mutex> guard(m_header);
572 //-----------------------
573 return algo_impl_t::
574 allocate_aligned(this, nbytes, alignment);
577 template<class MutexFamily, class VoidPointer>
578 template<class T>
579 inline std::pair<T*, bool> simple_seq_fit_impl<MutexFamily, VoidPointer>::
580 allocation_command (boost::interprocess::allocation_type command, std::size_t limit_size,
581 std::size_t preferred_size,std::size_t &received_size,
582 T *reuse_ptr)
584 std::pair<void*, bool> ret = priv_allocation_command
585 (command, limit_size, preferred_size, received_size, static_cast<void*>(reuse_ptr), sizeof(T));
587 BOOST_ASSERT(0 == ((std::size_t)ret.first % detail::alignment_of<T>::value));
588 return std::pair<T *, bool>(static_cast<T*>(ret.first), ret.second);
591 template<class MutexFamily, class VoidPointer>
592 inline std::pair<void*, bool> simple_seq_fit_impl<MutexFamily, VoidPointer>::
593 raw_allocation_command (boost::interprocess::allocation_type command, std::size_t limit_objects,
594 std::size_t preferred_objects,std::size_t &received_objects,
595 void *reuse_ptr, std::size_t sizeof_object)
597 if(!sizeof_object)
598 return std::pair<void *, bool>(static_cast<void*>(0), 0);
599 if(command & boost::interprocess::try_shrink_in_place){
600 bool success = algo_impl_t::try_shrink
601 ( this, reuse_ptr, limit_objects*sizeof_object
602 , preferred_objects*sizeof_object, received_objects);
603 received_objects /= sizeof_object;
604 return std::pair<void *, bool> ((success ? reuse_ptr : 0), true);
606 return priv_allocation_command
607 (command, limit_objects, preferred_objects, received_objects, reuse_ptr, sizeof_object);
610 template<class MutexFamily, class VoidPointer>
611 inline std::pair<void*, bool> simple_seq_fit_impl<MutexFamily, VoidPointer>::
612 priv_allocation_command (boost::interprocess::allocation_type command, std::size_t limit_size,
613 std::size_t preferred_size, std::size_t &received_size,
614 void *reuse_ptr, std::size_t sizeof_object)
616 command &= ~boost::interprocess::expand_bwd;
617 if(!command) return std::pair<void *, bool>(static_cast<void*>(0), false);
619 std::pair<void*, bool> ret;
620 std::size_t max_count = m_header.m_size/sizeof_object;
621 if(limit_size > max_count || preferred_size > max_count){
622 ret.first = 0; return ret;
624 std::size_t l_size = limit_size*sizeof_object;
625 std::size_t p_size = preferred_size*sizeof_object;
626 std::size_t r_size;
628 //-----------------------
629 boost::interprocess::scoped_lock<interprocess_mutex> guard(m_header);
630 //-----------------------
631 ret = priv_allocate(command, l_size, p_size, r_size, reuse_ptr);
633 received_size = r_size/sizeof_object;
634 return ret;
637 template<class MutexFamily, class VoidPointer>
638 inline std::size_t simple_seq_fit_impl<MutexFamily, VoidPointer>::
639 size(const void *ptr) const
641 //We need no synchronization since this block is not going
642 //to be modified
643 //Obtain the real size of the block
644 const block_ctrl *block = static_cast<const block_ctrl*>(priv_get_block(ptr));
645 return block->get_user_bytes();
648 template<class MutexFamily, class VoidPointer>
649 void* simple_seq_fit_impl<MutexFamily, VoidPointer>::
650 priv_expand_both_sides(boost::interprocess::allocation_type command
651 ,std::size_t min_size
652 ,std::size_t preferred_size
653 ,std::size_t &received_size
654 ,void *reuse_ptr
655 ,bool only_preferred_backwards)
657 typedef std::pair<block_ctrl *, block_ctrl *> prev_block_t;
658 block_ctrl *reuse = priv_get_block(reuse_ptr);
659 received_size = 0;
661 if(this->size(reuse_ptr) > min_size){
