fix doc example typo
[boost.git] / boost / mpi / communicator.hpp
blobe450e2a54b95ee227ec86bac62fe722c80a761d8
1 // Copyright (C) 2005, 2006 Douglas Gregor <doug.gregor -at- gmail.com>.
3 // Use, modification and distribution is subject to the Boost Software
4 // License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
5 // http://www.boost.org/LICENSE_1_0.txt)
7 /** @file communicator.hpp
9 * This header defines the @c communicator class, which is the basis
10 * of all communication within Boost.MPI, and provides point-to-point
11 * communication operations.
13 #ifndef BOOST_MPI_COMMUNICATOR_HPP
14 #define BOOST_MPI_COMMUNICATOR_HPP
16 #include <boost/mpi/config.hpp>
17 #include <boost/mpi/exception.hpp>
18 #include <boost/optional.hpp>
19 #include <boost/shared_ptr.hpp>
20 #include <boost/mpi/datatype.hpp>
21 #include <utility>
22 #include <iterator>
23 #include <stdexcept> // for std::range_error
25 // For (de-)serializing sends and receives
26 #include <boost/mpi/packed_oarchive.hpp>
27 #include <boost/mpi/packed_iarchive.hpp>
29 // For (de-)serializing skeletons and content
30 #include <boost/mpi/skeleton_and_content_fwd.hpp>
32 // For (de-)serializing arrays
33 #include <boost/serialization/array.hpp>
35 #include <boost/mpi/detail/point_to_point.hpp>
36 #include <boost/mpi/status.hpp>
37 #include <boost/mpi/request.hpp>
39 #ifdef BOOST_MSVC
40 # pragma warning(push)
41 # pragma warning(disable : 4800) // forcing to bool 'true' or 'false'
42 #endif
44 namespace boost { namespace mpi {
46 /**
47 * @brief A constant representing "any process."
49 * This constant may be used for the @c source parameter of @c receive
50 * operations to indicate that a message may be received from any
51 * source.
53 const int any_source = MPI_ANY_SOURCE;
55 /**
56 * @brief A constant representing "any tag."
58 * This constant may be used for the @c tag parameter of @c receive
59 * operations to indicate that a @c send with any tag will be matched
60 * by the receive.
62 const int any_tag = MPI_ANY_TAG;
64 /**
65 * @brief Enumeration used to describe how to adopt a C @c MPI_Comm into
66 * a Boost.MPI communicator.
68 * The values for this enumeration determine how a Boost.MPI
69 * communicator will behave when constructed with an MPI
70 * communicator. The options are:
72 * - @c comm_duplicate: Duplicate the MPI_Comm communicator to
73 * create a new communicator (e.g., with MPI_Comm_dup). This new
74 * MPI_Comm communicator will be automatically freed when the
75 * Boost.MPI communicator (and all copies of it) is destroyed.
77 * - @c comm_take_ownership: Take ownership of the communicator. It
78 * will be freed automatically when all of the Boost.MPI
79 * communicators go out of scope. This option must not be used with
80 * MPI_COMM_WORLD.
82 * - @c comm_attach: The Boost.MPI communicator will reference the
83 * existing MPI communicator but will not free it when the Boost.MPI
84 * communicator goes out of scope. This option should only be used
85 * when the communicator is managed by the user or MPI library
86 * (e.g., MPI_COMM_WORLD).
88 enum comm_create_kind { comm_duplicate, comm_take_ownership, comm_attach };
90 /**
91 * INTERNAL ONLY
93 * Forward declaration of @c group needed for the @c group
94 * constructor and accessor.
96 class group;
98 /**
99 * INTERNAL ONLY
101 * Forward declaration of @c intercommunicator needed for the "cast"
102 * from a communicator to an intercommunicator.
104 class intercommunicator;
107 * INTERNAL ONLY
109 * Forward declaration of @c graph_communicator needed for the "cast"
110 * from a communicator to a graph communicator.
112 class graph_communicator;
115 * @brief A communicator that permits communication and
116 * synchronization among a set of processes.
118 * The @c communicator class abstracts a set of communicating
119 * processes in MPI. All of the processes that belong to a certain
120 * communicator can determine the size of the communicator, their rank
121 * within the communicator, and communicate with any other processes
122 * in the communicator.
124 class BOOST_MPI_DECL communicator
126 public:
128 * Build a new Boost.MPI communicator for @c MPI_COMM_WORLD.
130 * Constructs a Boost.MPI communicator that attaches to @c
131 * MPI_COMM_WORLD. This is the equivalent of constructing with
132 * @c (MPI_COMM_WORLD, comm_attach).
134 communicator();
137 * Build a new Boost.MPI communicator based on the MPI communicator
138 * @p comm.
140 * @p comm may be any valid MPI communicator. If @p comm is
141 * MPI_COMM_NULL, an empty communicator (that cannot be used for
142 * communication) is created and the @p kind parameter is
143 * ignored. Otherwise, the @p kind parameters determines how the
144 * Boost.MPI communicator will be related to @p comm:
146 * - If @p kind is @c comm_duplicate, duplicate @c comm to create
147 * a new communicator. This new communicator will be freed when
148 * the Boost.MPI communicator (and all copies of it) is destroyed.
149 * This option is only permitted if @p comm is a valid MPI
150 * intracommunicator or if the underlying MPI implementation
151 * supports MPI 2.0 (which supports duplication of
152 * intercommunicators).
154 * - If @p kind is @c comm_take_ownership, take ownership of @c
155 * comm. It will be freed automatically when all of the Boost.MPI
156 * communicators go out of scope. This option must not be used
157 * when @c comm is MPI_COMM_WORLD.
159 * - If @p kind is @c comm_attach, this Boost.MPI communicator
160 * will reference the existing MPI communicator @p comm but will
161 * not free @p comm when the Boost.MPI communicator goes out of
162 * scope. This option should only be used when the communicator is
163 * managed by the user or MPI library (e.g., MPI_COMM_WORLD).
165 communicator(const MPI_Comm& comm, comm_create_kind kind);
168 * Build a new Boost.MPI communicator based on a subgroup of another
169 * MPI communicator.
171 * This routine will construct a new communicator containing all of
172 * the processes from communicator @c comm that are listed within
173 * the group @c subgroup. Equivalent to @c MPI_Comm_create.
175 * @param comm An MPI communicator.
177 * @param subgroup A subgroup of the MPI communicator, @p comm, for
178 * which we will construct a new communicator.
180 communicator(const communicator& comm, const boost::mpi::group& subgroup);
183 * @brief Determine the rank of the executing process in a
184 * communicator.
186 * This routine is equivalent to @c MPI_Comm_rank.
188 * @returns The rank of the process in the communicator, which
189 * will be a value in [0, size())
191 int rank() const;
194 * @brief Determine the number of processes in a communicator.
196 * This routine is equivalent to @c MPI_Comm_size.
