fix doc example typo
[boost.git] / boost / intrusive / avltree_algorithms.hpp
blob307dbc8c5bbf4a543a4a1dfca875640a58b253d5
1 /////////////////////////////////////////////////////////////////////////////
2 //
3 // (C) Copyright Daniel K. O. 2005.
4 // (C) Copyright Ion Gaztanaga 2007.
5 //
6 // Distributed under the Boost Software License, Version 1.0.
7 // (See accompanying file LICENSE_1_0.txt or copy at
8 // http://www.boost.org/LICENSE_1_0.txt)
9 //
10 // See http://www.boost.org/libs/intrusive for documentation.
12 /////////////////////////////////////////////////////////////////////////////
14 #ifndef BOOST_INTRUSIVE_AVLTREE_ALGORITHMS_HPP
15 #define BOOST_INTRUSIVE_AVLTREE_ALGORITHMS_HPP
17 #include <boost/intrusive/detail/config_begin.hpp>
19 #include <cstddef>
20 #include <boost/intrusive/intrusive_fwd.hpp>
22 #include <boost/intrusive/detail/assert.hpp>
23 #include <boost/intrusive/detail/utilities.hpp>
24 #include <boost/intrusive/detail/tree_algorithms.hpp>
27 namespace boost {
28 namespace intrusive {
30 //! avltree_algorithms is configured with a NodeTraits class, which encapsulates the
31 //! information about the node to be manipulated. NodeTraits must support the
32 //! following interface:
33 //!
34 //! <b>Typedefs</b>:
35 //!
36 //! <tt>node</tt>: The type of the node that forms the circular list
37 //!
38 //! <tt>node_ptr</tt>: A pointer to a node
39 //!
40 //! <tt>const_node_ptr</tt>: A pointer to a const node
41 //!
42 //! <tt>balance</tt>: The type of the balance factor
43 //!
44 //! <b>Static functions</b>:
45 //!
46 //! <tt>static node_ptr get_parent(const_node_ptr n);</tt>
47 //!
48 //! <tt>static void set_parent(node_ptr n, node_ptr parent);</tt>
49 //!
50 //! <tt>static node_ptr get_left(const_node_ptr n);</tt>
51 //!
52 //! <tt>static void set_left(node_ptr n, node_ptr left);</tt>
53 //!
54 //! <tt>static node_ptr get_right(const_node_ptr n);</tt>
55 //!
56 //! <tt>static void set_right(node_ptr n, node_ptr right);</tt>
57 //!
58 //! <tt>static balance get_balance(const_node_ptr n);</tt>
59 //!
60 //! <tt>static void set_balance(node_ptr n, balance b);</tt>
61 //!
62 //! <tt>static balance negative();</tt>
63 //!
64 //! <tt>static balance zero();</tt>
65 //!
66 //! <tt>static balance positive();</tt>
67 template<class NodeTraits>
68 class avltree_algorithms
70 public:
71 typedef typename NodeTraits::node node;
72 typedef NodeTraits node_traits;
73 typedef typename NodeTraits::node_ptr node_ptr;
74 typedef typename NodeTraits::const_node_ptr const_node_ptr;
75 typedef typename NodeTraits::balance balance;
77 /// @cond
78 private:
79 typedef detail::tree_algorithms<NodeTraits> tree_algorithms;
81 template<class F>
82 struct avltree_node_cloner
83 : private detail::ebo_functor_holder<F>
85 typedef detail::ebo_functor_holder<F> base_t;
87 avltree_node_cloner(F f)
88 : base_t(f)
91 node_ptr operator()(node_ptr p)
93 node_ptr n = base_t::get()(p);
94 NodeTraits::set_balance(n, NodeTraits::get_balance(p));
95 return n;
99 struct avltree_erase_fixup
101 void operator()(node_ptr to_erase, node_ptr successor)
102 { NodeTraits::set_balance(successor, NodeTraits::get_balance(to_erase)); }
105 static node_ptr uncast(const_node_ptr ptr)
107 return node_ptr(const_cast<node*>(::boost::intrusive::detail::get_pointer(ptr)));
109 /// @endcond
111 public:
112 static node_ptr begin_node(const_node_ptr header)
113 { return tree_algorithms::begin_node(header); }
115 static node_ptr end_node(const_node_ptr header)
116 { return tree_algorithms::end_node(header); }
118 //! This type is the information that will be
119 //! filled by insert_unique_check
120 typedef typename tree_algorithms::insert_commit_data insert_commit_data;
122 //! <b>Requires</b>: header1 and header2 must be the header nodes
123 //! of two trees.
124 //!
125 //! <b>Effects</b>: Swaps two trees. After the function header1 will contain
126 //! links to the second tree and header2 will have links to the first tree.
127 //!
128 //! <b>Complexity</b>: Constant.
129 //!
130 //! <b>Throws</b>: Nothing.
131 static void swap_tree(node_ptr header1, node_ptr header2)
132 { return tree_algorithms::swap_tree(header1, header2); }
134 //! <b>Requires</b>: node1 and node2 can't be header nodes
135 //! of two trees.
