2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include "kerncompat.h"
23 #include "kernel-shared/ulist.h"
24 #include "transaction.h"
27 #define pr_debug(...) do { } while (0)
29 struct extent_inode_elem
{
32 struct extent_inode_elem
*next
;
35 static int check_extent_in_eb(struct btrfs_key
*key
, struct extent_buffer
*eb
,
36 struct btrfs_file_extent_item
*fi
,
38 struct extent_inode_elem
**eie
)
41 struct extent_inode_elem
*e
;
43 if (!btrfs_file_extent_compression(eb
, fi
) &&
44 !btrfs_file_extent_encryption(eb
, fi
) &&
45 !btrfs_file_extent_other_encoding(eb
, fi
)) {
49 data_offset
= btrfs_file_extent_offset(eb
, fi
);
50 data_len
= btrfs_file_extent_num_bytes(eb
, fi
);
52 if (extent_item_pos
< data_offset
||
53 extent_item_pos
>= data_offset
+ data_len
)
55 offset
= extent_item_pos
- data_offset
;
58 e
= kmalloc(sizeof(*e
), GFP_NOFS
);
63 e
->inum
= key
->objectid
;
64 e
->offset
= key
->offset
+ offset
;
70 static void free_inode_elem_list(struct extent_inode_elem
*eie
)
72 struct extent_inode_elem
*eie_next
;
74 for (; eie
; eie
= eie_next
) {
80 static int find_extent_in_eb(struct extent_buffer
*eb
, u64 wanted_disk_byte
,
82 struct extent_inode_elem
**eie
)
86 struct btrfs_file_extent_item
*fi
;
93 * from the shared data ref, we only have the leaf but we need
94 * the key. thus, we must look into all items and see that we
95 * find one (some) with a reference to our extent item.
97 nritems
= btrfs_header_nritems(eb
);
98 for (slot
= 0; slot
< nritems
; ++slot
) {
99 btrfs_item_key_to_cpu(eb
, &key
, slot
);
100 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
102 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
103 extent_type
= btrfs_file_extent_type(eb
, fi
);
104 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
106 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
107 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
108 if (disk_byte
!= wanted_disk_byte
)
111 ret
= check_extent_in_eb(&key
, eb
, fi
, extent_item_pos
, eie
);
120 * this structure records all encountered refs on the way up to the root
122 struct __prelim_ref
{
123 struct list_head list
;
125 struct btrfs_key key_for_search
;
128 struct extent_inode_elem
*inode_list
;
130 u64 wanted_disk_byte
;
134 * the rules for all callers of this function are:
135 * - obtaining the parent is the goal
136 * - if you add a key, you must know that it is a correct key
137 * - if you cannot add the parent or a correct key, then we will look into the
138 * block later to set a correct key
142 * backref type | shared | indirect | shared | indirect
143 * information | tree | tree | data | data
144 * --------------------+--------+----------+--------+----------
145 * parent logical | y | - | - | -
146 * key to resolve | - | y | y | y
147 * tree block logical | - | - | - | -
148 * root for resolving | y | y | y | y
150 * - column 1: we've the parent -> done
151 * - column 2, 3, 4: we use the key to find the parent
153 * on disk refs (inline or keyed)
154 * ==============================
155 * backref type | shared | indirect | shared | indirect
156 * information | tree | tree | data | data
157 * --------------------+--------+----------+--------+----------
158 * parent logical | y | - | y | -
159 * key to resolve | - | - | - | y
160 * tree block logical | y | y | y | y
161 * root for resolving | - | y | y | y
163 * - column 1, 3: we've the parent -> done
164 * - column 2: we take the first key from the block to find the parent
165 * (see __add_missing_keys)
166 * - column 4: we use the key to find the parent
168 * additional information that's available but not required to find the parent
169 * block might help in merging entries to gain some speed.
172 static int __add_prelim_ref(struct list_head
*head
, u64 root_id
,
173 struct btrfs_key
*key
, int level
,
174 u64 parent
, u64 wanted_disk_byte
, int count
,
177 struct __prelim_ref
*ref
;
179 if (root_id
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
182 ref
= kmalloc(sizeof(*ref
), gfp_mask
);
186 ref
->root_id
= root_id
;
188 ref
->key_for_search
= *key
;
190 memset(&ref
->key_for_search
, 0, sizeof(ref
->key_for_search
));
192 ref
->inode_list
= NULL
;
195 ref
->parent
= parent
;
196 ref
->wanted_disk_byte
= wanted_disk_byte
;
197 list_add_tail(&ref
->list
, head
);
202 static int add_all_parents(struct btrfs_root
*root
, struct btrfs_path
*path
,
203 struct ulist
*parents
, struct __prelim_ref
*ref
,
204 int level
, u64 time_seq
, const u64
*extent_item_pos
,
209 struct extent_buffer
*eb
;
210 struct btrfs_key key
;
211 struct btrfs_key
*key_for_search
= &ref
->key_for_search
;
212 struct btrfs_file_extent_item
*fi
;
213 struct extent_inode_elem
*eie
= NULL
, *old
= NULL
;
215 u64 wanted_disk_byte
= ref
->wanted_disk_byte
;
219 eb
= path
->nodes
[level
];
220 ret
= ulist_add(parents
, eb
->start
, 0, GFP_NOFS
);
227 * We normally enter this function with the path already pointing to
228 * the first item to check. But sometimes, we may enter it with
229 * slot==nritems. In that case, go to the next leaf before we continue.
