Btrfs progs v4.17.1
[btrfs-progs-unstable/devel.git] / libbtrfsutil / btrfs_tree.h
blobf2ac0267e00855157b29b7e0faa14705f0422c9b
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 #ifndef _BTRFS_CTREE_H_
3 #define _BTRFS_CTREE_H_
5 #include "btrfs.h"
6 #include <linux/types.h>
8 /*
9 * This header contains the structure definitions and constants used
10 * by file system objects that can be retrieved using
11 * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that
12 * is needed to describe a leaf node's key or item contents.
15 /* holds pointers to all of the tree roots */
16 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
18 /* stores information about which extents are in use, and reference counts */
19 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
22 * chunk tree stores translations from logical -> physical block numbering
23 * the super block points to the chunk tree
25 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
28 * stores information about which areas of a given device are in use.
29 * one per device. The tree of tree roots points to the device tree
31 #define BTRFS_DEV_TREE_OBJECTID 4ULL
33 /* one per subvolume, storing files and directories */
34 #define BTRFS_FS_TREE_OBJECTID 5ULL
36 /* directory objectid inside the root tree */
37 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
39 /* holds checksums of all the data extents */
40 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
42 /* holds quota configuration and tracking */
43 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
45 /* for storing items that use the BTRFS_UUID_KEY* types */
46 #define BTRFS_UUID_TREE_OBJECTID 9ULL
48 /* tracks free space in block groups. */
49 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
51 /* device stats in the device tree */
52 #define BTRFS_DEV_STATS_OBJECTID 0ULL
54 /* for storing balance parameters in the root tree */
55 #define BTRFS_BALANCE_OBJECTID -4ULL
57 /* orhpan objectid for tracking unlinked/truncated files */
58 #define BTRFS_ORPHAN_OBJECTID -5ULL
60 /* does write ahead logging to speed up fsyncs */
61 #define BTRFS_TREE_LOG_OBJECTID -6ULL
62 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
64 /* for space balancing */
65 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
66 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
69 * extent checksums all have this objectid
70 * this allows them to share the logging tree
71 * for fsyncs
73 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
75 /* For storing free space cache */
76 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
79 * The inode number assigned to the special inode for storing
80 * free ino cache
82 #define BTRFS_FREE_INO_OBJECTID -12ULL
84 /* dummy objectid represents multiple objectids */
85 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
88 * All files have objectids in this range.
90 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
91 #define BTRFS_LAST_FREE_OBJECTID -256ULL
92 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
96 * the device items go into the chunk tree. The key is in the form
97 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
99 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
101 #define BTRFS_BTREE_INODE_OBJECTID 1
103 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
105 #define BTRFS_DEV_REPLACE_DEVID 0ULL
108 * inode items have the data typically returned from stat and store other
109 * info about object characteristics. There is one for every file and dir in
110 * the FS
112 #define BTRFS_INODE_ITEM_KEY 1
113 #define BTRFS_INODE_REF_KEY 12
114 #define BTRFS_INODE_EXTREF_KEY 13
115 #define BTRFS_XATTR_ITEM_KEY 24
116 #define BTRFS_ORPHAN_ITEM_KEY 48
117 /* reserve 2-15 close to the inode for later flexibility */
120 * dir items are the name -> inode pointers in a directory. There is one
121 * for every name in a directory.
123 #define BTRFS_DIR_LOG_ITEM_KEY 60
124 #define BTRFS_DIR_LOG_INDEX_KEY 72
125 #define BTRFS_DIR_ITEM_KEY 84
126 #define BTRFS_DIR_INDEX_KEY 96
128 * extent data is for file data
130 #define BTRFS_EXTENT_DATA_KEY 108
133 * extent csums are stored in a separate tree and hold csums for
134 * an entire extent on disk.
136 #define BTRFS_EXTENT_CSUM_KEY 128
139 * root items point to tree roots. They are typically in the root
140 * tree used by the super block to find all the other trees
142 #define BTRFS_ROOT_ITEM_KEY 132
145 * root backrefs tie subvols and snapshots to the directory entries that
146 * reference them
148 #define BTRFS_ROOT_BACKREF_KEY 144
151 * root refs make a fast index for listing all of the snapshots and
152 * subvolumes referenced by a given root. They point directly to the
153 * directory item in the root that references the subvol
155 #define BTRFS_ROOT_REF_KEY 156
158 * extent items are in the extent map tree. These record which blocks
159 * are used, and how many references there are to each block
161 #define BTRFS_EXTENT_ITEM_KEY 168
164 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
165 * the length, so we save the level in key->offset instead of the length.