136 //!
137 //! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted
138 //! in the position node2 before the function. node2 will be inserted in the
139 //! position node1 had before the function.
140 //!
141 //! <b>Complexity</b>: Logarithmic.
142 //!
143 //! <b>Throws</b>: Nothing.
144 //!
145 //! <b>Note</b>: This function will break container ordering invariants if
146 //! node1 and node2 are not equivalent according to the ordering rules.
148 //!Experimental function
149 static void swap_nodes(node_ptr node1, node_ptr node2)
151 if(node1 == node2)
152 return;
154 node_ptr header1(tree_algorithms::get_header(node1)), header2(tree_algorithms::get_header(node2));
155 swap_nodes(node1, header1, node2, header2);
158 //! <b>Requires</b>: node1 and node2 can't be header nodes
159 //! of two trees with header header1 and header2.
160 //!
161 //! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted
162 //! in the position node2 before the function. node2 will be inserted in the
163 //! position node1 had before the function.
164 //!
165 //! <b>Complexity</b>: Constant.
166 //!
167 //! <b>Throws</b>: Nothing.
168 //!
169 //! <b>Note</b>: This function will break container ordering invariants if
170 //! node1 and node2 are not equivalent according to the ordering rules.
172 //!Experimental function
173 static void swap_nodes(node_ptr node1, node_ptr header1, node_ptr node2, node_ptr header2)
175 if(node1 == node2) return;
177 tree_algorithms::swap_nodes(node1, header1, node2, header2);
178 //Swap balance
179 balance c = NodeTraits::get_balance(node1);
180 NodeTraits::set_balance(node1, NodeTraits::get_balance(node2));
181 NodeTraits::set_balance(node2, c);
184 //! <b>Requires</b>: node_to_be_replaced must be inserted in a tree
185 //! and new_node must not be inserted in a tree.
186 //!
187 //! <b>Effects</b>: Replaces node_to_be_replaced in its position in the
188 //! tree with new_node. The tree does not need to be rebalanced
189 //!
190 //! <b>Complexity</b>: Logarithmic.
191 //!
192 //! <b>Throws</b>: Nothing.
193 //!
194 //! <b>Note</b>: This function will break container ordering invariants if
195 //! new_node is not equivalent to node_to_be_replaced according to the
196 //! ordering rules. This function is faster than erasing and inserting
197 //! the node, since no rebalancing and comparison is needed.
199 //!Experimental function
200 static void replace_node(node_ptr node_to_be_replaced, node_ptr new_node)
202 if(node_to_be_replaced == new_node)
203 return;
204 replace_node(node_to_be_replaced, tree_algorithms::get_header(node_to_be_replaced), new_node);
207 //! <b>Requires</b>: node_to_be_replaced must be inserted in a tree
208 //! with header "header" and new_node must not be inserted in a tree.
209 //!
210 //! <b>Effects</b>: Replaces node_to_be_replaced in its position in the
211 //! tree with new_node. The tree does not need to be rebalanced
212 //!
213 //! <b>Complexity</b>: Constant.
214 //!
215 //! <b>Throws</b>: Nothing.
216 //!
217 //! <b>Note</b>: This function will break container ordering invariants if
218 //! new_node is not equivalent to node_to_be_replaced according to the
219 //! ordering rules. This function is faster than erasing and inserting
220 //! the node, since no rebalancing or comparison is needed.
222 //!Experimental function
223 static void replace_node(node_ptr node_to_be_replaced, node_ptr header, node_ptr new_node)
225 tree_algorithms::replace_node(node_to_be_replaced, header, new_node);
226 NodeTraits::set_balance(new_node, NodeTraits::get_balance(node_to_be_replaced));
229 //! <b>Requires</b>: node is a tree node but not the header.
230 //!
231 //! <b>Effects</b>: Unlinks the node and rebalances the tree.
232 //!
233 //! <b>Complexity</b>: Average complexity is constant time.
234 //!
235 //! <b>Throws</b>: Nothing.
236 static void unlink(node_ptr node)
238 node_ptr x = NodeTraits::get_parent(node);
239 if(x){
240 while(!is_header(x))
241 x = NodeTraits::get_parent(x);
242 erase(x, node);
246 //! <b>Requires</b>: header is the header of a tree.
247 //!
248 //! <b>Effects</b>: Unlinks the leftmost node from the tree, and
249 //! updates the header link to the new leftmost node.
250 //!
251 //! <b>Complexity</b>: Average complexity is constant time.
252 //!
253 //! <b>Throws</b>: Nothing.
254 //!
255 //! <b>Notes</b>: This function breaks the tree and the tree can
256 //! only be used for more unlink_leftmost_without_rebalance calls.
257 //! This function is normally used to achieve a step by step
258 //! controlled destruction of the tree.