662 received_size = this->size(reuse_ptr);
663 return reuse_ptr;
666 if(command & boost::interprocess::expand_fwd){
667 if(priv_expand(reuse_ptr, min_size, preferred_size, received_size))
668 return reuse_ptr;
670 else{
671 received_size = this->size(reuse_ptr);
673 if(command & boost::interprocess::expand_bwd){
674 std::size_t extra_forward = !received_size ? 0 : received_size + BlockCtrlBytes;
675 prev_block_t prev_pair = priv_prev_block_if_free(reuse);
676 block_ctrl *prev = prev_pair.second;
677 if(!prev){
678 return 0;
681 std::size_t needs_backwards =
682 detail::get_rounded_size(preferred_size - extra_forward, Alignment);
684 if(!only_preferred_backwards){
685 max_value(detail::get_rounded_size(min_size - extra_forward, Alignment)
686 ,min_value(prev->get_user_bytes(), needs_backwards));
689 //Check if previous block has enough size
690 if((prev->get_user_bytes()) >= needs_backwards){
691 //Now take all next space. This will succeed
692 if(!priv_expand(reuse_ptr, received_size, received_size, received_size)){
693 assert(0);
696 //We need a minimum size to split the previous one
697 if((prev->get_user_bytes() - needs_backwards) > 2*BlockCtrlBytes){
698 block_ctrl *new_block = reinterpret_cast<block_ctrl*>
699 (reinterpret_cast<char*>(reuse) - needs_backwards - BlockCtrlBytes);
701 new_block->m_next = 0;
702 new_block->m_size =
703 BlockCtrlUnits + (needs_backwards + extra_forward)/Alignment;
704 prev->m_size =
705 (prev->get_total_bytes() - needs_backwards)/Alignment - BlockCtrlUnits;
706 received_size = needs_backwards + extra_forward;
707 m_header.m_allocated += needs_backwards + BlockCtrlBytes;
708 return priv_get_user_buffer(new_block);
710 else{
711 //Just merge the whole previous block
712 block_ctrl *prev_2_block = prev_pair.first;
713 //Update received size and allocation
714 received_size = extra_forward + prev->get_user_bytes();
715 m_header.m_allocated += prev->get_total_bytes();
716 //Now unlink it from previous block
717 prev_2_block->m_next = prev->m_next;
718 prev->m_size = reuse->m_size + prev->m_size;
719 prev->m_next = 0;
720 priv_get_user_buffer(prev);
724 return 0;
727 template<class MutexFamily, class VoidPointer>
728 inline void simple_seq_fit_impl<MutexFamily, VoidPointer>::
729 deallocate_many(typename simple_seq_fit_impl<MutexFamily, VoidPointer>::multiallocation_chain chain)
731 //-----------------------
732 boost::interprocess::scoped_lock<interprocess_mutex> guard(m_header);
733 //-----------------------
734 while(!chain.empty()){
735 void *addr = chain.front();
736 chain.pop_front();
737 this->priv_deallocate(addr);
741 template<class MutexFamily, class VoidPointer>
742 inline std::size_t simple_seq_fit_impl<MutexFamily, VoidPointer>::
743 priv_get_total_units(std::size_t userbytes)
745 std::size_t s = detail::get_rounded_size(userbytes, Alignment)/Alignment;
746 if(!s) ++s;
747 return BlockCtrlUnits + s;
750 template<class MutexFamily, class VoidPointer>
751 std::pair<void *, bool> simple_seq_fit_impl<MutexFamily, VoidPointer>::
752 priv_allocate(boost::interprocess::allocation_type command
753 ,std::size_t limit_size
754 ,std::size_t preferred_size
755 ,std::size_t &received_size
756 ,void *reuse_ptr)
758 if(command & boost::interprocess::shrink_in_place){
759 bool success =
760 algo_impl_t::shrink(this, reuse_ptr, limit_size, preferred_size, received_size);
761 return std::pair<void *, bool> ((success ? reuse_ptr : 0), true);
763 typedef std::pair<void *, bool> return_type;
764 received_size = 0;
766 if(limit_size > preferred_size)
767 return return_type(static_cast<void*>(0), false);