198 * @returns The number of processes in the communicator.
200 int size() const;
203 * This routine constructs a new group whose members are the
204 * processes within this communicator. Equivalent to
205 * calling @c MPI_Comm_group.
207 boost::mpi::group group() const;
209 // ----------------------------------------------------------------
210 // Point-to-point communication
211 // ----------------------------------------------------------------
214 * @brief Send data to another process.
216 * This routine executes a potentially blocking send with tag @p tag
217 * to the process with rank @p dest. It can be received by the
218 * destination process with a matching @c recv call.
220 * The given @p value must be suitable for transmission over
221 * MPI. There are several classes of types that meet these
222 * requirements:
224 * - Types with mappings to MPI data types: If @c
225 * is_mpi_datatype<T> is convertible to @c mpl::true_, then @p
226 * value will be transmitted using the MPI data type
227 * @c get_mpi_datatype<T>(). All primitive C++ data types that have
228 * MPI equivalents, e.g., @c int, @c float, @c char, @c double,
229 * etc., have built-in mappings to MPI data types. You may turn a
230 * Serializable type with fixed structure into an MPI data type by
231 * specializing @c is_mpi_datatype for your type.
233 * - Serializable types: Any type that provides the @c serialize()
234 * functionality required by the Boost.Serialization library can be
235 * transmitted and received.
237 * - Packed archives and skeletons: Data that has been packed into
238 * an @c mpi::packed_oarchive or the skeletons of data that have
239 * been backed into an @c mpi::packed_skeleton_oarchive can be
240 * transmitted, but will be received as @c mpi::packed_iarchive and
241 * @c mpi::packed_skeleton_iarchive, respectively, to allow the
242 * values (or skeletons) to be extracted by the destination process.
244 * - Content: Content associated with a previously-transmitted
245 * skeleton can be transmitted by @c send and received by @c
246 * recv. The receiving process may only receive content into the
247 * content of a value that has been constructed with the matching
248 * skeleton.
250 * For types that have mappings to an MPI data type (including the
251 * concent of a type), an invocation of this routine will result in
252 * a single MPI_Send call. For variable-length data, e.g.,
253 * serialized types and packed archives, two messages will be sent
254 * via MPI_Send: one containing the length of the data and the
255 * second containing the data itself. Note that the transmission
256 * mode for variable-length data is an implementation detail that
257 * is subject to change.
259 * @param dest The rank of the remote process to which the data
260 * will be sent.
262 * @param tag The tag that will be associated with this message. Tags
263 * may be any integer between zero and an implementation-defined
264 * upper limit. This limit is accessible via @c environment::max_tag().
266 * @param value The value that will be transmitted to the
267 * receiver. The type @c T of this value must meet the aforementioned
268 * criteria for transmission.
270 template<typename T>
271 void send(int dest, int tag, const T& value) const;
274 * @brief Send the skeleton of an object.
276 * This routine executes a potentially blocking send with tag @p
277 * tag to the process with rank @p dest. It can be received by the
278 * destination process with a matching @c recv call. This variation
279 * on @c send will be used when a send of a skeleton is explicitly
280 * requested via code such as:
282 * @code
283 * comm.send(dest, tag, skeleton(object));
284 * @endcode
286 * The semantics of this routine are equivalent to that of sending
287 * a @c packed_skeleton_oarchive storing the skeleton of the @c
288 * object.
290 * @param dest The rank of the remote process to which the skeleton
291 * will be sent.
293 * @param tag The tag that will be associated with this message. Tags
294 * may be any integer between zero and an implementation-defined
295 * upper limit. This limit is accessible via @c environment::max_tag().
297 * @param proxy The @c skeleton_proxy containing a reference to the
298 * object whose skeleton will be transmitted.
301 template<typename T>
302 void send(int dest, int tag, const skeleton_proxy<T>& proxy) const;
305 * @brief Send an array of values to another process.
307 * This routine executes a potentially blocking send of an array of
308 * data with tag @p tag to the process with rank @p dest. It can be
309 * received by the destination process with a matching array @c
310 * recv call.
312 * If @c T is an MPI datatype, an invocation of this routine will
313 * be mapped to a single call to MPI_Send, using the datatype @c
314 * get_mpi_datatype<T>().
316 * @param dest The process rank of the remote process to which
317 * the data will be sent.
319 * @param tag The tag that will be associated with this message. Tags
320 * may be any integer between zero and an implementation-defined
321 * upper limit. This limit is accessible via @c environment::max_tag().
323 * @param values The array of values that will be transmitted to the
324 * receiver. The type @c T of these values must be mapped to an MPI
325 * data type.
327 * @param n The number of values stored in the array. The destination
328 * process must call receive with at least this many elements to
329 * correctly receive the message.
331 template<typename T>
332 void send(int dest, int tag, const T* values, int n) const;
335 * @brief Send a message to another process without any data.
337 * This routine executes a potentially blocking send of a message
338 * to another process. The message contains no extra data, and can
339 * therefore only be received by a matching call to @c recv().
341 * @param dest The process rank of the remote process to which
342 * the message will be sent.
344 * @param tag The tag that will be associated with this message. Tags
345 * may be any integer between zero and an implementation-defined
346 * upper limit. This limit is accessible via @c environment::max_tag().
349 void send(int dest, int tag) const;
352 * @brief Receive data from a remote process.
354 * This routine blocks until it receives a message from the process @p
355 * source with the given @p tag. The type @c T of the @p value must be
356 * suitable for transmission over MPI, which includes serializable
357 * types, types that can be mapped to MPI data types (including most
358 * built-in C++ types), packed MPI archives, skeletons, and content
359 * associated with skeletons; see the documentation of @c send for a
360 * complete description.
362 * @param source The process that will be sending data. This will
363 * either be a process rank within the communicator or the
364 * constant @c any_source, indicating that we can receive the
365 * message from any process.
367 * @param tag The tag that matches a particular kind of message sent
368 * by the source process. This may be any tag value permitted by @c
369 * send. Alternatively, the argument may be the constant @c any_tag,
370 * indicating that this receive matches a message with any tag.
372 * @param value Will contain the value of the message after a
373 * successful receive. The type of this value must match the value
374 * transmitted by the sender, unless the sender transmitted a packed
375 * archive or skeleton: in these cases, the sender transmits a @c
376 * packed_oarchive or @c packed_skeleton_oarchive and the
377 * destination receives a @c packed_iarchive or @c
378 * packed_skeleton_iarchive, respectively.
380 * @returns Information about the received message.
382 template<typename T>
383 status recv(int source, int tag, T& value) const;
386 * @brief Receive a skeleton from a remote process.
388 * This routine blocks until it receives a message from the process @p
389 * source with the given @p tag containing a skeleton.
391 * @param source The process that will be sending data. This will
392 * either be a process rank within the communicator or the constant
393 * @c any_source, indicating that we can receive the message from
394 * any process.