259 static node_ptr unlink_leftmost_without_rebalance(node_ptr header)
260 { return tree_algorithms::unlink_leftmost_without_rebalance(header); }
262 //! <b>Requires</b>: node is a node of the tree or an node initialized
263 //! by init(...).
264 //!
265 //! <b>Effects</b>: Returns true if the node is initialized by init().
266 //!
267 //! <b>Complexity</b>: Constant time.
268 //!
269 //! <b>Throws</b>: Nothing.
270 static bool unique(const_node_ptr node)
271 { return tree_algorithms::unique(node); }
273 //! <b>Requires</b>: node is a node of the tree but it's not the header.
274 //!
275 //! <b>Effects</b>: Returns the number of nodes of the subtree.
276 //!
277 //! <b>Complexity</b>: Linear time.
278 //!
279 //! <b>Throws</b>: Nothing.
280 static std::size_t count(const_node_ptr node)
281 { return tree_algorithms::count(node); }
283 //! <b>Requires</b>: header is the header node of the tree.
284 //!
285 //! <b>Effects</b>: Returns the number of nodes above the header.
286 //!
287 //! <b>Complexity</b>: Linear time.
288 //!
289 //! <b>Throws</b>: Nothing.
290 static std::size_t size(const_node_ptr header)
291 { return tree_algorithms::size(header); }
293 //! <b>Requires</b>: p is a node from the tree except the header.
294 //!
295 //! <b>Effects</b>: Returns the next node of the tree.
296 //!
297 //! <b>Complexity</b>: Average constant time.
298 //!
299 //! <b>Throws</b>: Nothing.
300 static node_ptr next_node(node_ptr p)
301 { return tree_algorithms::next_node(p); }
303 //! <b>Requires</b>: p is a node from the tree except the leftmost node.
304 //!
305 //! <b>Effects</b>: Returns the previous node of the tree.
306 //!
307 //! <b>Complexity</b>: Average constant time.
308 //!
309 //! <b>Throws</b>: Nothing.
310 static node_ptr prev_node(node_ptr p)
311 { return tree_algorithms::prev_node(p); }
313 //! <b>Requires</b>: node must not be part of any tree.
315 //! <b>Effects</b>: After the function unique(node) == true.
316 //!
317 //! <b>Complexity</b>: Constant.
318 //!
319 //! <b>Throws</b>: Nothing.
321 //! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
322 static void init(node_ptr node)
323 { tree_algorithms::init(node); }
325 //! <b>Requires</b>: node must not be part of any tree.
327 //! <b>Effects</b>: Initializes the header to represent an empty tree.
328 //! unique(header) == true.
329 //!
330 //! <b>Complexity</b>: Constant.
331 //!
332 //! <b>Throws</b>: Nothing.
334 //! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
335 static void init_header(node_ptr header)
337 tree_algorithms::init_header(header);
338 NodeTraits::set_balance(header, NodeTraits::zero());
341 //! <b>Requires</b>: header must be the header of a tree, z a node
342 //! of that tree and z != header.
344 //! <b>Effects</b>: Erases node "z" from the tree with header "header".
345 //!
346 //! <b>Complexity</b>: Amortized constant time.
347 //!
348 //! <b>Throws</b>: Nothing.
349 static node_ptr erase(node_ptr header, node_ptr z)
351 typename tree_algorithms::data_for_rebalance info;
352 tree_algorithms::erase(header, z, avltree_erase_fixup(), info);
353 node_ptr x = info.x;
354 node_ptr x_parent = info.x_parent;
356 //Rebalance avltree
357 rebalance_after_erasure(header, x, x_parent);
358 return z;
361 //! <b>Requires</b>: "cloner" must be a function
362 //! object taking a node_ptr and returning a new cloned node of it. "disposer" must
363 //! take a node_ptr and shouldn't throw.
365 //! <b>Effects</b>: First empties target tree calling
366 //! <tt>void disposer::operator()(node_ptr)</tt> for every node of the tree
367 //! except the header.
368 //!
369 //! Then, duplicates the entire tree pointed by "source_header" cloning each
370 //! source node with <tt>node_ptr Cloner::operator()(node_ptr)</tt> to obtain
371 //! the nodes of the target tree. If "cloner" throws, the cloned target nodes
372 //! are disposed using <tt>void disposer(node_ptr)</tt>.
373 //!
374 //! <b>Complexity</b>: Linear to the number of element of the source tree plus the.
375 //! number of elements of tree target tree when calling this function.
376 //!
377 //! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed.
378 template <class Cloner, class Disposer>
379 static void clone
380 (const_node_ptr source_header, node_ptr target_header, Cloner cloner, Disposer disposer)
382 avltree_node_cloner<Cloner> new_cloner(cloner);
383 tree_algorithms::clone(source_header, target_header, new_cloner, disposer);
386 //! <b>Requires</b>: "disposer" must be an object function
387 //! taking a node_ptr parameter and shouldn't throw.
389 //! <b>Effects</b>: Empties the target tree calling
390 //! <tt>void disposer::operator()(node_ptr)</tt> for every node of the tree
391 //! except the header.
