2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include "kerncompat.h"
23 #include "kernel-shared/ulist.h"
24 #include "transaction.h"
27 #define pr_debug(...) do { } while (0)
29 struct extent_inode_elem
{
32 struct extent_inode_elem
*next
;
35 static int check_extent_in_eb(struct btrfs_key
*key
, struct extent_buffer
*eb
,
36 struct btrfs_file_extent_item
*fi
,
38 struct extent_inode_elem
**eie
)
41 struct extent_inode_elem
*e
;
43 if (!btrfs_file_extent_compression(eb
, fi
) &&
44 !btrfs_file_extent_encryption(eb
, fi
) &&
45 !btrfs_file_extent_other_encoding(eb
, fi
)) {
49 data_offset
= btrfs_file_extent_offset(eb
, fi
);
50 data_len
= btrfs_file_extent_num_bytes(eb
, fi
);
52 if (extent_item_pos
< data_offset
||
53 extent_item_pos
>= data_offset
+ data_len
)
55 offset
= extent_item_pos
- data_offset
;
58 e
= kmalloc(sizeof(*e
), GFP_NOFS
);
63 e
->inum
= key
->objectid
;
64 e
->offset
= key
->offset
+ offset
;
70 static void free_inode_elem_list(struct extent_inode_elem
*eie
)
72 struct extent_inode_elem
*eie_next
;
74 for (; eie
; eie
= eie_next
) {
80 static int find_extent_in_eb(struct extent_buffer
*eb
, u64 wanted_disk_byte
,
82 struct extent_inode_elem
**eie
)
86 struct btrfs_file_extent_item
*fi
;
93 * from the shared data ref, we only have the leaf but we need
94 * the key. thus, we must look into all items and see that we
95 * find one (some) with a reference to our extent item.
97 nritems
= btrfs_header_nritems(eb
);
98 for (slot
= 0; slot
< nritems
; ++slot
) {
99 btrfs_item_key_to_cpu(eb
, &key
, slot
);
100 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
102 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
103 extent_type
= btrfs_file_extent_type(eb
, fi
);
104 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
106 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
107 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
108 if (disk_byte
!= wanted_disk_byte
)
111 ret
= check_extent_in_eb(&key
, eb
, fi
, extent_item_pos
, eie
);
120 * this structure records all encountered refs on the way up to the root
122 struct __prelim_ref
{
123 struct list_head list
;
125 struct btrfs_key key_for_search
;
128 struct extent_inode_elem
*inode_list
;
130 u64 wanted_disk_byte
;
133 static struct __prelim_ref
*list_first_pref(struct list_head
*head
)
135 return list_first_entry(head
, struct __prelim_ref
, list
);
139 struct list_head pending
;
140 struct list_head pending_missing_keys
;
141 struct list_head pending_indirect_refs
;
144 static void init_pref_state(struct pref_state
*prefstate
)
146 INIT_LIST_HEAD(&prefstate
->pending
);
147 INIT_LIST_HEAD(&prefstate
->pending_missing_keys
);
148 INIT_LIST_HEAD(&prefstate
->pending_indirect_refs
);
152 * the rules for all callers of this function are:
153 * - obtaining the parent is the goal
154 * - if you add a key, you must know that it is a correct key
155 * - if you cannot add the parent or a correct key, then we will look into the
156 * block later to set a correct key
160 * backref type | shared | indirect | shared | indirect
161 * information | tree | tree | data | data
162 * --------------------+--------+----------+--------+----------
163 * parent logical | y | - | - | -
164 * key to resolve | - | y | y | y
165 * tree block logical | - | - | - | -
166 * root for resolving | y | y | y | y
168 * - column 1: we've the parent -> done
169 * - column 2, 3, 4: we use the key to find the parent
171 * on disk refs (inline or keyed)
172 * ==============================
173 * backref type | shared | indirect | shared | indirect
174 * information | tree | tree | data | data
175 * --------------------+--------+----------+--------+----------
176 * parent logical | y | - | y | -
177 * key to resolve | - | - | - | y
178 * tree block logical | y | y | y | y
179 * root for resolving | - | y | y | y
181 * - column 1, 3: we've the parent -> done
182 * - column 2: we take the first key from the block to find the parent
183 * (see __add_missing_keys)
184 * - column 4: we use the key to find the parent
186 * additional information that's available but not required to find the parent
187 * block might help in merging entries to gain some speed.