231 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0]))
232 ret
= btrfs_next_leaf(root
, path
);
234 while (!ret
&& count
< total_refs
) {
236 slot
= path
->slots
[0];
238 btrfs_item_key_to_cpu(eb
, &key
, slot
);
240 if (key
.objectid
!= key_for_search
->objectid
||
241 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
244 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
245 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
247 if (disk_byte
== wanted_disk_byte
) {
251 if (extent_item_pos
) {
252 ret
= check_extent_in_eb(&key
, eb
, fi
,
260 ret
= ulist_add_merge_ptr(parents
, eb
->start
,
261 eie
, (void **)&old
, GFP_NOFS
);
264 if (!ret
&& extent_item_pos
) {
272 ret
= btrfs_next_item(root
, path
);
278 free_inode_elem_list(eie
);
283 * resolve an indirect backref in the form (root_id, key, level)
284 * to a logical address
286 static int __resolve_indirect_ref(struct btrfs_fs_info
*fs_info
,
287 struct btrfs_path
*path
, u64 time_seq
,
288 struct __prelim_ref
*ref
,
289 struct ulist
*parents
,
290 const u64
*extent_item_pos
, u64 total_refs
)
292 struct btrfs_root
*root
;
293 struct btrfs_key root_key
;
294 struct extent_buffer
*eb
;
297 int level
= ref
->level
;
299 root_key
.objectid
= ref
->root_id
;
300 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
301 root_key
.offset
= (u64
)-1;
303 root
= btrfs_read_fs_root(fs_info
, &root_key
);
309 root_level
= btrfs_root_level(&root
->root_item
);
311 if (root_level
+ 1 == level
)
314 path
->lowest_level
= level
;
315 ret
= btrfs_search_slot(NULL
, root
, &ref
->key_for_search
, path
, 0, 0);
317 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
318 "%d for key (%llu %u %llu)\n",
319 ref
->root_id
, level
, ref
->count
, ret
,
320 ref
->key_for_search
.objectid
, ref
->key_for_search
.type
,
321 ref
->key_for_search
.offset
);
325 eb
= path
->nodes
[level
];
333 eb
= path
->nodes
[level
];
336 ret
= add_all_parents(root
, path
, parents
, ref
, level
, time_seq
,
337 extent_item_pos
, total_refs
);
339 path
->lowest_level
= 0;
340 btrfs_release_path(path
);
345 * resolve all indirect backrefs from the list
347 static int __resolve_indirect_refs(struct btrfs_fs_info
*fs_info
,
348 struct btrfs_path
*path
, u64 time_seq
,
349 struct list_head
*head
,
350 const u64
*extent_item_pos
, u64 total_refs
)
354 struct __prelim_ref
*ref
;
355 struct __prelim_ref
*ref_safe
;
356 struct __prelim_ref
*new_ref
;
357 struct ulist
*parents
;
358 struct ulist_node
*node
;
359 struct ulist_iterator uiter
;
361 parents
= ulist_alloc(GFP_NOFS
);
366 * _safe allows us to insert directly after the current item without
367 * iterating over the newly inserted items.
368 * we're also allowed to re-assign ref during iteration.
370 list_for_each_entry_safe(ref
, ref_safe
, head
, list
) {
371 if (ref
->parent
) /* already direct */
375 err
= __resolve_indirect_ref(fs_info
, path
, time_seq
, ref
,
376 parents
, extent_item_pos
,
379 * we can only tolerate ENOENT,otherwise,we should catch error
380 * and return directly.
382 if (err
== -ENOENT
) {
389 /* we put the first parent into the ref at hand */
390 ULIST_ITER_INIT(&uiter
);
391 node
= ulist_next(parents
, &uiter
);
392 ref
->parent
= node
? node
->val
: 0;
393 ref
->inode_list
= node
?
394 (struct extent_inode_elem
*)(uintptr_t)node
->aux
: NULL
;
396 /* additional parents require new refs being added here */
397 while ((node
= ulist_next(parents
, &uiter
))) {
398 new_ref
= kmalloc(sizeof(*new_ref
), GFP_NOFS
);
403 memcpy(new_ref
, ref
, sizeof(*ref
));
404 new_ref
->parent
= node
->val
;
405 new_ref
->inode_list
= (struct extent_inode_elem
*)
406 (uintptr_t)node
->aux
;
407 list_add(&new_ref
->list
, &ref
->list
);
409 ulist_reinit(parents
);
416 static inline int ref_for_same_block(struct __prelim_ref
*ref1
,
417 struct __prelim_ref
*ref2
)
419 if (ref1
->level
!= ref2
->level
)
421 if (ref1
->root_id
!= ref2
->root_id
)
423 if (ref1
->key_for_search
.type
!= ref2
->key_for_search
.type
)
425 if (ref1
->key_for_search
.objectid
!= ref2
->key_for_search
.objectid
)
427 if (ref1
->key_for_search
.offset
!= ref2
->key_for_search
.offset
)
429 if (ref1
->parent
!= ref2
->parent
)
436 * read tree blocks and add keys where required.