392 //!
393 //! <b>Complexity</b>: Linear to the number of element of the source tree plus the.
394 //! number of elements of tree target tree when calling this function.
395 //!
396 //! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed.
397 template<class Disposer>
398 static void clear_and_dispose(node_ptr header, Disposer disposer)
399 { tree_algorithms::clear_and_dispose(header, disposer); }
401 //! <b>Requires</b>: "header" must be the header node of a tree.
402 //! KeyNodePtrCompare is a function object that induces a strict weak
403 //! ordering compatible with the strict weak ordering used to create the
404 //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
406 //! <b>Effects</b>: Returns an node_ptr to the first element that is
407 //! not less than "key" according to "comp" or "header" if that element does
408 //! not exist.
410 //! <b>Complexity</b>: Logarithmic.
411 //!
412 //! <b>Throws</b>: If "comp" throws.
413 template<class KeyType, class KeyNodePtrCompare>
414 static node_ptr lower_bound
415 (const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp)
416 { return tree_algorithms::lower_bound(header, key, comp); }
418 //! <b>Requires</b>: "header" must be the header node of a tree.
419 //! KeyNodePtrCompare is a function object that induces a strict weak
420 //! ordering compatible with the strict weak ordering used to create the
421 //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
423 //! <b>Effects</b>: Returns an node_ptr to the first element that is greater
424 //! than "key" according to "comp" or "header" if that element does not exist.
426 //! <b>Complexity</b>: Logarithmic.
427 //!
428 //! <b>Throws</b>: If "comp" throws.
429 template<class KeyType, class KeyNodePtrCompare>
430 static node_ptr upper_bound
431 (const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp)
432 { return tree_algorithms::upper_bound(header, key, comp); }
434 //! <b>Requires</b>: "header" must be the header node of a tree.
435 //! KeyNodePtrCompare is a function object that induces a strict weak
436 //! ordering compatible with the strict weak ordering used to create the
437 //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
439 //! <b>Effects</b>: Returns an node_ptr to the element that is equivalent to
440 //! "key" according to "comp" or "header" if that element does not exist.
442 //! <b>Complexity</b>: Logarithmic.
443 //!
444 //! <b>Throws</b>: If "comp" throws.
445 template<class KeyType, class KeyNodePtrCompare>
446 static node_ptr find
447 (const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp)
448 { return tree_algorithms::find(header, key, comp); }
450 //! <b>Requires</b>: "header" must be the header node of a tree.
451 //! KeyNodePtrCompare is a function object that induces a strict weak
452 //! ordering compatible with the strict weak ordering used to create the
453 //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
455 //! <b>Effects</b>: Returns an a pair of node_ptr delimiting a range containing
456 //! all elements that are equivalent to "key" according to "comp" or an
457 //! empty range that indicates the position where those elements would be
458 //! if they there are no equivalent elements.
460 //! <b>Complexity</b>: Logarithmic.
461 //!
462 //! <b>Throws</b>: If "comp" throws.
463 template<class KeyType, class KeyNodePtrCompare>
464 static std::pair<node_ptr, node_ptr> equal_range
465 (const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp)
466 { return tree_algorithms::equal_range(header, key, comp); }
468 //! <b>Requires</b>: "h" must be the header node of a tree.
469 //! NodePtrCompare is a function object that induces a strict weak
470 //! ordering compatible with the strict weak ordering used to create the
471 //! the tree. NodePtrCompare compares two node_ptrs.
473 //! <b>Effects</b>: Inserts new_node into the tree before the upper bound
474 //! according to "comp".
475 //!
476 //! <b>Complexity</b>: Average complexity for insert element is at
477 //! most logarithmic.
478 //!
479 //! <b>Throws</b>: If "comp" throws.
480 template<class NodePtrCompare>
481 static node_ptr insert_equal_upper_bound
482 (node_ptr h, node_ptr new_node, NodePtrCompare comp)
484 tree_algorithms::insert_equal_upper_bound(h, new_node, comp);
485 rebalance_after_insertion(h, new_node);
486 return new_node;
489 //! <b>Requires</b>: "h" must be the header node of a tree.
490 //! NodePtrCompare is a function object that induces a strict weak
491 //! ordering compatible with the strict weak ordering used to create the
492 //! the tree. NodePtrCompare compares two node_ptrs.
494 //! <b>Effects</b>: Inserts new_node into the tree before the lower bound
495 //! according to "comp".
496 //!
497 //! <b>Complexity</b>: Average complexity for insert element is at
498 //! most logarithmic.
499 //!
500 //! <b>Throws</b>: If "comp" throws.
501 template<class NodePtrCompare>
502 static node_ptr insert_equal_lower_bound
503 (node_ptr h, node_ptr new_node, NodePtrCompare comp)
505 tree_algorithms::insert_equal_lower_bound(h, new_node, comp);
506 rebalance_after_insertion(h, new_node);
507 return new_node;
510 //! <b>Requires</b>: "header" must be the header node of a tree.