769 //Number of units to request (including block_ctrl header)
770 std::size_t nunits = detail::get_rounded_size(preferred_size, Alignment)/Alignment + BlockCtrlUnits;
772 //Get the root and the first memory block
773 block_ctrl *prev = &m_header.m_root;
774 block_ctrl *block = detail::get_pointer(prev->m_next);
775 block_ctrl *root = &m_header.m_root;
776 block_ctrl *biggest_block = 0;
777 block_ctrl *prev_biggest_block = 0;
778 std::size_t biggest_size = 0;
780 //Expand in place
781 //reuse_ptr, limit_size, preferred_size, received_size
783 if(reuse_ptr && (command & (boost::interprocess::expand_fwd | boost::interprocess::expand_bwd))){
784 void *ret = priv_expand_both_sides
785 (command, limit_size, preferred_size, received_size, reuse_ptr, true);
786 if(ret){
787 algo_impl_t::assert_alignment(ret);
788 return return_type(ret, true);
792 if(command & boost::interprocess::allocate_new){
793 received_size = 0;
794 while(block != root){
795 //Update biggest block pointers
796 if(block->m_size > biggest_size){
797 prev_biggest_block = prev;
798 biggest_size = block->m_size;
799 biggest_block = block;
801 algo_impl_t::assert_alignment(block);
802 void *addr = this->priv_check_and_allocate(nunits, prev, block, received_size);
803 if(addr){
804 algo_impl_t::assert_alignment(addr);
805 return return_type(addr, false);
807 //Bad luck, let's check next block
808 prev = block;
809 block = detail::get_pointer(block->m_next);
812 //Bad luck finding preferred_size, now if we have any biggest_block
813 //try with this block
814 if(biggest_block){
815 std::size_t limit_units = detail::get_rounded_size(limit_size, Alignment)/Alignment + BlockCtrlUnits;
816 if(biggest_block->m_size < limit_units)
817 return return_type(static_cast<void*>(0), false);
819 received_size = biggest_block->m_size*Alignment - BlockCtrlUnits;
820 void *ret = this->priv_check_and_allocate
821 (biggest_block->m_size, prev_biggest_block, biggest_block, received_size);
822 assert(ret != 0);
823 algo_impl_t::assert_alignment(ret);
824 return return_type(ret, false);
827 //Now try to expand both sides with min size
828 if(reuse_ptr && (command & (boost::interprocess::expand_fwd | boost::interprocess::expand_bwd))){
829 return_type ret (priv_expand_both_sides
830 (command, limit_size, preferred_size, received_size, reuse_ptr, false), true);
831 algo_impl_t::assert_alignment(ret.first);
832 return ret;
834 return return_type(static_cast<void*>(0), false);
837 template<class MutexFamily, class VoidPointer> inline
838 bool simple_seq_fit_impl<MutexFamily, VoidPointer>::priv_is_allocated_block
839 (typename simple_seq_fit_impl<MutexFamily, VoidPointer>::block_ctrl *block)
840 { return block->m_next == 0; }
842 template<class MutexFamily, class VoidPointer>
843 inline typename simple_seq_fit_impl<MutexFamily, VoidPointer>::block_ctrl *
844 simple_seq_fit_impl<MutexFamily, VoidPointer>::
845 priv_next_block_if_free
846 (typename simple_seq_fit_impl<MutexFamily, VoidPointer>::block_ctrl *ptr)
848 //Take the address where the next block should go
849 block_ctrl *next_block = reinterpret_cast<block_ctrl*>
850 (reinterpret_cast<char*>(ptr) + ptr->m_size*Alignment);
852 //Check if the adjacent block is in the managed segment
853 char *this_char_ptr = reinterpret_cast<char*>(this);
854 char *next_char_ptr = reinterpret_cast<char*>(next_block);
855 std::size_t distance = (next_char_ptr - this_char_ptr)/Alignment;
857 if(distance >= (m_header.m_size/Alignment)){
858 //"next_block" does not exist so we can't expand "block"
859 return 0;
862 if(!next_block->m_next)
863 return 0;
865 return next_block;