438 static int __add_missing_keys(struct btrfs_fs_info
*fs_info
,
439 struct list_head
*head
)
441 struct list_head
*pos
;
442 struct extent_buffer
*eb
;
444 list_for_each(pos
, head
) {
445 struct __prelim_ref
*ref
;
446 ref
= list_entry(pos
, struct __prelim_ref
, list
);
450 if (ref
->key_for_search
.type
)
452 BUG_ON(!ref
->wanted_disk_byte
);
453 eb
= read_tree_block(fs_info
, ref
->wanted_disk_byte
,
454 fs_info
->nodesize
, 0);
455 if (!extent_buffer_uptodate(eb
)) {
456 free_extent_buffer(eb
);
459 if (btrfs_header_level(eb
) == 0)
460 btrfs_item_key_to_cpu(eb
, &ref
->key_for_search
, 0);
462 btrfs_node_key_to_cpu(eb
, &ref
->key_for_search
, 0);
463 free_extent_buffer(eb
);
469 * merge two lists of backrefs and adjust counts accordingly
471 * mode = 1: merge identical keys, if key is set
472 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
473 * additionally, we could even add a key range for the blocks we
474 * looked into to merge even more (-> replace unresolved refs by those
476 * mode = 2: merge identical parents
478 static void __merge_refs(struct list_head
*head
, int mode
)
480 struct list_head
*pos1
;
482 list_for_each(pos1
, head
) {
483 struct list_head
*n2
;
484 struct list_head
*pos2
;
485 struct __prelim_ref
*ref1
;
487 ref1
= list_entry(pos1
, struct __prelim_ref
, list
);
489 for (pos2
= pos1
->next
, n2
= pos2
->next
; pos2
!= head
;
490 pos2
= n2
, n2
= pos2
->next
) {
491 struct __prelim_ref
*ref2
;
492 struct __prelim_ref
*xchg
;
493 struct extent_inode_elem
*eie
;
495 ref2
= list_entry(pos2
, struct __prelim_ref
, list
);
498 if (!ref_for_same_block(ref1
, ref2
))
500 if (!ref1
->parent
&& ref2
->parent
) {
506 if (ref1
->parent
!= ref2
->parent
)
510 eie
= ref1
->inode_list
;
511 while (eie
&& eie
->next
)
514 eie
->next
= ref2
->inode_list
;
516 ref1
->inode_list
= ref2
->inode_list
;
517 ref1
->count
+= ref2
->count
;
519 list_del(&ref2
->list
);
527 * add all inline backrefs for bytenr to the list
529 static int __add_inline_refs(struct btrfs_fs_info
*fs_info
,
530 struct btrfs_path
*path
, u64 bytenr
,
531 int *info_level
, struct list_head
*prefs
,
536 struct extent_buffer
*leaf
;
537 struct btrfs_key key
;
538 struct btrfs_key found_key
;
541 struct btrfs_extent_item
*ei
;
546 * enumerate all inline refs
548 leaf
= path
->nodes
[0];
549 slot
= path
->slots
[0];
551 item_size
= btrfs_item_size_nr(leaf
, slot
);
552 BUG_ON(item_size
< sizeof(*ei
));
554 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_extent_item
);
555 flags
= btrfs_extent_flags(leaf
, ei
);
556 *total_refs
+= btrfs_extent_refs(leaf
, ei
);
557 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
559 ptr
= (unsigned long)(ei
+ 1);
560 end
= (unsigned long)ei
+ item_size
;
562 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
563 flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
564 struct btrfs_tree_block_info
*info
;
566 info
= (struct btrfs_tree_block_info
*)ptr
;
567 *info_level
= btrfs_tree_block_level(leaf
, info
);
568 ptr
+= sizeof(struct btrfs_tree_block_info
);
570 } else if (found_key
.type
== BTRFS_METADATA_ITEM_KEY
) {
571 *info_level
= found_key
.offset
;
573 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
577 struct btrfs_extent_inline_ref
*iref
;
581 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
582 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
583 offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
586 case BTRFS_SHARED_BLOCK_REF_KEY
:
587 ret
= __add_prelim_ref(prefs
, 0, NULL
,
588 *info_level
+ 1, offset
,
589 bytenr
, 1, GFP_NOFS
);
591 case BTRFS_SHARED_DATA_REF_KEY
: {
592 struct btrfs_shared_data_ref
*sdref
;
595 sdref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
596 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
597 ret
= __add_prelim_ref(prefs
, 0, NULL
, 0, offset
,
598 bytenr
, count
, GFP_NOFS
);
601 case BTRFS_TREE_BLOCK_REF_KEY
:
602 ret
= __add_prelim_ref(prefs
, offset
, NULL
,
604 bytenr
, 1, GFP_NOFS
);
606 case BTRFS_EXTENT_DATA_REF_KEY
: {
607 struct btrfs_extent_data_ref
*dref
;
611 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
612 count
= btrfs_extent_data_ref_count(leaf
, dref
);
613 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
615 key
.type
= BTRFS_EXTENT_DATA_KEY
;
616 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
617 root
= btrfs_extent_data_ref_root(leaf
, dref
);
618 ret
= __add_prelim_ref(prefs
, root
, &key
, 0, 0,
619 bytenr
, count
, GFP_NOFS
);
627 ptr
+= btrfs_extent_inline_ref_size(type
);
634 * add all non-inline backrefs for bytenr to the list
636 static int __add_keyed_refs(struct btrfs_fs_info
*fs_info
,
637 struct btrfs_path
*path
, u64 bytenr
,
638 int info_level
, struct list_head
*prefs
)
640 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
643 struct extent_buffer
*leaf
;
644 struct btrfs_key key
;
647 ret