511 //! NodePtrCompare is a function object that induces a strict weak
512 //! ordering compatible with the strict weak ordering used to create the
513 //! the tree. NodePtrCompare compares two node_ptrs. "hint" is node from
514 //! the "header"'s tree.
515 //!
516 //! <b>Effects</b>: Inserts new_node into the tree, using "hint" as a hint to
517 //! where it will be inserted. If "hint" is the upper_bound
518 //! the insertion takes constant time (two comparisons in the worst case).
520 //! <b>Complexity</b>: Logarithmic in general, but it is amortized
521 //! constant time if new_node is inserted immediately before "hint".
522 //!
523 //! <b>Throws</b>: If "comp" throws.
524 template<class NodePtrCompare>
525 static node_ptr insert_equal
526 (node_ptr header, node_ptr hint, node_ptr new_node, NodePtrCompare comp)
528 tree_algorithms::insert_equal(header, hint, new_node, comp);
529 rebalance_after_insertion(header, new_node);
530 return new_node;
533 //! <b>Requires</b>: "header" must be the header node of a tree.
534 //! KeyNodePtrCompare is a function object that induces a strict weak
535 //! ordering compatible with the strict weak ordering used to create the
536 //! the tree. NodePtrCompare compares KeyType with a node_ptr.
537 //!
538 //! <b>Effects</b>: Checks if there is an equivalent node to "key" in the
539 //! tree according to "comp" and obtains the needed information to realize
540 //! a constant-time node insertion if there is no equivalent node.
542 //! <b>Returns</b>: If there is an equivalent value
543 //! returns a pair containing a node_ptr to the already present node
544 //! and false. If there is not equivalent key can be inserted returns true
545 //! in the returned pair's boolean and fills "commit_data" that is meant to
546 //! be used with the "insert_commit" function to achieve a constant-time
547 //! insertion function.
548 //!
549 //! <b>Complexity</b>: Average complexity is at most logarithmic.
551 //! <b>Throws</b>: If "comp" throws.
552 //!
553 //! <b>Notes</b>: This function is used to improve performance when constructing
554 //! a node is expensive and the user does not want to have two equivalent nodes
555 //! in the tree: if there is an equivalent value
556 //! the constructed object must be discarded. Many times, the part of the
557 //! node that is used to impose the order is much cheaper to construct
558 //! than the node and this function offers the possibility to use that part
559 //! to check if the insertion will be successful.
561 //! If the check is successful, the user can construct the node and use
562 //! "insert_commit" to insert the node in constant-time. This gives a total
563 //! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)).
565 //! "commit_data" remains valid for a subsequent "insert_unique_commit" only
566 //! if no more objects are inserted or erased from the set.
567 template<class KeyType, class KeyNodePtrCompare>
568 static std::pair<node_ptr, bool> insert_unique_check
569 (const_node_ptr header, const KeyType &key
570 ,KeyNodePtrCompare comp, insert_commit_data &commit_data)
571 { return tree_algorithms::insert_unique_check(header, key, comp, commit_data); }
573 //! <b>Requires</b>: "header" must be the header node of a tree.
574 //! KeyNodePtrCompare is a function object that induces a strict weak
575 //! ordering compatible with the strict weak ordering used to create the
576 //! the tree. NodePtrCompare compares KeyType with a node_ptr.
577 //! "hint" is node from the "header"'s tree.
578 //!
579 //! <b>Effects</b>: Checks if there is an equivalent node to "key" in the
580 //! tree according to "comp" using "hint" as a hint to where it should be
581 //! inserted and obtains the needed information to realize
582 //! a constant-time node insertion if there is no equivalent node.
583 //! If "hint" is the upper_bound the function has constant time
584 //! complexity (two comparisons in the worst case).
586 //! <b>Returns</b>: If there is an equivalent value
587 //! returns a pair containing a node_ptr to the already present node
588 //! and false. If there is not equivalent key can be inserted returns true
589 //! in the returned pair's boolean and fills "commit_data" that is meant to
590 //! be used with the "insert_commit" function to achieve a constant-time
591 //! insertion function.
592 //!
593 //! <b>Complexity</b>: Average complexity is at most logarithmic, but it is
594 //! amortized constant time if new_node should be inserted immediately before "hint".
596 //! <b>Throws</b>: If "comp" throws.
597 //!
598 //! <b>Notes</b>: This function is used to improve performance when constructing
599 //! a node is expensive and the user does not want to have two equivalent nodes
600 //! in the tree: if there is an equivalent value
601 //! the constructed object must be discarded. Many times, the part of the
602 //! node that is used to impose the order is much cheaper to construct
603 //! than the node and this function offers the possibility to use that part
604 //! to check if the insertion will be successful.
606 //! If the check is successful, the user can construct the node and use
607 //! "insert_commit" to insert the node in constant-time. This gives a total
608 //! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)).
610 //! "commit_data" remains valid for a subsequent "insert_unique_commit" only
611 //! if no more objects are inserted or erased from the set.