396 * @param tag The tag that matches a particular kind of message
397 * sent by the source process. This may be any tag value permitted
398 * by @c send. Alternatively, the argument may be the constant @c
399 * any_tag, indicating that this receive matches a message with any
400 * tag.
402 * @param proxy The @c skeleton_proxy containing a reference to the
403 * object that will be reshaped to match the received skeleton.
405 * @returns Information about the received message.
407 template<typename T>
408 status recv(int source, int tag, const skeleton_proxy<T>& proxy) const;
411 * @brief Receive a skeleton from a remote process.
413 * This routine blocks until it receives a message from the process @p
414 * source with the given @p tag containing a skeleton.
416 * @param source The process that will be sending data. This will
417 * either be a process rank within the communicator or the constant
418 * @c any_source, indicating that we can receive the message from
419 * any process.
421 * @param tag The tag that matches a particular kind of message
422 * sent by the source process. This may be any tag value permitted
423 * by @c send. Alternatively, the argument may be the constant @c
424 * any_tag, indicating that this receive matches a message with any
425 * tag.
427 * @param proxy The @c skeleton_proxy containing a reference to the
428 * object that will be reshaped to match the received skeleton.
430 * @returns Information about the received message.
432 template<typename T>
433 status recv(int source, int tag, skeleton_proxy<T>& proxy) const;
436 * @brief Receive an array of values from a remote process.
438 * This routine blocks until it receives an array of values from the
439 * process @p source with the given @p tag. If the type @c T is
441 * @param source The process that will be sending data. This will
442 * either be a process rank within the communicator or the
443 * constant @c any_source, indicating that we can receive the
444 * message from any process.
446 * @param tag The tag that matches a particular kind of message sent
447 * by the source process. This may be any tag value permitted by @c
448 * send. Alternatively, the argument may be the constant @c any_tag,
449 * indicating that this receive matches a message with any tag.
451 * @param values Will contain the values in the message after a
452 * successful receive. The type of these elements must match the
453 * type of the elements transmitted by the sender.
455 * @param n The number of values that can be stored into the @p
456 * values array. This shall not be smaller than the number of
457 * elements transmitted by the sender.
459 * @throws std::range_error if the message to be received contains
460 * more than @p n values.
462 * @returns Information about the received message.
464 template<typename T>
465 status recv(int source, int tag, T* values, int n) const;
468 * @brief Receive a message from a remote process without any data.
470 * This routine blocks until it receives a message from the process
471 * @p source with the given @p tag.
473 * @param source The process that will be sending the message. This
474 * will either be a process rank within the communicator or the
475 * constant @c any_source, indicating that we can receive the
476 * message from any process.
478 * @param tag The tag that matches a particular kind of message
479 * sent by the source process. This may be any tag value permitted
480 * by @c send. Alternatively, the argument may be the constant @c
481 * any_tag, indicating that this receive matches a message with any
482 * tag.
484 * @returns Information about the received message.
486 status recv(int source, int tag) const;
489 * @brief Send a message to a remote process without blocking.
491 * The @c isend method is functionality identical to the @c send
492 * method and transmits data in the same way, except that @c isend
493 * will not block while waiting for the data to be
494 * transmitted. Instead, a request object will be immediately
495 * returned, allowing one to query the status of the communication
496 * or wait until it has completed.
498 * @param dest The rank of the remote process to which the data
499 * will be sent.
501 * @param tag The tag that will be associated with this message. Tags
502 * may be any integer between zero and an implementation-defined
503 * upper limit. This limit is accessible via @c environment::max_tag().
505 * @param value The value that will be transmitted to the
506 * receiver. The type @c T of this value must meet the aforementioned
507 * criteria for transmission.
509 * @returns a @c request object that describes this communication.
511 template<typename T>
512 request isend(int dest, int tag, const T& value) const;
515 * @brief Send the skeleton of an object without blocking.
517 * This routine is functionally identical to the @c send method for
518 * @c skeleton_proxy objects except that @c isend will not block
519 * while waiting for the data to be transmitted. Instead, a request
520 * object will be immediately returned, allowing one to query the
521 * status of the communication or wait until it has completed.
523 * The semantics of this routine are equivalent to a non-blocking
524 * send of a @c packed_skeleton_oarchive storing the skeleton of
525 * the @c object.
527 * @param dest The rank of the remote process to which the skeleton
528 * will be sent.
530 * @param tag The tag that will be associated with this message. Tags
531 * may be any integer between zero and an implementation-defined
532 * upper limit. This limit is accessible via @c environment::max_tag().
534 * @param proxy The @c skeleton_proxy containing a reference to the
535 * object whose skeleton will be transmitted.
537 * @returns a @c request object that describes this communication.
539 template<typename T>
540 request isend(int dest, int tag, const skeleton_proxy<T>& proxy) const;
543 * @brief Send an array of values to another process without
544 * blocking.
546 * This routine is functionally identical to the @c send method for
547 * arrays except that @c isend will not block while waiting for the
548 * data to be transmitted. Instead, a request object will be
549 * immediately returned, allowing one to query the status of the
550 * communication or wait until it has completed.
552 * @param dest The process rank of the remote process to which
553 * the data will be sent.
555 * @param tag The tag that will be associated with this message. Tags
556 * may be any integer between zero and an implementation-defined
557 * upper limit. This limit is accessible via @c environment::max_tag().
559 * @param values The array of values that will be transmitted to the
560 * receiver. The type @c T of these values must be mapped to an MPI
561 * data type.
563 * @param n The number of values stored in the array. The destination
564 * process must call receive with at least this many elements to
565 * correctly receive the message.
567 * @returns a @c request object that describes this communication.
569 template<typename T>
570 request isend(int dest, int tag, const T* values, int n) const;
573 * @brief Send a message to another process without any data
574 * without blocking.
576 * This routine is functionally identical to the @c send method for
577 * sends with no data, except that @c isend will not block while
578 * waiting for the message to be transmitted. Instead, a request
579 * object will be immediately returned, allowing one to query the
580 * status of the communication or wait until it has completed.
582 * @param dest The process rank of the remote process to which
583 * the message will be sent.
585 * @param tag The tag that will be associated with this message. Tags
586 * may be any integer between zero and an implementation-defined
587 * upper limit. This limit is accessible via @c environment::max_tag().
590 * @returns a @c request object that describes this communication.
592 request isend(int dest, int tag) const;
595 * @brief Prepare to receive a message from a remote process.
597 * The @c irecv method is functionally identical to the @c recv
598 * method and receive data in the same way, except that @c irecv
599 * will not block while waiting for data to be
600 * transmitted. Instead, it immediately returns a request object
601 * that allows one to query the status of the receive or wait until
602 * it has completed.
604 * @param source The process that will be sending data. This will
605 * either be a process rank within the communicator or the
606 * constant @c any_source, indicating that we can receive the
607 * message from any process.