= btrfs_next_item(extent_root
, path
);
655 slot
= path
->slots
[0];
656 leaf
= path
->nodes
[0];
657 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
659 if (key
.objectid
!= bytenr
)
661 if (key
.type
< BTRFS_TREE_BLOCK_REF_KEY
)
663 if (key
.type
> BTRFS_SHARED_DATA_REF_KEY
)
667 case BTRFS_SHARED_BLOCK_REF_KEY
:
668 ret
= __add_prelim_ref(prefs
, 0, NULL
,
669 info_level
+ 1, key
.offset
,
670 bytenr
, 1, GFP_NOFS
);
672 case BTRFS_SHARED_DATA_REF_KEY
: {
673 struct btrfs_shared_data_ref
*sdref
;
676 sdref
= btrfs_item_ptr(leaf
, slot
,
677 struct btrfs_shared_data_ref
);
678 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
679 ret
= __add_prelim_ref(prefs
, 0, NULL
, 0, key
.offset
,
680 bytenr
, count
, GFP_NOFS
);
683 case BTRFS_TREE_BLOCK_REF_KEY
:
684 ret
= __add_prelim_ref(prefs
, key
.offset
, NULL
,
686 bytenr
, 1, GFP_NOFS
);
688 case BTRFS_EXTENT_DATA_REF_KEY
: {
689 struct btrfs_extent_data_ref
*dref
;
693 dref
= btrfs_item_ptr(leaf
, slot
,
694 struct btrfs_extent_data_ref
);
695 count
= btrfs_extent_data_ref_count(leaf
, dref
);
696 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
698 key
.type
= BTRFS_EXTENT_DATA_KEY
;
699 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
700 root
= btrfs_extent_data_ref_root(leaf
, dref
);
701 ret
= __add_prelim_ref(prefs
, root
, &key
, 0, 0,
702 bytenr
, count
, GFP_NOFS
);
717 * this adds all existing backrefs (inline backrefs, backrefs and delayed
718 * refs) for the given bytenr to the refs list, merges duplicates and resolves
719 * indirect refs to their parent bytenr.
720 * When roots are found, they're added to the roots list
722 * FIXME some caching might speed things up
724 static int find_parent_nodes(struct btrfs_trans_handle
*trans
,
725 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
726 u64 time_seq
, struct ulist
*refs
,
727 struct ulist
*roots
, const u64
*extent_item_pos
)
729 struct btrfs_key key
;
730 struct btrfs_path
*path
;
733 struct list_head prefs
;
734 struct __prelim_ref
*ref
;
735 struct extent_inode_elem
*eie
= NULL
;
738 INIT_LIST_HEAD(&prefs
);
740 key
.objectid
= bytenr
;
741 key
.offset
= (u64
)-1;
742 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
743 key
.type
= BTRFS_METADATA_ITEM_KEY
;
745 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
747 path
= btrfs_alloc_path();
751 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 0);
756 if (path
->slots
[0]) {
757 struct extent_buffer
*leaf
;
761 leaf
= path
->nodes
[0];
762 slot
= path
->slots
[0];
763 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
764 if (key
.objectid
== bytenr
&&
765 (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
766 key
.type
== BTRFS_METADATA_ITEM_KEY
)) {
767 ret
= __add_inline_refs(fs_info
, path
, bytenr
,
772 ret
= __add_keyed_refs(fs_info
, path
, bytenr
,
778 btrfs_release_path(path
);
780 ret
= __add_missing_keys(fs_info
, &prefs
);
784 __merge_refs(&prefs
, 1);
786 ret
= __resolve_indirect_refs(fs_info
, path
, time_seq
, &prefs
,
787 extent_item_pos
, total_refs
);
791 __merge_refs(&prefs
, 2);
793 while (!list_empty(&prefs
)) {
794 ref
= list_first_entry(&prefs
, struct __prelim_ref
, list
);
795 WARN_ON(ref
->count
< 0);
796 if (roots
&& ref
->count
&& ref
->root_id
&& ref
->parent
== 0) {
797 /* no parent == root of tree */
798 ret
= ulist_add(roots
, ref
->root_id
, 0, GFP_NOFS
);
802 if (ref
->count
&& ref
->parent
) {
803 if (extent_item_pos
&& !ref
->inode_list
&&
806 struct extent_buffer
*eb
;
807 bsz
= fs_info
->nodesize
;
808 eb
= read_tree_block(fs_info
,
809 ref
->parent
, bsz
, 0);
810 if (!extent_buffer_uptodate(eb
)) {
811 free_extent_buffer(eb
);
815 ret
= find_extent_in_eb(eb
, bytenr
,
816 *extent_item_pos
, &eie
);
817 free_extent_buffer(eb
);
820 ref
->inode_list
= eie
;
822 ret
= ulist_add_merge_ptr(refs
, ref
->parent
,
824 (void **)&eie
, GFP_NOFS
);
827 if (!ret
&& extent_item_pos
) {
829 * we've recorded that parent, so we must extend
830 * its inode list here
835 eie
->next
= ref
->inode_list
;
839 list_del(&ref
->list
);
844 btrfs_free_path(path
);
845 while (!list_empty(&prefs
)) {
846 ref
= list_first_entry(&prefs
, struct __prelim_ref
, list
);
847 list_del(&ref
->list
);
851 free_inode_elem_list(eie
);
855 static void free_leaf_list(struct ulist
*blocks
)
857 struct ulist_node
*node
= NULL
;
858 struct extent_inode_elem
*eie
;
859 struct ulist_iterator uiter
;
861 ULIST_ITER_INIT(&uiter
);
862 while ((node
= ulist_next(blocks
, &uiter
))) {
865 eie
= (struct extent_inode_elem
*)(uintptr_t)node
->aux
;
866 free_inode_elem_list(eie
);
874 * Finds all leafs with a reference to the specified combination of bytenr and
875 * offset. key_list_head will point to a list of corresponding keys (caller must
876 * free each list element). The leafs will be stored in the leafs ulist, which
877 * must be freed with ulist_free.