868 template<class MutexFamily, class VoidPointer>
869 inline
870 std::pair<typename simple_seq_fit_impl<MutexFamily, VoidPointer>::block_ctrl *
871 ,typename simple_seq_fit_impl<MutexFamily, VoidPointer>::block_ctrl *>
872 simple_seq_fit_impl<MutexFamily, VoidPointer>::
873 priv_prev_block_if_free
874 (typename simple_seq_fit_impl<MutexFamily, VoidPointer>::block_ctrl *ptr)
876 typedef std::pair<block_ctrl *, block_ctrl *> prev_pair_t;
877 //Take the address where the previous block should go
878 block_ctrl *root = &m_header.m_root;
879 block_ctrl *prev_2_block = root;
880 block_ctrl *prev_block = detail::get_pointer(root->m_next);
882 while((reinterpret_cast<char*>(prev_block) + prev_block->m_size*Alignment)
883 != reinterpret_cast<char*>(ptr)
884 && prev_block != root){
885 prev_2_block = prev_block;
886 prev_block = detail::get_pointer(prev_block->m_next);
889 if(prev_block == root || !prev_block->m_next)
890 return prev_pair_t(static_cast<block_ctrl*>(0), static_cast<block_ctrl*>(0));
892 //Check if the previous block is in the managed segment
893 char *this_char_ptr = reinterpret_cast<char*>(this);
894 char *prev_char_ptr = reinterpret_cast<char*>(prev_block);
895 std::size_t distance = (prev_char_ptr - this_char_ptr)/Alignment;
897 if(distance >= (m_header.m_size/Alignment)){
898 //"previous_block" does not exist so we can't expand "block"
899 return prev_pair_t(static_cast<block_ctrl*>(0), static_cast<block_ctrl*>(0));
901 return prev_pair_t(prev_2_block, prev_block);
905 template<class MutexFamily, class VoidPointer>
906 inline bool simple_seq_fit_impl<MutexFamily, VoidPointer>::
907 priv_expand (void *ptr
908 ,std::size_t min_size
909 ,std::size_t preferred_size
910 ,std::size_t &received_size)
912 //Obtain the real size of the block
913 block_ctrl *block = reinterpret_cast<block_ctrl*>(priv_get_block(ptr));
914 std::size_t old_block_size = block->m_size;
916 //All used blocks' next is marked with 0 so check it
917 assert(block->m_next == 0);
919 //Put this to a safe value
920 received_size = old_block_size*Alignment - BlockCtrlBytes;
922 //Now translate it to Alignment units
923 min_size = detail::get_rounded_size(min_size, Alignment)/Alignment;
924 preferred_size = detail::get_rounded_size(preferred_size, Alignment)/Alignment;
926 //Some parameter checks
927 if(min_size > preferred_size)
928 return false;
930 std::size_t data_size = old_block_size - BlockCtrlUnits;
932 if(data_size >= min_size)
933 return true;
935 block_ctrl *next_block = priv_next_block_if_free(block);
936 if(!next_block){
937 return false;
940 //Is "block" + "next_block" big enough?
941 std::size_t merged_size = old_block_size + next_block->m_size;
943 //Now we can expand this block further than before
944 received_size = merged_size*Alignment - BlockCtrlBytes;
946 if(merged_size < (min_size + BlockCtrlUnits)){
947 return false;
950 //We can fill expand. Merge both blocks,
951 block->m_next = next_block->m_next;
952 block->m_size = merged_size;
954 //Find the previous free block of next_block
955 block_ctrl *prev = &m_header.m_root;
956 while(detail::get_pointer(prev->m_next) != next_block){
957 prev = detail::get_pointer(prev->m_next);
960 //Now insert merged block in the free list
961 //This allows reusing allocation logic in this function
962 m_header.m_allocated -= old_block_size*Alignment;
963 prev->m_next = block;
965 //Now use check and allocate to do the allocation logic
966 preferred_size += BlockCtrlUnits;
967 std::size_t nunits = preferred_size < merged_size ? preferred_size : merged_size;
969 //This must success since nunits is less than merged_size!