167 #define BTRFS_METADATA_ITEM_KEY 169
169 #define BTRFS_TREE_BLOCK_REF_KEY 176
171 #define BTRFS_EXTENT_DATA_REF_KEY 178
173 #define BTRFS_EXTENT_REF_V0_KEY 180
175 #define BTRFS_SHARED_BLOCK_REF_KEY 182
177 #define BTRFS_SHARED_DATA_REF_KEY 184
180 * block groups give us hints into the extent allocation trees. Which
181 * blocks are free etc etc
183 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
186 * Every block group is represented in the free space tree by a free space info
187 * item, which stores some accounting information. It is keyed on
188 * (block_group_start, FREE_SPACE_INFO, block_group_length).
190 #define BTRFS_FREE_SPACE_INFO_KEY 198
193 * A free space extent tracks an extent of space that is free in a block group.
194 * It is keyed on (start, FREE_SPACE_EXTENT, length).
196 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
199 * When a block group becomes very fragmented, we convert it to use bitmaps
200 * instead of extents. A free space bitmap is keyed on
201 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
202 * (length / sectorsize) bits.
204 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
206 #define BTRFS_DEV_EXTENT_KEY 204
207 #define BTRFS_DEV_ITEM_KEY 216
208 #define BTRFS_CHUNK_ITEM_KEY 228
211 * Records the overall state of the qgroups.
212 * There's only one instance of this key present,
213 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
215 #define BTRFS_QGROUP_STATUS_KEY 240
217 * Records the currently used space of the qgroup.
218 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
220 #define BTRFS_QGROUP_INFO_KEY 242
222 * Contains the user configured limits for the qgroup.
223 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
225 #define BTRFS_QGROUP_LIMIT_KEY 244
227 * Records the child-parent relationship of qgroups. For
228 * each relation, 2 keys are present:
229 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
230 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
232 #define BTRFS_QGROUP_RELATION_KEY 246
235 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
237 #define BTRFS_BALANCE_ITEM_KEY 248
240 * The key type for tree items that are stored persistently, but do not need to
241 * exist for extended period of time. The items can exist in any tree.
243 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
245 * Existing items:
247 * - balance status item
248 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
250 #define BTRFS_TEMPORARY_ITEM_KEY 248
253 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
255 #define BTRFS_DEV_STATS_KEY 249
258 * The key type for tree items that are stored persistently and usually exist
259 * for a long period, eg. filesystem lifetime. The item kinds can be status
260 * information, stats or preference values. The item can exist in any tree.
262 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
264 * Existing items:
266 * - device statistics, store IO stats in the device tree, one key for all
267 * stats
268 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
270 #define BTRFS_PERSISTENT_ITEM_KEY 249
273 * Persistantly stores the device replace state in the device tree.
274 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
276 #define BTRFS_DEV_REPLACE_KEY 250
279 * Stores items that allow to quickly map UUIDs to something else.
280 * These items are part of the filesystem UUID tree.
281 * The key is built like this:
282 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
284 #if BTRFS_UUID_SIZE != 16
285 #error "UUID items require BTRFS_UUID_SIZE == 16!"
286 #endif
287 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
288 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
289 * received subvols */
292 * string items are for debugging. They just store a short string of
293 * data in the FS
295 #define BTRFS_STRING_ITEM_KEY 253
299 /* 32 bytes in various csum fields */
300 #define BTRFS_CSUM_SIZE 32
302 /* csum types */
303 #define BTRFS_CSUM_TYPE_CRC32 0
306 * flags definitions for directory entry item type
308 * Used by:
309 * struct btrfs_dir_item.type
311 #define BTRFS_FT_UNKNOWN 0
312 #define BTRFS_FT_REG_FILE 1
313 #define BTRFS_FT_DIR 2
314 #define BTRFS_FT_CHRDEV 3
315 #define BTRFS_FT_BLKDEV 4
316 #define BTRFS_FT_FIFO 5
317 #define BTRFS_FT_SOCK 6
318 #define BTRFS_FT_SYMLINK 7
319 #define BTRFS_FT_XATTR 8
320 #define BTRFS_FT_MAX 9
323 * The key defines the order in the tree, and so it also defines (optimal)
324 * block layout.