879 * returns 0 on success, <0 on error
881 static int btrfs_find_all_leafs(struct btrfs_trans_handle
*trans
,
882 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
883 u64 time_seq
, struct ulist
**leafs
,
884 const u64
*extent_item_pos
)
888 *leafs
= ulist_alloc(GFP_NOFS
);
892 ret
= find_parent_nodes(trans
, fs_info
, bytenr
,
893 time_seq
, *leafs
, NULL
, extent_item_pos
);
894 if (ret
< 0 && ret
!= -ENOENT
) {
895 free_leaf_list(*leafs
);
903 * walk all backrefs for a given extent to find all roots that reference this
904 * extent. Walking a backref means finding all extents that reference this
905 * extent and in turn walk the backrefs of those, too. Naturally this is a
906 * recursive process, but here it is implemented in an iterative fashion: We
907 * find all referencing extents for the extent in question and put them on a
908 * list. In turn, we find all referencing extents for those, further appending
909 * to the list. The way we iterate the list allows adding more elements after
910 * the current while iterating. The process stops when we reach the end of the
911 * list. Found roots are added to the roots list.
913 * returns 0 on success, < 0 on error.
915 static int __btrfs_find_all_roots(struct btrfs_trans_handle
*trans
,
916 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
917 u64 time_seq
, struct ulist
**roots
)
920 struct ulist_node
*node
= NULL
;
921 struct ulist_iterator uiter
;
924 tmp
= ulist_alloc(GFP_NOFS
);
927 *roots
= ulist_alloc(GFP_NOFS
);
933 ULIST_ITER_INIT(&uiter
);
935 ret
= find_parent_nodes(trans
, fs_info
, bytenr
,
936 time_seq
, tmp
, *roots
, NULL
);
937 if (ret
< 0 && ret
!= -ENOENT
) {
942 node
= ulist_next(tmp
, &uiter
);
953 int btrfs_find_all_roots(struct btrfs_trans_handle
*trans
,
954 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
955 u64 time_seq
, struct ulist
**roots
)
957 return __btrfs_find_all_roots(trans
, fs_info
, bytenr
, time_seq
, roots
);
961 * this makes the path point to (inum INODE_ITEM ioff)
963 int inode_item_info(u64 inum
, u64 ioff
, struct btrfs_root
*fs_root
,
964 struct btrfs_path
*path
)
966 struct btrfs_key key
;
967 return btrfs_find_item(fs_root
, path
, inum
, ioff
,
968 BTRFS_INODE_ITEM_KEY
, &key
);
971 static int inode_ref_info(u64 inum
, u64 ioff
, struct btrfs_root
*fs_root
,
972 struct btrfs_path
*path
,
973 struct btrfs_key
*found_key
)
975 return btrfs_find_item(fs_root
, path
, inum
, ioff
,
976 BTRFS_INODE_REF_KEY
, found_key
);
979 int btrfs_find_one_extref(struct btrfs_root
*root
, u64 inode_objectid
,
980 u64 start_off
, struct btrfs_path
*path
,
981 struct btrfs_inode_extref
**ret_extref
,
985 struct btrfs_key key
;
986 struct btrfs_key found_key
;
987 struct btrfs_inode_extref
*extref
;
988 struct extent_buffer
*leaf
;
991 key
.objectid
= inode_objectid
;
992 key
.type
= BTRFS_INODE_EXTREF_KEY
;
993 key
.offset
= start_off
;
995 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1000 leaf
= path
->nodes
[0];
1001 slot
= path
->slots
[0];
1002 if (slot
>= btrfs_header_nritems(leaf
)) {
1004 * If the item at offset is not found,
1005 * btrfs_search_slot will point us to the slot
1006 * where it should be inserted. In our case
1007 * that will be the slot directly before the
1008 * next INODE_REF_KEY_V2 item. In the case
1009 * that we're pointing to the last slot in a
1010 * leaf, we must move one leaf over.
1012 ret
= btrfs_next_leaf(root
, path
);
1021 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
1024 * Check that we're still looking at an extended ref key for
1025 * this particular objectid. If we have different
1026 * objectid or type then there are no more to be found
1027 * in the tree and we can exit.
1030 if (found_key
.objectid
!= inode_objectid
)
1032 if (found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)
1036 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1037 extref
= (struct btrfs_inode_extref
*)ptr
;
1038 *ret_extref
= extref
;
1040 *found_off
= found_key
.offset
;
1048 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1049 * Elements of the path are separated by '/' and the path is guaranteed to be
1050 * 0-terminated. the path is only given within the current file system.
1051 * Therefore, it never starts with a '/'. the caller is responsible to provide
1052 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1053 * the start point of the resulting string is returned. this pointer is within
1055 * in case the path buffer would overflow, the pointer is decremented further
1056 * as if output was written to the buffer, though no more output is actually
1057 * generated. that way, the caller can determine how much space would be
1058 * required for the path to fit into the buffer. in that case, the returned
1059 * value will be smaller than dest. callers must check this!