612 template<class KeyType, class KeyNodePtrCompare>
613 static std::pair<node_ptr, bool> insert_unique_check
614 (const_node_ptr header, node_ptr hint, const KeyType &key
615 ,KeyNodePtrCompare comp, insert_commit_data &commit_data)
616 { return tree_algorithms::insert_unique_check(header, hint, key, comp, commit_data); }
618 //! <b>Requires</b>: "header" must be the header node of a tree.
619 //! "commit_data" must have been obtained from a previous call to
620 //! "insert_unique_check". No objects should have been inserted or erased
621 //! from the set between the "insert_unique_check" that filled "commit_data"
622 //! and the call to "insert_commit".
623 //!
624 //!
625 //! <b>Effects</b>: Inserts new_node in the set using the information obtained
626 //! from the "commit_data" that a previous "insert_check" filled.
628 //! <b>Complexity</b>: Constant time.
630 //! <b>Throws</b>: Nothing.
631 //!
632 //! <b>Notes</b>: This function has only sense if a "insert_unique_check" has been
633 //! previously executed to fill "commit_data". No value should be inserted or
634 //! erased between the "insert_check" and "insert_commit" calls.
635 static void insert_unique_commit
636 (node_ptr header, node_ptr new_value, const insert_commit_data &commit_data)
638 tree_algorithms::insert_unique_commit(header, new_value, commit_data);
639 rebalance_after_insertion(header, new_value);
642 //! <b>Requires</b>: "n" must be a node inserted in a tree.
644 //! <b>Effects</b>: Returns a pointer to the header node of the tree.
646 //! <b>Complexity</b>: Logarithmic.
647 //!
648 //! <b>Throws</b>: Nothing.
649 static node_ptr get_header(node_ptr n)
650 { return tree_algorithms::get_header(n); }
652 /// @cond
653 private:
655 //! <b>Requires</b>: p is a node of a tree.
656 //!
657 //! <b>Effects</b>: Returns true if p is the header of the tree.
658 //!
659 //! <b>Complexity</b>: Constant.
660 //!
661 //! <b>Throws</b>: Nothing.
662 static bool is_header(const_node_ptr p)
663 { return NodeTraits::get_balance(p) == NodeTraits::zero() && tree_algorithms::is_header(p); }
665 static void rebalance_after_erasure(node_ptr header, node_ptr x, node_ptr x_parent)
667 node_ptr root = NodeTraits::get_parent(header);
668 while (x != root) {
669 const balance x_parent_balance = NodeTraits::get_balance(x_parent);
670 if(x_parent_balance == NodeTraits::zero()){
671 NodeTraits::set_balance(x_parent,
672 (x == NodeTraits::get_right(x_parent) ? NodeTraits::negative() : NodeTraits::positive()));
673 break; // the height didn't change, let's stop here
675 else if(x_parent_balance == NodeTraits::negative()){
676 if (x == NodeTraits::get_left(x_parent)) {
677 NodeTraits::set_balance(x_parent, NodeTraits::zero()); // balanced
678 x = x_parent;
679 x_parent = NodeTraits::get_parent(x_parent);
681 else {
682 // x is right child
683 // a is left child
684 node_ptr a = NodeTraits::get_left(x_parent);
685 BOOST_INTRUSIVE_INVARIANT_ASSERT(a);
686 if (NodeTraits::get_balance(a) == NodeTraits::positive()) {
687 // a MUST have a right child
688 BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_right(a));
689 rotate_left_right(x_parent, root);
691 x = NodeTraits::get_parent(x_parent);
692 x_parent = NodeTraits::get_parent(x);
694 else {
695 rotate_right(x_parent, root);
696 x = NodeTraits::get_parent(x_parent);
697 x_parent = NodeTraits::get_parent(x);
701 // if changed from negative to NodeTraits::positive(), no need to check above
702 if (NodeTraits::get_balance(x) == NodeTraits::positive()){
703 break;
707 else if(x_parent_balance == NodeTraits::positive()){
708 if (x == NodeTraits::get_right(x_parent)) {
709 NodeTraits::set_balance(x_parent, NodeTraits::zero()); // balanced
710 x = x_parent;
711 x_parent = NodeTraits::get_parent(x_parent);
713 else {
714 // x is left child
715 // a is right child
716 node_ptr a = NodeTraits::get_right(x_parent);
717 BOOST_INTRUSIVE_INVARIANT_ASSERT(a);
718 if (NodeTraits::get_balance(a) == NodeTraits::negative()) {
719 // a MUST have then a left child
720 BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_left(a));
721 rotate_right_left(x_parent, root);
723 x = NodeTraits::get_parent(x_parent);
724 x_parent = NodeTraits::get_parent(x);
726 else {
727 rotate_left(x_parent, root);
728 x = NodeTraits::get_parent(x_parent);
729 x_parent = NodeTraits::get_parent(x);
731 // if changed from NodeTraits::positive() to negative, no need to check above
732 if (NodeTraits::get_balance(x) == NodeTraits::negative()){
733 break;
737 else{
738 BOOST_INTRUSIVE_INVARIANT_ASSERT(false); // never reached
741 NodeTraits::set_parent(header, root);
745 static void rebalance_after_insertion(node_ptr header, node_ptr x)
747 node_ptr root = NodeTraits::get_parent(header);
748 NodeTraits::set_balance(x, NodeTraits::zero());
750 // Rebalance.