326 * objectid corresponds to the inode number.
328 * type tells us things about the object, and is a kind of stream selector.
329 * so for a given inode, keys with type of 1 might refer to the inode data,
330 * type of 2 may point to file data in the btree and type == 3 may point to
331 * extents.
333 * offset is the starting byte offset for this key in the stream.
335 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
336 * in cpu native order. Otherwise they are identical and their sizes
337 * should be the same (ie both packed)
339 struct btrfs_disk_key {
340 __le64 objectid;
341 __u8 type;
342 __le64 offset;
343 } __attribute__ ((__packed__));
345 struct btrfs_key {
346 __u64 objectid;
347 __u8 type;
348 __u64 offset;
349 } __attribute__ ((__packed__));
351 struct btrfs_dev_item {
352 /* the internal btrfs device id */
353 __le64 devid;
355 /* size of the device */
356 __le64 total_bytes;
358 /* bytes used */
359 __le64 bytes_used;
361 /* optimal io alignment for this device */
362 __le32 io_align;
364 /* optimal io width for this device */
365 __le32 io_width;
367 /* minimal io size for this device */
368 __le32 sector_size;
370 /* type and info about this device */
371 __le64 type;
373 /* expected generation for this device */
374 __le64 generation;
377 * starting byte of this partition on the device,
378 * to allow for stripe alignment in the future
380 __le64 start_offset;
382 /* grouping information for allocation decisions */
383 __le32 dev_group;
385 /* seek speed 0-100 where 100 is fastest */
386 __u8 seek_speed;
388 /* bandwidth 0-100 where 100 is fastest */
389 __u8 bandwidth;
391 /* btrfs generated uuid for this device */
392 __u8 uuid[BTRFS_UUID_SIZE];
394 /* uuid of FS who owns this device */
395 __u8 fsid[BTRFS_UUID_SIZE];
396 } __attribute__ ((__packed__));
398 struct btrfs_stripe {
399 __le64 devid;
400 __le64 offset;
401 __u8 dev_uuid[BTRFS_UUID_SIZE];
402 } __attribute__ ((__packed__));
404 struct btrfs_chunk {
405 /* size of this chunk in bytes */
406 __le64 length;
408 /* objectid of the root referencing this chunk */
409 __le64 owner;
411 __le64 stripe_len;
412 __le64 type;
414 /* optimal io alignment for this chunk */
415 __le32 io_align;
417 /* optimal io width for this chunk */
418 __le32 io_width;
420 /* minimal io size for this chunk */
421 __le32 sector_size;
423 /* 2^16 stripes is quite a lot, a second limit is the size of a single
424 * item in the btree
426 __le16 num_stripes;
428 /* sub stripes only matter for raid10 */
429 __le16 sub_stripes;
430 struct btrfs_stripe stripe;
431 /* additional stripes go here */
432 } __attribute__ ((__packed__));
434 #define BTRFS_FREE_SPACE_EXTENT 1
435 #define BTRFS_FREE_SPACE_BITMAP 2
437 struct btrfs_free_space_entry {
438 __le64 offset;
439 __le64 bytes;
440 __u8 type;
441 } __attribute__ ((__packed__));
443 struct btrfs_free_space_header {
444 struct btrfs_disk_key location;
445 __le64 generation;
446 __le64 num_entries;
447 __le64 num_bitmaps;
448 } __attribute__ ((__packed__));
450 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
451 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
453 /* Super block flags */
454 /* Errors detected */
455 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
457 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
458 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
462 * items in the extent btree are used to record the objectid of the
463 * owner of the block and the number of references
466 struct btrfs_extent_item {
467 __le64 refs;
468 __le64 generation;
469 __le64 flags;
470 } __attribute__ ((__packed__));
472 struct btrfs_extent_item_v0 {
473 __le32 refs;
474 } __attribute__ ((__packed__));
477 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
478 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
480 /* following flags only apply to tree blocks */
482 /* use full backrefs for extent pointers in the block */