609 * @param tag The tag that matches a particular kind of message sent
610 * by the source process. This may be any tag value permitted by @c
611 * send. Alternatively, the argument may be the constant @c any_tag,
612 * indicating that this receive matches a message with any tag.
614 * @param value Will contain the value of the message after a
615 * successful receive. The type of this value must match the value
616 * transmitted by the sender, unless the sender transmitted a packed
617 * archive or skeleton: in these cases, the sender transmits a @c
618 * packed_oarchive or @c packed_skeleton_oarchive and the
619 * destination receives a @c packed_iarchive or @c
620 * packed_skeleton_iarchive, respectively.
622 * @returns a @c request object that describes this communication.
624 template<typename T>
625 request irecv(int source, int tag, T& value) const;
628 * @brief Initiate receipt of an array of values from a remote process.
630 * This routine initiates a receive operation for an array of values
631 * transmitted by process @p source with the given @p tag.
633 * @param source The process that will be sending data. This will
634 * either be a process rank within the communicator or the
635 * constant @c any_source, indicating that we can receive the
636 * message from any process.
638 * @param tag The tag that matches a particular kind of message sent
639 * by the source process. This may be any tag value permitted by @c
640 * send. Alternatively, the argument may be the constant @c any_tag,
641 * indicating that this receive matches a message with any tag.
643 * @param values Will contain the values in the message after a
644 * successful receive. The type of these elements must match the
645 * type of the elements transmitted by the sender.
647 * @param n The number of values that can be stored into the @p
648 * values array. This shall not be smaller than the number of
649 * elements transmitted by the sender.
651 * @returns a @c request object that describes this communication.
653 template<typename T>
654 request irecv(int source, int tag, T* values, int n) const;
657 * @brief Initiate receipt of a message from a remote process that
658 * carries no data.
660 * This routine initiates a receive operation for a message from
661 * process @p source with the given @p tag that carries no data.
663 * @param source The process that will be sending the message. This
664 * will either be a process rank within the communicator or the
665 * constant @c any_source, indicating that we can receive the
666 * message from any process.
668 * @param tag The tag that matches a particular kind of message
669 * sent by the source process. This may be any tag value permitted
670 * by @c send. Alternatively, the argument may be the constant @c
671 * any_tag, indicating that this receive matches a message with any
672 * tag.
674 * @returns a @c request object that describes this communication.
676 request irecv(int source, int tag) const;
679 * @brief Waits until a message is available to be received.
681 * This operation waits until a message matching (@p source, @p tag)
682 * is available to be received. It then returns information about
683 * that message. The functionality is equivalent to @c MPI_Probe. To
684 * check if a message is available without blocking, use @c iprobe.
686 * @param source Determine if there is a message available from
687 * this rank. If @c any_source, then the message returned may come
688 * from any source.
690 * @param tag Determine if there is a message available with the
691 * given tag. If @c any_tag, then the message returned may have any
692 * tag.
694 * @returns Returns information about the first message that
695 * matches the given criteria.
697 status probe(int source = any_source, int tag = any_tag) const;
700 * @brief Determine if a message is available to be received.
702 * This operation determines if a message matching (@p source, @p
703 * tag) is available to be received. If so, it returns information
704 * about that message; otherwise, it returns immediately with an
705 * empty optional. The functionality is equivalent to @c
706 * MPI_Iprobe. To wait until a message is available, use @c wait.
708 * @param source Determine if there is a message available from
709 * this rank. If @c any_source, then the message returned may come
710 * from any source.
712 * @param tag Determine if there is a message available with the
713 * given tag. If @c any_tag, then the message returned may have any
714 * tag.
716 * @returns If a matching message is available, returns
717 * information about that message. Otherwise, returns an empty
718 * @c boost::optional.
720 optional<status>
721 iprobe(int source = any_source, int tag = any_tag) const;
723 #ifdef barrier
724 // Linux defines a function-like macro named "barrier". So, we need
725 // to avoid expanding the macro when we define our barrier()
726 // function. However, some C++ parsers (Doxygen, for instance) can't
727 // handle this syntax, so we only use it when necessary.
728 void (barrier)() const;
729 #else
731 * @brief Wait for all processes within a communicator to reach the
732 * barrier.
734 * This routine is a collective operation that blocks each process
735 * until all processes have entered it, then releases all of the
736 * processes "simultaneously". It is equivalent to @c MPI_Barrier.
738 void barrier() const;
739 #endif
741 /** @brief Determine if this communicator is valid for
742 * communication.
744 * Evaluates @c true in a boolean context if this communicator is
745 * valid for communication, i.e., does not represent
746 * MPI_COMM_NULL. Otherwise, evaluates @c false.
748 operator bool() const { return (bool)comm_ptr; }
751 * @brief Access the MPI communicator associated with a Boost.MPI
752 * communicator.
754 * This routine permits the implicit conversion from a Boost.MPI
755 * communicator to an MPI communicator.
757 * @returns The associated MPI communicator.
759 operator MPI_Comm() const;
762 * Split the communicator into multiple, disjoint communicators
763 * each of which is based on a particular color. This is a
764 * collective operation that returns a new communicator that is a
765 * subgroup of @p this. This routine is functionally equivalent to
766 * @c MPI_Comm_split.
768 * @param color The color of this process. All processes with the
769 * same @p color value will be placed into the same group.
771 * @returns A new communicator containing all of the processes in
772 * @p this that have the same @p color.
774 communicator split(int color) const;
777 * Split the communicator into multiple, disjoint communicators
778 * each of which is based on a particular color. This is a
779 * collective operation that returns a new communicator that is a
780 * subgroup of @p this. This routine is functionally equivalent to
781 * @c MPI_Comm_split.
783 * @param color The color of this process. All processes with the
784 * same @p color value will be placed into the same group.
786 * @param key A key value that will be used to determine the
787 * ordering of processes with the same color in the resulting
788 * communicator. If omitted, the rank of the processes in @p this
789 * will determine the ordering of processes in the resulting
790 * group.
792 * @returns A new communicator containing all of the processes in
793 * @p this that have the same @p color.
795 communicator split(int color, int key) const;
798 * Determine if the communicator is in fact an intercommunicator
799 * and, if so, return that intercommunicator.
801 * @returns an @c optional containing the intercommunicator, if this
802 * communicator is in fact an intercommunicator. Otherwise, returns
803 * an empty @c optional.
805 optional<intercommunicator> as_intercommunicator() const;
808 * Determine if the communicator has a graph topology and, if so,
809 * return that @c graph_communicator. Even though the communicators
810 * have different types, they refer to the same underlying
811 * communication space and can be used interchangeably for
812 * communication.
814 * @returns an @c optional containing the graph communicator, if this
815 * communicator does in fact have a graph topology. Otherwise, returns
816 * an empty @c optional.