751 while (x != root){
752 const balance x_parent_balance = NodeTraits::get_balance(NodeTraits::get_parent(x));
754 if(x_parent_balance == NodeTraits::zero()){
755 // if x is left, parent will have parent->bal_factor = negative
756 // else, parent->bal_factor = NodeTraits::positive()
757 NodeTraits::set_balance( NodeTraits::get_parent(x)
758 , x == NodeTraits::get_left(NodeTraits::get_parent(x))
759 ? NodeTraits::negative() : NodeTraits::positive() );
760 x = NodeTraits::get_parent(x);
762 else if(x_parent_balance == NodeTraits::positive()){
763 // if x is a left child, parent->bal_factor = zero
764 if (x == NodeTraits::get_left(NodeTraits::get_parent(x)))
765 NodeTraits::set_balance(NodeTraits::get_parent(x), NodeTraits::zero());
766 else{ // x is a right child, needs rebalancing
767 if (NodeTraits::get_balance(x) == NodeTraits::negative())
768 rotate_right_left(NodeTraits::get_parent(x), root);
769 else
770 rotate_left(NodeTraits::get_parent(x), root);
772 break;
774 else if(x_parent_balance == NodeTraits::negative()){
775 // if x is a left child, needs rebalancing
776 if (x == NodeTraits::get_left(NodeTraits::get_parent(x))) {
777 if (NodeTraits::get_balance(x) == NodeTraits::positive())
778 rotate_left_right(NodeTraits::get_parent(x), root);
779 else
780 rotate_right(NodeTraits::get_parent(x), root);
782 else
783 NodeTraits::set_balance(NodeTraits::get_parent(x), NodeTraits::zero());
784 break;
786 else{
787 BOOST_INTRUSIVE_INVARIANT_ASSERT(false); // never reached
790 NodeTraits::set_parent(header, root);
793 static void rotate_left_right(node_ptr a, node_ptr &root)
795 // | | //
796 // a(-2) c //
797 // / \ / \ //
798 // / \ ==> / \ //
799 // (pos)b [g] b a //
800 // / \ / \ / \ //
801 // [d] c [d] e f [g] //
802 // / \ //
803 // e f //
804 node_ptr b = NodeTraits::get_left(a), c = NodeTraits::get_right(b);
806 // switch
807 NodeTraits::set_left(a, NodeTraits::get_right(c));
808 NodeTraits::set_right(b, NodeTraits::get_left(c));
810 NodeTraits::set_right(c, a);
811 NodeTraits::set_left(c, b);
813 // set the parents
814 NodeTraits::set_parent(c, NodeTraits::get_parent(a));
815 NodeTraits::set_parent(a, c);
816 NodeTraits::set_parent(b, c);
818 if (NodeTraits::get_left(a)) // do we have f?
819 NodeTraits::set_parent(NodeTraits::get_left(a), a);
820 if (NodeTraits::get_right(b)) // do we have e?
821 NodeTraits::set_parent(NodeTraits::get_right(b), b);
823 if (a==root) root = c;
824 else // a had a parent, his child is now c
825 if (a == NodeTraits::get_left(NodeTraits::get_parent(c)))
826 NodeTraits::set_left(NodeTraits::get_parent(c), c);
827 else
828 NodeTraits::set_right(NodeTraits::get_parent(c), c);
830 // balancing...
831 const balance c_balance = NodeTraits::get_balance(c);
832 if(c_balance == NodeTraits::negative()){
833 NodeTraits::set_balance(a, NodeTraits::positive());
834 NodeTraits::set_balance(b, NodeTraits::zero());
836 else if(c_balance == NodeTraits::zero()){
837 NodeTraits::set_balance(a, NodeTraits::zero());
838 NodeTraits::set_balance(b, NodeTraits::zero());
840 else if(c_balance == NodeTraits::positive()){
841 NodeTraits::set_balance(a, NodeTraits::zero());
842 NodeTraits::set_balance(b, NodeTraits::negative());
844 else{
845 BOOST_INTRUSIVE_INVARIANT_ASSERT(false); // never reached
847 NodeTraits::set_balance(c, NodeTraits::zero());
850 static void rotate_right_left(node_ptr a, node_ptr &root)
852 // | | //
853 // a(pos) c //
854 // / \ / \ //
855 // / \ / \ //
856 // [d] b(neg) ==> a b //
857 // / \ / \ / \ //
858 // c [g] [d] e f [g] //
859 // / \ //
860 // e f //
861 node_ptr b = NodeTraits::get_right(a), c = NodeTraits::get_left(b);
863 // switch
864 NodeTraits::set_right(a, NodeTraits::get_left(c));
865 NodeTraits::set_left(b, NodeTraits::get_right(c));
867 NodeTraits::set_left(c, a);
868 NodeTraits::set_right(c, b);
870 // set the parents
871 NodeTraits::set_parent(c, NodeTraits::get_parent(a));
872 NodeTraits::set_parent(a, c);
873 NodeTraits::set_parent(b, c);
875 if (NodeTraits::get_right(a)) // do we have e?