483 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
486 * this flag is only used internally by scrub and may be changed at any time
487 * it is only declared here to avoid collisions
489 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
491 struct btrfs_tree_block_info {
492 struct btrfs_disk_key key;
493 __u8 level;
494 } __attribute__ ((__packed__));
496 struct btrfs_extent_data_ref {
497 __le64 root;
498 __le64 objectid;
499 __le64 offset;
500 __le32 count;
501 } __attribute__ ((__packed__));
503 struct btrfs_shared_data_ref {
504 __le32 count;
505 } __attribute__ ((__packed__));
507 struct btrfs_extent_inline_ref {
508 __u8 type;
509 __le64 offset;
510 } __attribute__ ((__packed__));
512 /* old style backrefs item */
513 struct btrfs_extent_ref_v0 {
514 __le64 root;
515 __le64 generation;
516 __le64 objectid;
517 __le32 count;
518 } __attribute__ ((__packed__));
521 /* dev extents record free space on individual devices. The owner
522 * field points back to the chunk allocation mapping tree that allocated
523 * the extent. The chunk tree uuid field is a way to double check the owner
525 struct btrfs_dev_extent {
526 __le64 chunk_tree;
527 __le64 chunk_objectid;
528 __le64 chunk_offset;
529 __le64 length;
530 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
531 } __attribute__ ((__packed__));
533 struct btrfs_inode_ref {
534 __le64 index;
535 __le16 name_len;
536 /* name goes here */
537 } __attribute__ ((__packed__));
539 struct btrfs_inode_extref {
540 __le64 parent_objectid;
541 __le64 index;
542 __le16 name_len;
543 __u8 name[0];
544 /* name goes here */
545 } __attribute__ ((__packed__));
547 struct btrfs_timespec {
548 __le64 sec;
549 __le32 nsec;
550 } __attribute__ ((__packed__));
552 struct btrfs_inode_item {
553 /* nfs style generation number */
554 __le64 generation;
555 /* transid that last touched this inode */
556 __le64 transid;
557 __le64 size;
558 __le64 nbytes;
559 __le64 block_group;
560 __le32 nlink;
561 __le32 uid;
562 __le32 gid;
563 __le32 mode;
564 __le64 rdev;
565 __le64 flags;
567 /* modification sequence number for NFS */
568 __le64 sequence;
571 * a little future expansion, for more than this we can
572 * just grow the inode item and version it
574 __le64 reserved[4];
575 struct btrfs_timespec atime;
576 struct btrfs_timespec ctime;
577 struct btrfs_timespec mtime;
578 struct btrfs_timespec otime;
579 } __attribute__ ((__packed__));
581 struct btrfs_dir_log_item {
582 __le64 end;
583 } __attribute__ ((__packed__));
585 struct btrfs_dir_item {
586 struct btrfs_disk_key location;
587 __le64 transid;
588 __le16 data_len;
589 __le16 name_len;
590 __u8 type;
591 } __attribute__ ((__packed__));
593 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
596 * Internal in-memory flag that a subvolume has been marked for deletion but
597 * still visible as a directory
599 #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
601 struct btrfs_root_item {
602 struct btrfs_inode_item inode;
603 __le64 generation;
604 __le64 root_dirid;
605 __le64 bytenr;
606 __le64 byte_limit;
607 __le64 bytes_used;
608 __le64 last_snapshot;
609 __le64 flags;
610 __le32 refs;
611 struct btrfs_disk_key drop_progress;
612 __u8 drop_level;
613 __u8 level;
616 * The following fields appear after subvol_uuids+subvol_times
617 * were introduced.
621 * This generation number is used to test if the new fields are valid
622 * and up to date while reading the root item. Every time the root item
623 * is written out, the "generation" field is copied into this field. If
624 * anyone ever mounted the fs with an older kernel, we will have
625 * mismatching generation values here and thus must invalidate the
626 * new fields. See btrfs_update_root and btrfs_find_last_root for
627 * details.
628 * the offset of generation_v2 is also used as the start for the memset
629 * when invalidating the fields.