818 optional<graph_communicator> as_graph_communicator() const;
821 * Determines whether this communicator has a Cartesian topology.
823 bool has_cartesian_topology() const;
825 #if 0
826 template<typename Extents>
827 communicator
828 with_cartesian_topology(const Extents& extents,
829 bool periodic = false,
830 bool reorder = false) const;
832 template<typename DimInputIterator, typename PeriodicInputIterator>
833 communicator
834 with_cartesian_topology(DimInputIterator first_dim,
835 DimInputIterator last_dim,
836 PeriodicInputIterator first_periodic,
837 bool reorder = false);
839 template<typename Allocator, std::size_t NumDims>
840 communicator
841 with_cartesian_topology(const multi_array<bool, NumDims, Allocator>& periods,
842 bool reorder = false);
843 #endif
845 /** Abort all tasks in the group of this communicator.
847 * Makes a "best attempt" to abort all of the tasks in the group of
848 * this communicator. Depending on the underlying MPI
849 * implementation, this may either abort the entire program (and
850 * possibly return @p errcode to the environment) or only abort
851 * some processes, allowing the others to continue. Consult the
852 * documentation for your MPI implementation. This is equivalent to
853 * a call to @c MPI_Abort
855 * @param errcode The error code to return from aborted processes.
856 * @returns Will not return.
858 void abort(int errcode) const;
860 protected:
862 * INTERNAL ONLY
864 * Function object that frees an MPI communicator and deletes the
865 * memory associated with it. Intended to be used as a deleter with
866 * shared_ptr.
868 struct comm_free
870 void operator()(MPI_Comm* comm) const
872 int finalized;
873 BOOST_MPI_CHECK_RESULT(MPI_Finalized, (&finalized));
874 if (!finalized)
875 BOOST_MPI_CHECK_RESULT(MPI_Comm_free, (comm));
876 delete comm;
882 * INTERNAL ONLY
884 * We're sending a type that has an associated MPI datatype, so we
885 * map directly to that datatype.
887 template<typename T>
888 void send_impl(int dest, int tag, const T& value, mpl::true_) const;
891 * INTERNAL ONLY
893 * We're sending a type that does not have an associated MPI
894 * datatype, so it must be serialized then sent as MPI_PACKED data,
895 * to be deserialized on the receiver side.
897 template<typename T>
898 void send_impl(int dest, int tag, const T& value, mpl::false_) const;
901 * INTERNAL ONLY
903 * We're sending an array of a type that has an associated MPI
904 * datatype, so we map directly to that datatype.
906 template<typename T>
907 void
908 array_send_impl(int dest, int tag, const T* values, int n, mpl::true_) const;
911 * INTERNAL ONLY
913 * We're sending an array of a type that does not have an associated
914 * MPI datatype, so it must be serialized then sent as MPI_PACKED
915 * data, to be deserialized on the receiver side.
917 template<typename T>
918 void
919 array_send_impl(int dest, int tag, const T* values, int n,
920 mpl::false_) const;
923 * INTERNAL ONLY
925 * We're sending a type that has an associated MPI datatype, so we
926 * map directly to that datatype.
928 template<typename T>
929 request isend_impl(int dest, int tag, const T& value, mpl::true_) const;
932 * INTERNAL ONLY
934 * We're sending a type that does not have an associated MPI
935 * datatype, so it must be serialized then sent as MPI_PACKED data,
936 * to be deserialized on the receiver side.
938 template<typename T>
939 request isend_impl(int dest, int tag, const T& value, mpl::false_) const;
942 * INTERNAL ONLY
944 * We're sending an array of a type that has an associated MPI
945 * datatype, so we map directly to that datatype.
947 template<typename T>
948 request
949 array_isend_impl(int dest, int tag, const T* values, int n,
950 mpl::true_) const;
953 * INTERNAL ONLY
955 * We're sending an array of a type that does not have an associated
956 * MPI datatype, so it must be serialized then sent as MPI_PACKED
957 * data, to be deserialized on the receiver side.
959 template<typename T>
960 request
961 array_isend_impl(int dest, int tag, const T* values, int n,
962 mpl::false_) const;
965 * INTERNAL ONLY
967 * We're receiving a type that has an associated MPI datatype, so we
968 * map directly to that datatype.
970 template<typename T>
971 status recv_impl(int source, int tag, T& value, mpl::true_) const;
974 * INTERNAL ONLY
976 * We're receiving a type that does not have an associated MPI
977 * datatype, so it must have been serialized then sent as
978 * MPI_PACKED. We'll receive it and then deserialize.
980 template<typename T>
981 status recv_impl(int source, int tag, T& value, mpl::false_) const;
984 * INTERNAL ONLY
986 * We're receiving an array of a type that has an associated MPI
987 * datatype, so we map directly to that datatype.
989 template<typename T>
990 status
991 array_recv_impl(int source, int tag, T* values, int n, mpl::true_) const;
994 * INTERNAL ONLY
996 * We're receiving a type that does not have an associated MPI
997 * datatype, so it must have been serialized then sent as
998 * MPI_PACKED. We'll receive it and then deserialize.
1000 template<typename T>
1001 status
1002 array_recv_impl(int source, int tag, T* values, int n, mpl::false_) const;
1005 * INTERNAL ONLY
1007 * We're receiving a type that has an associated MPI datatype, so we
1008 * map directly to that datatype.
1010 template<typename T>
1011 request irecv_impl(int source, int tag, T& value, mpl::true_) const;
1014 * INTERNAL ONLY
1016 * We're receiving a type that does not have an associated MPI
1017 * datatype, so it must have been serialized then sent as
1018 * MPI_PACKED. We'll receive it and then deserialize.
1020 template<typename T>
1021 request irecv_impl(int source, int tag, T& value, mpl::false_) const;
1024 * INTERNAL ONLY
1026 * We're receiving a type that has an associated MPI datatype, so we
1027 * map directly to that datatype.
1029 template<typename T>
1030 request
1031 array_irecv_impl(int source, int tag, T* values, int n, mpl::true_) const;
1034 * INTERNAL ONLY
1036 * We're receiving a type that does not have an associated MPI
1037 * datatype, so it must have been serialized then sent as
1038 * MPI_PACKED. We'll receive it and then deserialize.
1040 template<typename T>
1041 request
1042 array_irecv_impl(int source, int tag, T* values, int n, mpl::false_) const;
1044 shared_ptr<MPI_Comm> comm_ptr;
1048 * @brief Determines whether two communicators are identical.
1050 * Equivalent to calling @c MPI_Comm_compare and checking whether the
1051 * result is @c MPI_IDENT.
1053 * @returns True when the two communicators refer to the same
1054 * underlying MPI communicator.
1056 BOOST_MPI_DECL bool operator==(const communicator& comm1, const communicator& comm2);
1059 * @brief Determines whether two communicators are different.