1061 char *btrfs_ref_to_path(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
1062 u32 name_len
, unsigned long name_off
,
1063 struct extent_buffer
*eb_in
, u64 parent
,
1064 char *dest
, u32 size
)
1069 s64 bytes_left
= ((s64
)size
) - 1;
1070 struct extent_buffer
*eb
= eb_in
;
1071 struct btrfs_key found_key
;
1072 struct btrfs_inode_ref
*iref
;
1074 if (bytes_left
>= 0)
1075 dest
[bytes_left
] = '\0';
1078 bytes_left
-= name_len
;
1079 if (bytes_left
>= 0)
1080 read_extent_buffer(eb
, dest
+ bytes_left
,
1081 name_off
, name_len
);
1083 free_extent_buffer(eb
);
1084 ret
= inode_ref_info(parent
, 0, fs_root
, path
, &found_key
);
1090 next_inum
= found_key
.offset
;
1092 /* regular exit ahead */
1093 if (parent
== next_inum
)
1096 slot
= path
->slots
[0];
1097 eb
= path
->nodes
[0];
1098 /* make sure we can use eb after releasing the path */
1101 btrfs_release_path(path
);
1102 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1104 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1105 name_off
= (unsigned long)(iref
+ 1);
1109 if (bytes_left
>= 0)
1110 dest
[bytes_left
] = '/';
1113 btrfs_release_path(path
);
1116 return ERR_PTR(ret
);
1118 return dest
+ bytes_left
;
1122 * this makes the path point to (logical EXTENT_ITEM *)
1123 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1124 * tree blocks and <0 on error.
1126 int extent_from_logical(struct btrfs_fs_info
*fs_info
, u64 logical
,
1127 struct btrfs_path
*path
, struct btrfs_key
*found_key
,
1134 struct extent_buffer
*eb
;
1135 struct btrfs_extent_item
*ei
;
1136 struct btrfs_key key
;
1138 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
1139 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1141 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1142 key
.objectid
= logical
;
1143 key
.offset
= (u64
)-1;
1145 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
1149 ret
= btrfs_previous_extent_item(fs_info
->extent_root
, path
, 0);
1155 btrfs_item_key_to_cpu(path
->nodes
[0], found_key
, path
->slots
[0]);
1156 if (found_key
->type
== BTRFS_METADATA_ITEM_KEY
)
1157 size
= fs_info
->nodesize
;
1158 else if (found_key
->type
== BTRFS_EXTENT_ITEM_KEY
)
1159 size
= found_key
->offset
;
1161 if (found_key
->objectid
> logical
||
1162 found_key
->objectid
+ size
<= logical
) {
1163 pr_debug("logical %llu is not within any extent\n", logical
);
1167 eb
= path
->nodes
[0];
1168 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
1169 BUG_ON(item_size
< sizeof(*ei
));
1171 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
1172 flags
= btrfs_extent_flags(eb
, ei
);
1174 pr_debug("logical %llu is at position %llu within the extent (%llu "
1175 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1176 logical
, logical
- found_key
->objectid
, found_key
->objectid
,
1177 found_key
->offset
, flags
, item_size
);
1180 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1181 *flags_ret
= BTRFS_EXTENT_FLAG_TREE_BLOCK
;
1182 else if (flags
& BTRFS_EXTENT_FLAG_DATA
)
1183 *flags_ret
= BTRFS_EXTENT_FLAG_DATA
;
1194 * helper function to iterate extent inline refs. ptr must point to a 0 value
1195 * for the first call and may be modified. it is used to track state.
1196 * if more refs exist, 0 is returned and the next call to
1197 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1198 * next ref. after the last ref was processed, 1 is returned.
1199 * returns <0 on error
1201 static int __get_extent_inline_ref(unsigned long *ptr
, struct extent_buffer
*eb
,
1202 struct btrfs_key
*key
,
1203 struct btrfs_extent_item
*ei
, u32 item_size
,
1204 struct btrfs_extent_inline_ref
**out_eiref
,
1209 struct btrfs_tree_block_info
*info
;
1213 flags
= btrfs_extent_flags(eb
, ei
);
1214 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1215 if (key
->type
== BTRFS_METADATA_ITEM_KEY
) {
1216 /* a skinny metadata extent */
1218 (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1220 WARN_ON(key
->type
!= BTRFS_EXTENT_ITEM_KEY
);
1221 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1223 (struct btrfs_extent_inline_ref
*)(info
+ 1);
1226 *out_eiref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1228 *ptr
= (unsigned long)*out_eiref
;
1229 if ((unsigned long)(*ptr
) >= (unsigned long)ei
+ item_size
)
1233 end
= (unsigned long)ei
+ item_size
;
1234 *out_eiref
= (struct btrfs_extent_inline_ref
*)(*ptr
);
1235 *out_type
= btrfs_extent_inline_ref_type(eb
, *out_eiref
);
1237 *ptr
+= btrfs_extent_inline_ref_size(*out_type
);
1238 WARN_ON(*ptr
> end
);
1240 return 1; /* last */
1246 * reads the tree block backref for an extent. tree level and root are returned
1247 * through out_level and out_root. ptr must point to a 0 value for the first
1248 * call and may be modified (see __get_extent_inline_ref comment).