631 __le64 generation_v2;
632 __u8 uuid[BTRFS_UUID_SIZE];
633 __u8 parent_uuid[BTRFS_UUID_SIZE];
634 __u8 received_uuid[BTRFS_UUID_SIZE];
635 __le64 ctransid; /* updated when an inode changes */
636 __le64 otransid; /* trans when created */
637 __le64 stransid; /* trans when sent. non-zero for received subvol */
638 __le64 rtransid; /* trans when received. non-zero for received subvol */
639 struct btrfs_timespec ctime;
640 struct btrfs_timespec otime;
641 struct btrfs_timespec stime;
642 struct btrfs_timespec rtime;
643 __le64 reserved[8]; /* for future */
644 } __attribute__ ((__packed__));
647 * this is used for both forward and backward root refs
649 struct btrfs_root_ref {
650 __le64 dirid;
651 __le64 sequence;
652 __le16 name_len;
653 } __attribute__ ((__packed__));
655 struct btrfs_disk_balance_args {
657 * profiles to operate on, single is denoted by
658 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
660 __le64 profiles;
663 * usage filter
664 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
665 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
667 union {
668 __le64 usage;
669 struct {
670 __le32 usage_min;
671 __le32 usage_max;
675 /* devid filter */
676 __le64 devid;
678 /* devid subset filter [pstart..pend) */
679 __le64 pstart;
680 __le64 pend;
682 /* btrfs virtual address space subset filter [vstart..vend) */
683 __le64 vstart;
684 __le64 vend;
687 * profile to convert to, single is denoted by
688 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
690 __le64 target;
692 /* BTRFS_BALANCE_ARGS_* */
693 __le64 flags;
696 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
697 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
698 * and maximum
700 union {
701 __le64 limit;
702 struct {
703 __le32 limit_min;
704 __le32 limit_max;
709 * Process chunks that cross stripes_min..stripes_max devices,
710 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
712 __le32 stripes_min;
713 __le32 stripes_max;
715 __le64 unused[6];
716 } __attribute__ ((__packed__));
719 * store balance parameters to disk so that balance can be properly
720 * resumed after crash or unmount
722 struct btrfs_balance_item {
723 /* BTRFS_BALANCE_* */
724 __le64 flags;
726 struct btrfs_disk_balance_args data;
727 struct btrfs_disk_balance_args meta;
728 struct btrfs_disk_balance_args sys;
730 __le64 unused[4];
731 } __attribute__ ((__packed__));
733 #define BTRFS_FILE_EXTENT_INLINE 0
734 #define BTRFS_FILE_EXTENT_REG 1
735 #define BTRFS_FILE_EXTENT_PREALLOC 2
737 struct btrfs_file_extent_item {
739 * transaction id that created this extent
741 __le64 generation;
743 * max number of bytes to hold this extent in ram
744 * when we split a compressed extent we can't know how big
745 * each of the resulting pieces will be. So, this is
746 * an upper limit on the size of the extent in ram instead of
747 * an exact limit.
749 __le64 ram_bytes;
752 * 32 bits for the various ways we might encode the data,
753 * including compression and encryption. If any of these
754 * are set to something a given disk format doesn't understand
755 * it is treated like an incompat flag for reading and writing,
756 * but not for stat.
758 __u8 compression;
759 __u8 encryption;
760 __le16 other_encoding; /* spare for later use */
762 /* are we __inline__ data or a real extent? */
763 __u8 type;
766 * disk space consumed by the extent, checksum blocks are included
767 * in these numbers
769 * At this offset in the structure, the __inline__ extent data start.
771 __le64 disk_bytenr;
772 __le64 disk_num_bytes;
774 * the logical offset in file blocks (no csums)
775 * this extent record is for. This allows a file extent to point
776 * into the middle of an existing extent on disk, sharing it
777 * between two snapshots (useful if some bytes in the middle of the
778 * extent have changed
780 __le64 offset;
782 * the logical number of file blocks (no csums included). This
783 * always reflects the size uncompressed and without encoding.