1061 * @returns @c !(comm1 == comm2)
1063 inline bool operator!=(const communicator& comm1, const communicator& comm2)
1065 return !(comm1 == comm2);
1069 /************************************************************************
1070 * Implementation details *
1071 ************************************************************************/
1072 // Count elements in a message
1073 template<typename T>
1074 inline optional<int> status::count() const
1076 return count_impl<T>(is_mpi_datatype<T>());
1079 template<typename T>
1080 optional<int> status::count_impl(mpl::true_) const
1082 if (m_count != -1)
1083 return m_count;
1085 int return_value;
1086 BOOST_MPI_CHECK_RESULT(MPI_Get_count,
1087 (&m_status, get_mpi_datatype<T>(T()), &return_value));
1088 if (return_value == MPI_UNDEFINED)
1089 return optional<int>();
1090 else
1091 /* Cache the result. */
1092 return m_count = return_value;
1095 template<typename T>
1096 inline optional<int> status::count_impl(mpl::false_) const
1098 if (m_count == -1)
1099 return optional<int>();
1100 else
1101 return m_count;
1104 // We're sending a type that has an associated MPI datatype, so we
1105 // map directly to that datatype.
1106 template<typename T>
1107 void
1108 communicator::send_impl(int dest, int tag, const T& value, mpl::true_) const
1110 BOOST_MPI_CHECK_RESULT(MPI_Send,
1111 (const_cast<T*>(&value), 1, get_mpi_datatype<T>(value),
1112 dest, tag, MPI_Comm(*this)));
1115 // We're sending a type that does not have an associated MPI
1116 // datatype, so it must be serialized then sent as MPI_PACKED data,
1117 // to be deserialized on the receiver side.
1118 template<typename T>
1119 void
1120 communicator::send_impl(int dest, int tag, const T& value, mpl::false_) const
1122 packed_oarchive oa(*this);
1123 oa << value;
1124 send(dest, tag, oa);
1127 // Single-element receive may either send the element directly or
1128 // serialize it via a buffer.
1129 template<typename T>
1130 void communicator::send(int dest, int tag, const T& value) const
1132 this->send_impl(dest, tag, value, is_mpi_datatype<T>());
1135 // We're sending an array of a type that has an associated MPI
1136 // datatype, so we map directly to that datatype.
1137 template<typename T>
1138 void
1139 communicator::array_send_impl(int dest, int tag, const T* values, int n,
1140 mpl::true_) const
1142 BOOST_MPI_CHECK_RESULT(MPI_Send,
1143 (const_cast<T*>(values), n,
1144 get_mpi_datatype<T>(*values),
1145 dest, tag, MPI_Comm(*this)));
1148 // We're sending an array of a type that does not have an associated
1149 // MPI datatype, so it must be serialized then sent as MPI_PACKED
1150 // data, to be deserialized on the receiver side.
1151 template<typename T>
1152 void
1153 communicator::array_send_impl(int dest, int tag, const T* values, int n,
1154 mpl::false_) const
1156 packed_oarchive oa(*this);
1157 oa << n << boost::serialization::make_array(values, n);
1158 send(dest, tag, oa);
1161 // Array send must send the elements directly
1162 template<typename T>
1163 void communicator::send(int dest, int tag, const T* values, int n) const
1165 this->array_send_impl(dest, tag, values, n, is_mpi_datatype<T>());
1168 // We're receiving a type that has an associated MPI datatype, so we
1169 // map directly to that datatype.
1170 template<typename T>
1171 status communicator::recv_impl(int source, int tag, T& value, mpl::true_) const
1173 status stat;
1175 BOOST_MPI_CHECK_RESULT(MPI_Recv,
1176 (const_cast<T*>(&value), 1,
1177 get_mpi_datatype<T>(value),
1178 source, tag, MPI_Comm(*this), &stat.m_status));
1179 return stat;
1182 template<typename T>
1183 status
1184 communicator::recv_impl(int source, int tag, T& value, mpl::false_) const
1186 // Receive the message
1187 packed_iarchive ia(*this);
1188 status stat = recv(source, tag, ia);
1190 // Deserialize the data in the message
1191 ia >> value;
1193 return stat;
1196 // Single-element receive may either receive the element directly or
1197 // deserialize it from a buffer.
1198 template<typename T>
1199 status communicator::recv(int source, int tag, T& value) const
1201 return this->recv_impl(source, tag, value, is_mpi_datatype<T>());
1204 template<typename T>
1205 status
1206 communicator::array_recv_impl(int source, int tag, T* values, int n,
1207 mpl::true_) const
1209 status stat;
1210 BOOST_MPI_CHECK_RESULT(MPI_Recv,
1211 (const_cast<T*>(values), n,
1212 get_mpi_datatype<T>(*values),
1213 source, tag, MPI_Comm(*this), &stat.m_status));
1214 return stat;
1217 template<typename T>
1218 status
1219 communicator::array_recv_impl(int source, int tag, T* values, int n,
1220 mpl::false_) const
1222 // Receive the message
1223 packed_iarchive ia(*this);
1224 status stat = recv(source, tag, ia);
1226 // Determine how much data we are going to receive
1227 int count;
1228 ia >> count;
1230 // Deserialize the data in the message
1231 boost::serialization::array<T> arr(values, count > n? n : count);
1232 ia >> arr;
1234 if (count > n) {
1235 boost::throw_exception(
1236 std::range_error("communicator::recv: message receive overflow"));
1239 stat.m_count = count;
1240 return stat;
1243 // Array receive must receive the elements directly into a buffer.
1244 template<typename T>
1245 status communicator::recv(int source, int tag, T* values, int n) const
1247 return this->array_recv_impl(source, tag, values, n, is_mpi_datatype<T>());
1250 // We're sending a type that has an associated MPI datatype, so we
1251 // map directly to that datatype.
1252 template<typename T>
1253 request
1254 communicator::isend_impl(int dest, int tag, const T& value, mpl::true_) const
1256 request req;
1257 BOOST_MPI_CHECK_RESULT(MPI_Isend,
1258 (const_cast<T*>(&value), 1,
1259 get_mpi_datatype<T>(value),
1260 dest, tag, MPI_Comm(*this), &req.m_requests[0]));
1261 return req;
1264 // We're sending a type that does not have an associated MPI
1265 // datatype, so it must be serialized then sent as MPI_PACKED data,
1266 // to be deserialized on the receiver side.
1267 template<typename T>
1268 request
1269 communicator::isend_impl(int dest, int tag, const T& value, mpl::false_) const
1271 shared_ptr<packed_oarchive> archive(new packed_oarchive(*this));
1272 *archive << value;
1273 request result = isend(dest, tag, *archive);
1274 result.m_data = archive;
1275 return result;
1278 // Single-element receive may either send the element directly or
1279 // serialize it via a buffer.
