1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
3 * LibTomCrypt is a library that provides various cryptographic
4 * algorithms in a highly modular and flexible manner.
6 * The library is free for all purposes without any express
9 * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
16 static const uint64_t K
[80] = {
17 UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
18 UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
19 UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
20 UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
21 UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
22 UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
23 UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
24 UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
25 UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
26 UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
27 UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
28 UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
29 UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
30 UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
31 UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
32 UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
33 UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
34 UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
35 UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
36 UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
37 UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
38 UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
39 UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
40 UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
41 UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
42 UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
43 UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
44 UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
45 UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
46 UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
47 UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
48 UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
49 UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
50 UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
51 UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
52 UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
53 UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
54 UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
55 UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
56 UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817)
59 /* Various logical functions */
61 #define ROR64c(x, y) \
62 ( ((((x)&UINT64_C(0xFFFFFFFFFFFFFFFF))>>((uint64_t)(y)&UINT64_C(63))) | \
63 ((x)<<((uint64_t)(64-((y)&UINT64_C(63)))))) & UINT64_C(0xFFFFFFFFFFFFFFFF))
65 #define STORE64H(x, y) \
66 { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
67 (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
68 (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
69 (y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
71 #define LOAD64H(x, y) \
72 { x = (((uint64_t)((y)[0] & 255))<<56)|(((uint64_t)((y)[1] & 255))<<48) | \
73 (((uint64_t)((y)[2] & 255))<<40)|(((uint64_t)((y)[3] & 255))<<32) | \
74 (((uint64_t)((y)[4] & 255))<<24)|(((uint64_t)((y)[5] & 255))<<16) | \
75 (((uint64_t)((y)[6] & 255))<<8)|(((uint64_t)((y)[7] & 255))); }
78 #define Ch(x,y,z) (z ^ (x & (y ^ z)))
79 #define Maj(x,y,z) (((x | y) & z) | (x & y))
80 #define S(x, n) ROR64c(x, n)
81 #define R(x, n) (((x) &UINT64_C(0xFFFFFFFFFFFFFFFF))>>((uint64_t)n))
82 #define Sigma0(x) (S(x, 28) ^ S(x, 34) ^ S(x, 39))
83 #define Sigma1(x) (S(x, 14) ^ S(x, 18) ^ S(x, 41))
84 #define Gamma0(x) (S(x, 1) ^ S(x, 8) ^ R(x, 7))
85 #define Gamma1(x) (S(x, 19) ^ S(x, 61) ^ R(x, 6))
87 #define MIN(x, y) ( ((x)<(y))?(x):(y) )
90 /* compress 1024-bits */
91 static int sha512_compress(sha512_context
*md
, unsigned char *buf
)
93 uint64_t S
[8], W
[80], t0
, t1
;
96 /* copy state into S */
97 for (i
= 0; i
< 8; i
++) {
101 /* copy the state into 1024-bits into W[0..15] */
102 for (i
= 0; i
< 16; i
++) {
103 LOAD64H(W
[i
], buf
+ (8*i
));
107 for (i
= 16; i
< 80; i
++) {
108 W
[i
] = Gamma1(W
[i
- 2]) + W
[i
- 7] + Gamma0(W
[i
- 15]) + W
[i
- 16];
112 #define RND(a,b,c,d,e,f,g,h,i) \
113 t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
114 t1 = Sigma0(a) + Maj(a, b, c);\
118 for (i
= 0; i
< 80; i
+= 8) {
119 RND(S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],i
+0);
120 RND(S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],i
+1);
121 RND(S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],S
[5],i
+2);
122 RND(S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],S
[4],i
+3);
123 RND(S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],S
[3],i
+4);
124 RND(S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],S
[2],i
+5);
125 RND(S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],S
[1],i
+6);
126 RND(S
[1],S
[2],S
[3],S
[4],S
[5],S
[6],S
[7],S
[0],i
+7);
134 for (i
= 0; i
< 8; i
++) {
135 md
->state
[i
] = md
->state
[i
] + S
[i
];
143 Initialize the hash state
144 @param md The hash state you wish to initialize
145 @return 0 if successful
147 int sha512_init(sha512_context
* md
) {
148 if (md
== NULL
) return 1;
152 md
->state
[0] = UINT64_C(0x6a09e667f3bcc908);
153 md
->state
[1] = UINT64_C(0xbb67ae8584caa73b);
154 md
->state
[2] = UINT64_C(0x3c6ef372fe94f82b);
155 md
->state
[3] = UINT64_C(0xa54ff53a5f1d36f1);
156 md
->state
[4] = UINT64_C(0x510e527fade682d1);
157 md
->state
[5] = UINT64_C(0x9b05688c2b3e6c1f);
158 md
->state
[6] = UINT64_C(0x1f83d9abfb41bd6b);
159 md
->state
[7] = UINT64_C(0x5be0cd19137e2179);
165 Process a block of memory though the hash
166 @param md The hash state
167 @param in The data to hash
168 @param inlen The length of the data (octets)
169 @return 0 if successful
171 int sha512_update (sha512_context
* md
, const unsigned char *in
, size_t inlen
)
176 if (md
== NULL
) return 1;
177 if (in
== NULL
) return 1;
178 if (md
->curlen
> sizeof(md
->buf
)) {
182 if (md
->curlen
== 0 && inlen
>= 128) {
183 if ((err
= sha512_compress (md
, (unsigned char *)in
)) != 0) {
186 md
->length
+= 128 * 8;
190 n
= MIN(inlen
, (128 - md
->curlen
));
192 for (i
= 0; i
< n
; i
++) {
193 md
->buf
[i
+ md
->curlen
] = in
[i
];
200 if (md
->curlen
== 128) {
201 if ((err
= sha512_compress (md
, md
->buf
)) != 0) {
213 Terminate the hash to get the digest
214 @param md The hash state
215 @param out [out] The destination of the hash (64 bytes)
216 @return 0 if successful
218 int sha512_final(sha512_context
* md
, unsigned char *out
)
222 if (md
== NULL
) return 1;
223 if (out
== NULL
) return 1;
225 if (md
->curlen
>= sizeof(md
->buf
)) {
229 /* increase the length of the message */
230 md
->length
+= md
->curlen
* UINT64_C(8);
232 /* append the '1' bit */
233 md
->buf
[md
->curlen
++] = (unsigned char)0x80;
235 /* if the length is currently above 112 bytes we append zeros
236 * then compress. Then we can fall back to padding zeros and length
237 * encoding like normal.
239 if (md
->curlen
> 112) {
240 while (md
->curlen
< 128) {
241 md
->buf
[md
->curlen
++] = (unsigned char)0;
243 sha512_compress(md
, md
->buf
);
247 /* pad upto 120 bytes of zeroes
248 * note: that from 112 to 120 is the 64 MSB of the length. We assume that you won't hash
249 * > 2^64 bits of data... :-)
251 while (md
->curlen
< 120) {
252 md
->buf
[md
->curlen
++] = (unsigned char)0;
256 STORE64H(md
->length
, md
->buf
+120);
257 sha512_compress(md
, md
->buf
);
260 for (i
= 0; i
< 8; i
++) {
261 STORE64H(md
->state
[i
], out
+(8*i
));
267 int sha512(const unsigned char *message
, size_t message_len
, unsigned char *out
)
271 if ((ret
= sha512_init(&ctx
))) return ret
;
272 if ((ret
= sha512_update(&ctx
, message
, message_len
))) return ret
;
273 if ((ret
= sha512_final(&ctx
, out
))) return ret
;