876 NodeTraits::set_parent(NodeTraits::get_right(a), a);
877 if (NodeTraits::get_left(b)) // do we have f?
878 NodeTraits::set_parent(NodeTraits::get_left(b), b);
880 if (a==root) root = c;
881 else // a had a parent, his child is now c
882 if (a == NodeTraits::get_left(NodeTraits::get_parent(c)))
883 NodeTraits::set_left(NodeTraits::get_parent(c), c);
884 else
885 NodeTraits::set_right(NodeTraits::get_parent(c), c);
887 // balancing...
888 const balance c_balance = NodeTraits::get_balance(c);
889 if(c_balance == NodeTraits::negative()){
890 NodeTraits::set_balance(a, NodeTraits::zero());
891 NodeTraits::set_balance(b, NodeTraits::positive());
893 else if(c_balance == NodeTraits::zero()){
894 NodeTraits::set_balance(a, NodeTraits::zero());
895 NodeTraits::set_balance(b, NodeTraits::zero());
897 else if(c_balance == NodeTraits::positive()){
898 NodeTraits::set_balance(a, NodeTraits::negative());
899 NodeTraits::set_balance(b, NodeTraits::zero());
901 else{
902 BOOST_INTRUSIVE_INVARIANT_ASSERT(false);
904 NodeTraits::set_balance(c, NodeTraits::zero());
907 static void rotate_left(node_ptr x, node_ptr & root)
909 // | | //
910 // x(2) y(0) //
911 // / \ ==> / \ //
912 // n[a] y(1)n+2 n+1(0)x [c]n+1 //
913 // / \ / \ //
914 // n[b] [c]n+1 n[a] [b]n //
915 node_ptr y = NodeTraits::get_right(x);
917 // switch
918 NodeTraits::set_right(x, NodeTraits::get_left(y));
919 NodeTraits::set_left(y, x);
921 // rearrange parents
922 NodeTraits::set_parent(y, NodeTraits::get_parent(x));
923 NodeTraits::set_parent(x, y);
925 // do we have [b]?
926 if (NodeTraits::get_right(x))
927 NodeTraits::set_parent(NodeTraits::get_right(x), x);
929 if (x == root)
930 root = y;
931 else
932 // need to reparent y
933 if (NodeTraits::get_left(NodeTraits::get_parent(y)) == x)
934 NodeTraits::set_left(NodeTraits::get_parent(y), y);
935 else
936 NodeTraits::set_right(NodeTraits::get_parent(y), y);
938 // reset the balancing factor
939 if (NodeTraits::get_balance(y) == NodeTraits::positive()) {
940 NodeTraits::set_balance(x, NodeTraits::zero());
941 NodeTraits::set_balance(y, NodeTraits::zero());
943 else { // this doesn't happen during insertions
944 NodeTraits::set_balance(x, NodeTraits::positive());
945 NodeTraits::set_balance(y, NodeTraits::negative());
949 static void rotate_right(node_ptr x, node_ptr &root)
951 node_ptr y = NodeTraits::get_left(x);
953 // switch
954 NodeTraits::set_left(x, NodeTraits::get_right(y));
955 NodeTraits::set_right(y, x);
957 // rearrange parents
958 NodeTraits::set_parent(y, NodeTraits::get_parent(x));
959 NodeTraits::set_parent(x, y);
961 // do we have [b]?
962 if (NodeTraits::get_left(x))
963 NodeTraits::set_parent(NodeTraits::get_left(x), x);
965 if (x == root)
966 root = y;
967 else
968 // need to reparent y
969 if (NodeTraits::get_left(NodeTraits::get_parent(y)) == x)
970 NodeTraits::set_left(NodeTraits::get_parent(y), y);
971 else
972 NodeTraits::set_right(NodeTraits::get_parent(y), y);
974 // reset the balancing factor
975 if (NodeTraits::get_balance(y) == NodeTraits::negative()) {
976 NodeTraits::set_balance(x, NodeTraits::zero());
977 NodeTraits::set_balance(y, NodeTraits::zero());
979 else { // this doesn't happen during insertions
980 NodeTraits::set_balance(x, NodeTraits::negative());
981 NodeTraits::set_balance(y, NodeTraits::positive());
985 /// @endcond
988 } //namespace intrusive
989 } //namespace boost
991 #include <boost/intrusive/detail/config_end.hpp>
993 #endif //BOOST_INTRUSIVE_AVLTREE_ALGORITHMS_HPP