1249 * returns 0 if data was provided, 1 if there was no more data to provide or
1252 int tree_backref_for_extent(unsigned long *ptr
, struct extent_buffer
*eb
,
1253 struct btrfs_key
*key
, struct btrfs_extent_item
*ei
,
1254 u32 item_size
, u64
*out_root
, u8
*out_level
)
1258 struct btrfs_tree_block_info
*info
;
1259 struct btrfs_extent_inline_ref
*eiref
;
1261 if (*ptr
== (unsigned long)-1)
1265 ret
= __get_extent_inline_ref(ptr
, eb
, key
, ei
, item_size
,
1270 if (type
== BTRFS_TREE_BLOCK_REF_KEY
||
1271 type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1278 /* we can treat both ref types equally here */
1279 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1280 *out_root
= btrfs_extent_inline_ref_offset(eb
, eiref
);
1281 *out_level
= btrfs_tree_block_level(eb
, info
);
1284 *ptr
= (unsigned long)-1;
1289 static int iterate_leaf_refs(struct extent_inode_elem
*inode_list
,
1290 u64 root
, u64 extent_item_objectid
,
1291 iterate_extent_inodes_t
*iterate
, void *ctx
)
1293 struct extent_inode_elem
*eie
;
1296 for (eie
= inode_list
; eie
; eie
= eie
->next
) {
1297 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1298 "root %llu\n", extent_item_objectid
,
1299 eie
->inum
, eie
->offset
, root
);
1300 ret
= iterate(eie
->inum
, eie
->offset
, root
, ctx
);
1302 pr_debug("stopping iteration for %llu due to ret=%d\n",
1303 extent_item_objectid
, ret
);
1312 * calls iterate() for every inode that references the extent identified by
1313 * the given parameters.
1314 * when the iterator function returns a non-zero value, iteration stops.
1316 int iterate_extent_inodes(struct btrfs_fs_info
*fs_info
,
1317 u64 extent_item_objectid
, u64 extent_item_pos
,
1318 int search_commit_root
,
1319 iterate_extent_inodes_t
*iterate
, void *ctx
)
1322 struct btrfs_trans_handle
*trans
= NULL
;
1323 struct ulist
*refs
= NULL
;
1324 struct ulist
*roots
= NULL
;
1325 struct ulist_node
*ref_node
= NULL
;
1326 struct ulist_node
*root_node
= NULL
;
1327 struct ulist_iterator ref_uiter
;
1328 struct ulist_iterator root_uiter
;
1330 pr_debug("resolving all inodes for extent %llu\n",
1331 extent_item_objectid
);
1333 ret
= btrfs_find_all_leafs(trans
, fs_info
, extent_item_objectid
,
1334 0, &refs
, &extent_item_pos
);
1338 ULIST_ITER_INIT(&ref_uiter
);
1339 while (!ret
&& (ref_node
= ulist_next(refs
, &ref_uiter
))) {
1340 ret
= __btrfs_find_all_roots(trans
, fs_info
, ref_node
->val
,
1344 ULIST_ITER_INIT(&root_uiter
);
1345 while (!ret
&& (root_node
= ulist_next(roots
, &root_uiter
))) {
1346 pr_debug("root %llu references leaf %llu, data list "
1347 "%#llx\n", root_node
->val
, ref_node
->val
,
1349 ret
= iterate_leaf_refs((struct extent_inode_elem
*)
1350 (uintptr_t)ref_node
->aux
,
1352 extent_item_objectid
,
1358 free_leaf_list(refs
);
1363 int iterate_inodes_from_logical(u64 logical
, struct btrfs_fs_info
*fs_info
,
1364 struct btrfs_path
*path
,
1365 iterate_extent_inodes_t
*iterate
, void *ctx
)
1368 u64 extent_item_pos
;
1370 struct btrfs_key found_key
;
1371 int search_commit_root
= 0;
1373 ret
= extent_from_logical(fs_info
, logical
, path
, &found_key
, &flags
);
1374 btrfs_release_path(path
);
1377 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1380 extent_item_pos
= logical
- found_key
.objectid
;
1381 ret
= iterate_extent_inodes(fs_info
, found_key
.objectid
,
1382 extent_item_pos
, search_commit_root
,
1388 typedef int (iterate_irefs_t
)(u64 parent
, u32 name_len
, unsigned long name_off
,
1389 struct extent_buffer
*eb
, void *ctx
);
1391 static int iterate_inode_refs(u64 inum
, struct btrfs_root
*fs_root
,
1392 struct btrfs_path
*path
,
1393 iterate_irefs_t
*iterate
, void *ctx
)
1402 struct extent_buffer
*eb
;
1403 struct btrfs_item
*item
;
1404 struct btrfs_inode_ref
*iref
;
1405 struct btrfs_key found_key
;
1408 ret
= inode_ref_info(inum
, parent
? parent
+1 : 0, fs_root
, path
,
1413 ret
= found
? 0 : -ENOENT
;
1418 parent
= found_key
.offset
;
1419 slot
= path
->slots
[0];
1420 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
1425 extent_buffer_get(eb
);
1426 btrfs_release_path(path
);
1428 item
= btrfs_item_nr(slot
);
1429 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1431 for (cur
= 0; cur
< btrfs_item_size(eb
, item
); cur
+= len
) {
1432 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1433 /* path must be released before calling iterate()! */
1434 pr_debug("following ref at offset %u for inode %llu in "
1435 "tree %llu\n", cur
, found_key
.objectid
,
1437 ret
= iterate(parent
, name_len
,
1438 (unsigned long)(iref
+ 1), eb
, ctx
);
1441 len
= sizeof(*iref
) + name_len