785 __le64 num_bytes;
787 } __attribute__ ((__packed__));
789 struct btrfs_csum_item {
790 __u8 csum;
791 } __attribute__ ((__packed__));
793 struct btrfs_dev_stats_item {
795 * grow this item struct at the end for future enhancements and keep
796 * the existing values unchanged
798 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
799 } __attribute__ ((__packed__));
801 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
802 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
803 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0
804 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1
805 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2
806 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3
807 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4
809 struct btrfs_dev_replace_item {
811 * grow this item struct at the end for future enhancements and keep
812 * the existing values unchanged
814 __le64 src_devid;
815 __le64 cursor_left;
816 __le64 cursor_right;
817 __le64 cont_reading_from_srcdev_mode;
819 __le64 replace_state;
820 __le64 time_started;
821 __le64 time_stopped;
822 __le64 num_write_errors;
823 __le64 num_uncorrectable_read_errors;
824 } __attribute__ ((__packed__));
826 /* different types of block groups (and chunks) */
827 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
828 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
829 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
830 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
831 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
832 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
833 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
834 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
835 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
836 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
837 BTRFS_SPACE_INFO_GLOBAL_RSV)
839 enum btrfs_raid_types {
840 BTRFS_RAID_RAID10,
841 BTRFS_RAID_RAID1,
842 BTRFS_RAID_DUP,
843 BTRFS_RAID_RAID0,
844 BTRFS_RAID_SINGLE,
845 BTRFS_RAID_RAID5,
846 BTRFS_RAID_RAID6,
847 BTRFS_NR_RAID_TYPES
850 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
851 BTRFS_BLOCK_GROUP_SYSTEM | \
852 BTRFS_BLOCK_GROUP_METADATA)
854 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
855 BTRFS_BLOCK_GROUP_RAID1 | \
856 BTRFS_BLOCK_GROUP_RAID5 | \
857 BTRFS_BLOCK_GROUP_RAID6 | \
858 BTRFS_BLOCK_GROUP_DUP | \
859 BTRFS_BLOCK_GROUP_RAID10)
860 #define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
861 BTRFS_BLOCK_GROUP_RAID6)
864 * We need a bit for restriper to be able to tell when chunks of type
865 * SINGLE are available. This "extended" profile format is used in
866 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
867 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
868 * to avoid remappings between two formats in future.
870 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
873 * A fake block group type that is used to communicate global block reserve
874 * size to userspace via the SPACE_INFO ioctl.
876 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
878 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
879 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
881 static __inline__ __u64 chunk_to_extended(__u64 flags)
883 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
884 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
886 return flags;
888 static __inline__ __u64 extended_to_chunk(__u64 flags)
890 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
893 struct btrfs_block_group_item {
894 __le64 used;
895 __le64 chunk_objectid;
896 __le64 flags;
897 } __attribute__ ((__packed__));
899 struct btrfs_free_space_info {
900 __le32 extent_count;
901 __le32 flags;
902 } __attribute__ ((__packed__));
904 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
906 #define BTRFS_QGROUP_LEVEL_SHIFT 48
907 static __inline__ __u64 btrfs_qgroup_level(__u64 qgroupid)
909 return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
913 * is subvolume quota turned on?
915 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
917 * RESCAN is set during the initialization phase
919 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
921 * Some qgroup entries are known to be out of date,
922 * either because the configuration has changed in a way that
923 * makes a rescan necessary, or because the fs has been mounted
924 * with a non-qgroup-aware version.
925 * Turning qouta off and on again makes it inconsistent, too.
927 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
929 #define BTRFS_QGROUP_STATUS_VERSION 1
931 struct btrfs_qgroup_status_item {
932 __le64 version;
934 * the generation is updated during every commit. As older
935 * versions of btrfs are not aware of qgroups, it will be
936 * possible to detect inconsistencies by checking the
937 * generation on mount time
939 __le64 generation;
941 /* flag definitions see above */
942 __le64 flags;
945 * only used during scanning to record the progress
946 * of the scan. It contains a logical address
948 __le64 rescan;
949 } __attribute__ ((__packed__));
951 struct btrfs_qgroup_info_item {
952 __le64 generation;
953 __le64 rfer;
954 __le64 rfer_cmpr;
955 __le64 excl;
956 __le64 excl_cmpr;
957 } __attribute__ ((__packed__));
959 struct btrfs_qgroup_limit_item {
961 * only updated when any of the other values change
963 __le64 flags;
964 __le64 max_rfer;
965 __le64 max_excl;
966 __le64 rsv_rfer;
967 __le64 rsv_excl;
968 } __attribute__ ((__packed__));
970 #endif /* _BTRFS_CTREE_H_ */