1280 template<typename T>
1281 request communicator::isend(int dest, int tag, const T& value) const
1283 return this->isend_impl(dest, tag, value, is_mpi_datatype<T>());
1286 template<typename T>
1287 request
1288 communicator::array_isend_impl(int dest, int tag, const T* values, int n,
1289 mpl::true_) const
1291 request req;
1292 BOOST_MPI_CHECK_RESULT(MPI_Isend,
1293 (const_cast<T*>(values), n,
1294 get_mpi_datatype<T>(*values),
1295 dest, tag, MPI_Comm(*this), &req.m_requests[0]));
1296 return req;
1299 template<typename T>
1300 request
1301 communicator::array_isend_impl(int dest, int tag, const T* values, int n,
1302 mpl::false_) const
1304 shared_ptr<packed_oarchive> archive(new packed_oarchive(*this));
1305 *archive << n << boost::serialization::make_array(values, n);
1306 request result = isend(dest, tag, *archive);
1307 result.m_data = archive;
1308 return result;
1312 // Array isend must send the elements directly
1313 template<typename T>
1314 request communicator::isend(int dest, int tag, const T* values, int n) const
1316 return array_isend_impl(dest, tag, values, n, is_mpi_datatype<T>());
1319 namespace detail {
1321 * Internal data structure that stores everything required to manage
1322 * the receipt of serialized data via a request object.
1324 template<typename T>
1325 struct serialized_irecv_data
1327 serialized_irecv_data(const communicator& comm, int source, int tag,
1328 T& value)
1329 : comm(comm), source(source), tag(tag), ia(comm), value(value)
1333 void deserialize(status& stat)
1335 ia >> value;
1336 stat.m_count = 1;
1339 communicator comm;
1340 int source;
1341 int tag;
1342 std::size_t count;
1343 packed_iarchive ia;
1344 T& value;
1347 template<>
1348 struct serialized_irecv_data<packed_iarchive>
1350 serialized_irecv_data(const communicator& comm, int source, int tag,
1351 packed_iarchive& ia)
1352 : comm(comm), source(source), tag(tag), ia(ia) { }
1354 void deserialize(status&) { /* Do nothing. */ }
1356 communicator comm;
1357 int source;
1358 int tag;
1359 std::size_t count;
1360 packed_iarchive& ia;
1364 * Internal data structure that stores everything required to manage
1365 * the receipt of an array of serialized data via a request object.
1367 template<typename T>
1368 struct serialized_array_irecv_data
1370 serialized_array_irecv_data(const communicator& comm, int source, int tag,
1371 T* values, int n)
1372 : comm(comm), source(source), tag(tag), ia(comm), values(values), n(n)
1376 void deserialize(status& stat);
1378 communicator comm;
1379 int source;
1380 int tag;
1381 std::size_t count;
1382 packed_iarchive ia;
1383 T* values;
1384 int n;
1387 template<typename T>
1388 void serialized_array_irecv_data<T>::deserialize(status& stat)
1390 // Determine how much data we are going to receive
1391 int count;
1392 ia >> count;
1394 // Deserialize the data in the message
1395 boost::serialization::array<T> arr(values, count > n? n : count);
1396 ia >> arr;
1398 if (count > n) {
1399 boost::throw_exception(
1400 std::range_error("communicator::recv: message receive overflow"));
1403 stat.m_count = count;
1407 template<typename T>
1408 optional<status>
1409 request::handle_serialized_irecv(request* self, request_action action)
1411 typedef detail::serialized_irecv_data<T> data_t;
1412 shared_ptr<data_t> data = static_pointer_cast<data_t>(self->m_data);
1414 if (action == ra_wait) {
1415 status stat;
1416 if (self->m_requests[1] == MPI_REQUEST_NULL) {
1417 // Wait for the count message to complete
1418 BOOST_MPI_CHECK_RESULT(MPI_Wait,
1419 (self->m_requests, &stat.m_status));
1420 // Resize our buffer and get ready to receive its data
1421 data->ia.resize(data->count);
1422 BOOST_MPI_CHECK_RESULT(MPI_Irecv,
1423 (data->ia.address(), data->ia.size(), MPI_PACKED,
1424 stat.source(), stat.tag(),
1425 MPI_Comm(data->comm), self->m_requests + 1));
1428 // Wait until we have received the entire message
1429 BOOST_MPI_CHECK_RESULT(MPI_Wait,
1430 (self->m_requests + 1, &stat.m_status));
1432 data->deserialize(stat);
1433 return stat;
1434 } else if (action == ra_test) {
1435 status stat;
1436 int flag = 0;
1438 if (self->m_requests[1] == MPI_REQUEST_NULL) {
1439 // Check if the count message has completed
1440 BOOST_MPI_CHECK_RESULT(MPI_Test,
1441 (self->m_requests, &flag, &stat.m_status));
1442 if (flag) {
1443 // Resize our buffer and get ready to receive its data
1444 data->ia.resize(data->count);
1445 BOOST_MPI_CHECK_RESULT(MPI_Irecv,
1446 (data->ia.address(), data->ia.size(),MPI_PACKED,
1447 stat.source(), stat.tag(),
1448 MPI_Comm(data->comm), self->m_requests + 1));
1449 } else
1450 return optional<status>(); // We have not finished yet
1453 // Check if we have received the message data
1454 BOOST_MPI_CHECK_RESULT(MPI_Test,
1455 (self->m_requests + 1, &flag, &stat.m_status));
1456 if (flag) {
1457 data->deserialize(stat);
1458 return stat;
1459 } else
1460 return optional<status>();
1461 } else {
1462 return optional<status>();
1466 template<typename T>
1467 optional<status>
1468 request::handle_serialized_array_irecv(request* self, request_action action)
1470 typedef detail::serialized_array_irecv_data<T> data_t;
1471 shared_ptr<data_t> data = static_pointer_cast<data_t>(self->m_data);
1473 if (action == ra_wait) {
1474 status stat;
1475 if (self->m_requests[1] == MPI_REQUEST_NULL) {
1476 // Wait for the count message to complete
1477 BOOST_MPI_CHECK_RESULT(MPI_Wait,
1478 (self->m_requests, &stat.m_status));
1479 // Resize our buffer and get ready to receive its data
1480 data->ia.resize(data->count);
1481 BOOST_MPI_CHECK_RESULT(MPI_Irecv,
1482 (data->ia.address(), data->ia.size(), MPI_PACKED,
1483 stat.source(), stat.tag(),
1484 MPI_Comm(data->comm), self->m_requests + 1));
1487 // Wait until we have received the entire message
1488 BOOST_MPI_CHECK_RESULT(MPI_Wait,
1489 (self->m_requests + 1, &stat.m_status));
1491 data->deserialize(stat);
1492 return stat;
1493 } else if (action == ra_test) {
1494 status stat;
1495 int flag = 0;
1497 if (self->m_requests[1] == MPI_REQUEST_NULL) {
1498 // Check if the count message has completed
1499 BOOST_MPI_CHECK_RESULT(MPI_Test,
1500 (self->m_requests, &flag, &stat.m_status));
1501 if (flag) {
1502 // Resize our buffer and get ready to receive its data
1503 data->ia.resize(data->count);
1504 BOOST_MPI_CHECK_RESULT(MPI_Irecv,
1505 (data->ia.address(), data->ia.size(),MPI_PACKED,
1506 stat.source(), stat.tag(),
1507 MPI_Comm(data->comm), self->m_requests + 1));
1508 } else
1509 return optional<status>(); // We have not finished yet
1512 // Check if we have received the message data
1513 BOOST_MPI_CHECK_RESULT(MPI_Test,
1514 (self->m_requests + 1, &flag, &stat.m_status));
1515 if (flag) {
1516 data->deserialize(stat);
1517 return stat;
1518 } else
1519 return optional<status>();
1520 } else {
1521 return optional<status>();
1525 // We're receiving a type that has an associated MPI datatype, so we
1526 // map directly to that datatype.