;
1442 iref
= (struct btrfs_inode_ref
*)((char *)iref
+ len
);
1444 free_extent_buffer(eb
);
1447 btrfs_release_path(path
);
1452 static int iterate_inode_extrefs(u64 inum
, struct btrfs_root
*fs_root
,
1453 struct btrfs_path
*path
,
1454 iterate_irefs_t
*iterate
, void *ctx
)
1461 struct extent_buffer
*eb
;
1462 struct btrfs_inode_extref
*extref
;
1463 struct extent_buffer
*leaf
;
1469 ret
= btrfs_find_one_extref(fs_root
, inum
, offset
, path
, &extref
,
1474 ret
= found
? 0 : -ENOENT
;
1479 slot
= path
->slots
[0];
1480 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
1485 extent_buffer_get(eb
);
1487 btrfs_release_path(path
);
1489 leaf
= path
->nodes
[0];
1490 item_size
= btrfs_item_size_nr(leaf
, slot
);
1491 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
1494 while (cur_offset
< item_size
) {
1497 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur_offset
);
1498 parent
= btrfs_inode_extref_parent(eb
, extref
);
1499 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
1500 ret
= iterate(parent
, name_len
,
1501 (unsigned long)&extref
->name
, eb
, ctx
);
1505 cur_offset
+= btrfs_inode_extref_name_len(leaf
, extref
);
1506 cur_offset
+= sizeof(*extref
);
1508 free_extent_buffer(eb
);
1513 btrfs_release_path(path
);
1518 static int iterate_irefs(u64 inum
, struct btrfs_root
*fs_root
,
1519 struct btrfs_path
*path
, iterate_irefs_t
*iterate
,
1525 ret
= iterate_inode_refs(inum
, fs_root
, path
, iterate
, ctx
);
1528 else if (ret
!= -ENOENT
)
1531 ret
= iterate_inode_extrefs(inum
, fs_root
, path
, iterate
, ctx
);
1532 if (ret
== -ENOENT
&& found_refs
)
1539 * returns 0 if the path could be dumped (probably truncated)
1540 * returns <0 in case of an error
1542 static int inode_to_path(u64 inum
, u32 name_len
, unsigned long name_off
,
1543 struct extent_buffer
*eb
, void *ctx
)
1545 struct inode_fs_paths
*ipath
= ctx
;
1548 int i
= ipath
->fspath
->elem_cnt
;
1549 const int s_ptr
= sizeof(char *);
1552 bytes_left
= ipath
->fspath
->bytes_left
> s_ptr
?
1553 ipath
->fspath
->bytes_left
- s_ptr
: 0;
1555 fspath_min
= (char *)ipath
->fspath
->val
+ (i
+ 1) * s_ptr
;
1556 fspath
= btrfs_ref_to_path(ipath
->fs_root
, ipath
->btrfs_path
, name_len
,
1557 name_off
, eb
, inum
, fspath_min
, bytes_left
);
1559 return PTR_ERR(fspath
);
1561 if (fspath
> fspath_min
) {
1562 ipath
->fspath
->val
[i
] = (u64
)(unsigned long)fspath
;
1563 ++ipath
->fspath
->elem_cnt
;
1564 ipath
->fspath
->bytes_left
= fspath
- fspath_min
;
1566 ++ipath
->fspath
->elem_missed
;
1567 ipath
->fspath
->bytes_missing
+= fspath_min
- fspath
;
1568 ipath
->fspath
->bytes_left
= 0;
1575 * this dumps all file system paths to the inode into the ipath struct, provided
1576 * is has been created large enough. each path is zero-terminated and accessed
1577 * from ipath->fspath->val[i].
1578 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1579 * in ipath->fspath->val[]. When the allocated space wasn't sufficient, the
1580 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
1581 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1582 * have been needed to return all paths.
1584 int paths_from_inode(u64 inum
, struct inode_fs_paths
*ipath
)
1586 return iterate_irefs(inum
, ipath
->fs_root
, ipath
->btrfs_path
,
1587 inode_to_path
, ipath
);
1590 struct btrfs_data_container
*init_data_container(u32 total_bytes
)
1592 struct btrfs_data_container
*data
;
1595 alloc_bytes
= max_t(size_t, total_bytes
, sizeof(*data
));
1596 data
= vmalloc(alloc_bytes
);
1598 return ERR_PTR(-ENOMEM
);
1600 if (total_bytes
>= sizeof(*data
)) {
1601 data
->bytes_left
= total_bytes
- sizeof(*data
);
1602 data
->bytes_missing
= 0;
1604 data
->bytes_missing
= sizeof(*data
) - total_bytes
;
1605 data
->bytes_left
= 0;
1609 data
->elem_missed
= 0;
1615 * allocates space to return multiple file system paths for an inode.
1616 * total_bytes to allocate are passed, note that space usable for actual path
1617 * information will be total_bytes - sizeof(struct inode_fs_paths).
1618 * the returned pointer must be freed with free_ipath() in the end.
1620 struct inode_fs_paths
*init_ipath(s32 total_bytes
, struct btrfs_root
*fs_root
,
1621 struct btrfs_path
*path
)
1623 struct inode_fs_paths
*ifp
;
1624 struct btrfs_data_container
*fspath
;
1626 fspath
= init_data_container(total_bytes
);
1628 return (void *)fspath
;
1630 ifp
= kmalloc(sizeof(*ifp
), GFP_NOFS
);
1633 return ERR_PTR(-ENOMEM
);
1636 ifp
->btrfs_path
= path
;
1637 ifp
->fspath
= fspath
;
1638 ifp
->fs_root
= fs_root
;
1643 void free_ipath(struct inode_fs_paths
*ipath
)
1647 vfree(ipath
->fspath
);