970 if(!this->priv_check_and_allocate (nunits, prev, block, received_size)){
971 //Something very ugly is happening here. This is a bug
972 //or there is memory corruption
973 assert(0);
974 return false;
976 return true;
979 template<class MutexFamily, class VoidPointer> inline
980 void* simple_seq_fit_impl<MutexFamily, VoidPointer>::priv_check_and_allocate
981 (std::size_t nunits
982 ,typename simple_seq_fit_impl<MutexFamily, VoidPointer>::block_ctrl* prev
983 ,typename simple_seq_fit_impl<MutexFamily, VoidPointer>::block_ctrl* block
984 ,std::size_t &received_size)
986 std::size_t upper_nunits = nunits + BlockCtrlUnits;
987 bool found = false;
989 if (block->m_size > upper_nunits){
990 //This block is bigger than needed, split it in
991 //two blocks, the first's size will be "units"
992 //the second's size will be "block->m_size-units"
993 std::size_t total_size = block->m_size;
994 block->m_size = nunits;
996 block_ctrl *new_block = reinterpret_cast<block_ctrl*>
997 (reinterpret_cast<char*>(block) + Alignment*nunits);
998 new_block->m_size = total_size - nunits;
999 new_block->m_next = block->m_next;
1000 prev->m_next = new_block;
1001 found = true;
1003 else if (block->m_size >= nunits){
1004 //This block has exactly the right size with an extra
1005 //unusable extra bytes.
1006 prev->m_next = block->m_next;
1007 found = true;
1010 if(found){
1011 //We need block_ctrl for deallocation stuff, so
1012 //return memory user can overwrite
1013 m_header.m_allocated += block->m_size*Alignment;
1014 received_size = block->get_user_bytes();
1015 //Mark the block as allocated
1016 block->m_next = 0;
1017 //Check alignment
1018 algo_impl_t::assert_alignment(block);
1019 return priv_get_user_buffer(block);
1021 return 0;
1024 template<class MutexFamily, class VoidPointer>
1025 void simple_seq_fit_impl<MutexFamily, VoidPointer>::deallocate(void* addr)
1027 if(!addr) return;
1028 //-----------------------
1029 boost::interprocess::scoped_lock<interprocess_mutex> guard(m_header);
1030 //-----------------------
1031 return this->priv_deallocate(addr);
1034 template<class MutexFamily, class VoidPointer>
1035 void simple_seq_fit_impl<MutexFamily, VoidPointer>::priv_deallocate(void* addr)
1037 if(!addr) return;
1039 //Let's get free block list. List is always sorted
1040 //by memory address to allow block merging.
1041 //Pointer next always points to the first
1042 //(lower address) block
1043 block_ctrl * prev = &m_header.m_root;
1044 block_ctrl * pos = detail::get_pointer(m_header.m_root.m_next);
1045 block_ctrl * block = reinterpret_cast<block_ctrl*>(priv_get_block(addr));
1047 //All used blocks' next is marked with 0 so check it
1048 assert(block->m_next == 0);
1050 //Check if alignment and block size are right
1051 algo_impl_t::assert_alignment(addr);
1053 std::size_t total_size = Alignment*block->m_size;
1054 assert(m_header.m_allocated >= total_size);
1056 //Update used memory count
1057 m_header.m_allocated -= total_size;
1059 //Let's find the previous and the next block of the block to deallocate
1060 //This ordering comparison must be done with original pointers
1061 //types since their mapping to raw pointers can be different
1062 //in each process
1063 while((detail::get_pointer(pos) != &m_header.m_root) && (block > pos)){
1064 prev = pos;
1065 pos = detail::get_pointer(pos->m_next);
1068 //Try to combine with upper block
1069 char *block_char_ptr = reinterpret_cast<char*>(detail::get_pointer(block));
1071 if ((block_char_ptr + Alignment*block->m_size) ==
1072 reinterpret_cast<char*>(detail::get_pointer(pos))){
1073 block->m_size += pos->m_size;
1074 block->m_next = pos->m_next;
1076 else{
1077 block->m_next = pos;
1080 //Try to combine with lower block
1081 if ((reinterpret_cast<char*>(detail::get_pointer(prev))
1082 + Alignment*prev->m_size) ==
1083 block_char_ptr){
1086 prev->m_size += block->m_size;
1087 prev->m_next = block->m_next;
1089 else{
1090 prev->m_next = block;
1094 } //namespace detail {
1096 } //namespace interprocess {
1098 } //namespace boost {
1100 #include <boost/interprocess/detail/config_end.hpp>
1102 #endif //#ifndef BOOST_INTERPROCESS_MEM_ALGO_DETAIL_SIMPLE_SEQ_FIT_IMPL_HPP