1527 template<typename T>
1528 request
1529 communicator::irecv_impl(int source, int tag, T& value, mpl::true_) const
1531 request req;
1532 BOOST_MPI_CHECK_RESULT(MPI_Irecv,
1533 (const_cast<T*>(&value), 1,
1534 get_mpi_datatype<T>(value),
1535 source, tag, MPI_Comm(*this), &req.m_requests[0]));
1536 return req;
1539 template<typename T>
1540 request
1541 communicator::irecv_impl(int source, int tag, T& value, mpl::false_) const
1543 typedef detail::serialized_irecv_data<T> data_t;
1544 shared_ptr<data_t> data(new data_t(*this, source, tag, value));
1545 request req;
1546 req.m_data = data;
1547 req.m_handler = request::handle_serialized_irecv<T>;
1549 BOOST_MPI_CHECK_RESULT(MPI_Irecv,
1550 (&data->count, 1,
1551 get_mpi_datatype<std::size_t>(data->count),
1552 source, tag, MPI_Comm(*this), &req.m_requests[0]));
1554 return req;
1557 template<typename T>
1558 request
1559 communicator::irecv(int source, int tag, T& value) const
1561 return this->irecv_impl(source, tag, value, is_mpi_datatype<T>());
1564 template<typename T>
1565 request
1566 communicator::array_irecv_impl(int source, int tag, T* values, int n,
1567 mpl::true_) const
1569 request req;
1570 BOOST_MPI_CHECK_RESULT(MPI_Irecv,
1571 (const_cast<T*>(values), n,
1572 get_mpi_datatype<T>(*values),
1573 source, tag, MPI_Comm(*this), &req.m_requests[0]));
1574 return req;
1577 template<typename T>
1578 request
1579 communicator::array_irecv_impl(int source, int tag, T* values, int n,
1580 mpl::false_) const
1582 typedef detail::serialized_array_irecv_data<T> data_t;
1583 shared_ptr<data_t> data(new data_t(*this, source, tag, values, n));
1584 request req;
1585 req.m_data = data;
1586 req.m_handler = request::handle_serialized_array_irecv<T>;
1588 BOOST_MPI_CHECK_RESULT(MPI_Irecv,
1589 (&data->count, 1,
1590 get_mpi_datatype<std::size_t>(data->count),
1591 source, tag, MPI_Comm(*this), &req.m_requests[0]));
1593 return req;
1597 // Array receive must receive the elements directly into a buffer.
1598 template<typename T>
1599 request communicator::irecv(int source, int tag, T* values, int n) const
1601 return this->array_irecv_impl(source, tag, values, n, is_mpi_datatype<T>());
1605 * INTERNAL ONLY
1607 template<>
1608 BOOST_MPI_DECL void
1609 communicator::send<packed_oarchive>(int dest, int tag,
1610 const packed_oarchive& ar) const;
1613 * INTERNAL ONLY
1615 template<>
1616 BOOST_MPI_DECL void
1617 communicator::send<packed_skeleton_oarchive>
1618 (int dest, int tag, const packed_skeleton_oarchive& ar) const;
1621 * INTERNAL ONLY
1623 template<>
1624 BOOST_MPI_DECL void
1625 communicator::send<content>(int dest, int tag, const content& c) const;
1628 * INTERNAL ONLY
1630 template<>
1631 BOOST_MPI_DECL status
1632 communicator::recv<packed_iarchive>(int source, int tag,
1633 packed_iarchive& ar) const;
1636 * INTERNAL ONLY
1638 template<>
1639 BOOST_MPI_DECL status
1640 communicator::recv<packed_skeleton_iarchive>
1641 (int source, int tag, packed_skeleton_iarchive& ar) const;
1644 * INTERNAL ONLY
1646 template<>
1647 BOOST_MPI_DECL status
1648 communicator::recv<const content>(int source, int tag,
1649 const content& c) const;
1652 * INTERNAL ONLY
1654 template<>
1655 inline status
1656 communicator::recv<content>(int source, int tag,
1657 content& c) const
1659 return recv<const content>(source,tag,c);
1663 * INTERNAL ONLY
1665 template<>
1666 BOOST_MPI_DECL request
1667 communicator::isend<packed_oarchive>(int dest, int tag,
1668 const packed_oarchive& ar) const;
1671 * INTERNAL ONLY
1673 template<>
1674 BOOST_MPI_DECL request
1675 communicator::isend<packed_skeleton_oarchive>
1676 (int dest, int tag, const packed_skeleton_oarchive& ar) const;
1679 * INTERNAL ONLY
1681 template<>
1682 BOOST_MPI_DECL request
1683 communicator::isend<content>(int dest, int tag, const content& c) const;
1686 * INTERNAL ONLY
1688 template<>
1689 BOOST_MPI_DECL request
1690 communicator::irecv<packed_skeleton_iarchive>
1691 (int source, int tag, packed_skeleton_iarchive& ar) const;
1694 * INTERNAL ONLY
1696 template<>
1697 BOOST_MPI_DECL request
1698 communicator::irecv<const content>(int source, int tag,
1699 const content& c) const;
1702 * INTERNAL ONLY
1704 template<>
1705 inline request
1706 communicator::irecv<content>(int source, int tag,
1707 content& c) const
1709 return irecv<const content>(source, tag, c);
1713 } } // end namespace boost::mpi
1715 // If the user has already included skeleton_and_content.hpp, include
1716 // the code to send/receive skeletons and content.
1717 #ifdef BOOST_MPI_SKELETON_AND_CONTENT_HPP
1718 # include <boost/mpi/detail/communicator_sc.hpp>
1719 #endif
1721 #ifdef BOOST_MSVC
1722 # pragma warning(pop)
1723 #endif
1725 #endif // BOOST_MPI_COMMUNICATOR_HPP