190 static int __add_prelim_ref(struct pref_state
*prefstate
, u64 root_id
,
191 struct btrfs_key
*key
, int level
,
192 u64 parent
, u64 wanted_disk_byte
, int count
,
195 struct list_head
*head
;
196 struct __prelim_ref
*ref
;
198 if (root_id
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
201 ref
= kmalloc(sizeof(*ref
), gfp_mask
);
205 ref
->root_id
= root_id
;
207 ref
->key_for_search
= *key
;
208 head
= &prefstate
->pending
;
210 memset(&ref
->key_for_search
, 0, sizeof(ref
->key_for_search
));
211 head
= &prefstate
->pending
;
213 memset(&ref
->key_for_search
, 0, sizeof(ref
->key_for_search
));
214 head
= &prefstate
->pending_missing_keys
;
217 ref
->inode_list
= NULL
;
220 ref
->parent
= parent
;
221 ref
->wanted_disk_byte
= wanted_disk_byte
;
223 list_add_tail(&ref
->list
, head
);
228 static int add_all_parents(struct btrfs_root
*root
, struct btrfs_path
*path
,
229 struct ulist
*parents
, struct __prelim_ref
*ref
,
230 int level
, u64 time_seq
, const u64
*extent_item_pos
,
235 struct extent_buffer
*eb
;
236 struct btrfs_key key
;
237 struct btrfs_key
*key_for_search
= &ref
->key_for_search
;
238 struct btrfs_file_extent_item
*fi
;
239 struct extent_inode_elem
*eie
= NULL
, *old
= NULL
;
241 u64 wanted_disk_byte
= ref
->wanted_disk_byte
;
245 eb
= path
->nodes
[level
];
246 ret
= ulist_add(parents
, eb
->start
, 0, GFP_NOFS
);
253 * We normally enter this function with the path already pointing to
254 * the first item to check. But sometimes, we may enter it with
255 * slot==nritems. In that case, go to the next leaf before we continue.
257 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0]))
258 ret
= btrfs_next_leaf(root
, path
);
260 while (!ret
&& count
< total_refs
) {
262 slot
= path
->slots
[0];
264 btrfs_item_key_to_cpu(eb
, &key
, slot
);
266 if (key
.objectid
!= key_for_search
->objectid
||
267 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
270 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
271 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
273 if (disk_byte
== wanted_disk_byte
) {
277 if (extent_item_pos
) {
278 ret
= check_extent_in_eb(&key
, eb
, fi
,
286 ret
= ulist_add_merge_ptr(parents
, eb
->start
,
287 eie
, (void **)&old
, GFP_NOFS
);
290 if (!ret
&& extent_item_pos
) {
298 ret
= btrfs_next_item(root
, path
);
304 free_inode_elem_list(eie
);
309 * resolve an indirect backref in the form (root_id, key, level)
310 * to a logical address
312 static int __resolve_indirect_ref(struct btrfs_fs_info
*fs_info
,
313 struct btrfs_path
*path
, u64 time_seq
,
314 struct __prelim_ref
*ref
,
315 struct ulist
*parents
,
316 const u64
*extent_item_pos
, u64 total_refs
)
318 struct btrfs_root
*root
;
319 struct btrfs_key root_key
;
320 struct extent_buffer
*eb
;
323 int level
= ref
->level
;
325 root_key
.objectid
= ref
->root_id
;
326 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
327 root_key
.offset
= (u64
)-1;
329 root
= btrfs_read_fs_root(fs_info
, &root_key
);
335 root_level
= btrfs_root_level(&root
->root_item
);
337 if (root_level
+ 1 == level
)
340 path
->lowest_level
= level
;
341 ret
= btrfs_search_slot(NULL
, root
, &ref
->key_for_search
, path
, 0, 0);
343 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
344 "%d for key (%llu %u %llu)\n",
345 ref
->root_id
, level
, ref
->count
, ret
,
346 ref
->key_for_search
.objectid
, ref
->key_for_search
.type
,
347 ref
->key_for_search
.offset
);
351 eb
= path
->nodes
[level
];
359 eb
= path
->nodes
[level
];
362 ret
= add_all_parents(root
, path
, parents
, ref
, level
, time_seq
,
363 extent_item_pos
, total_refs
);
365 path
->lowest_level
= 0;
366 btrfs_release_path(path
);
371 * resolve all indirect backrefs from the list
373 static int __resolve_indirect_refs(struct btrfs_fs_info
*fs_info
,
374 struct pref_state
*prefstate
,
375 struct btrfs_path
*path
, u64 time_seq
,
376 const u64
*extent_item_pos
, u64 total_refs
)
378 struct list_head
*head
= &prefstate
->pending_indirect_refs
;
381 struct __prelim_ref
*ref
;
382 struct __prelim_ref
*new_ref
;
383 struct ulist
*parents
;
384 struct ulist_node
*node
;
385 struct ulist_iterator uiter
;
387 parents
= ulist_alloc(GFP_NOFS
);
391 while (!list_empty(head
)) {
392 ref
= list_first_pref(head
);
393 list_move(&ref
->list
, &prefstate
->pending
);
394 ASSERT(!ref
->parent
); /* already direct */
396 err
= __resolve_indirect_ref(fs_info
, path
, time_seq
, ref
,
397 parents
, extent_item_pos
,
400 * we can only tolerate ENOENT,otherwise,we should catch error
401 * and return directly.
403 if (err
== -ENOENT
) {
410 /* we put the first parent into the ref at hand */
411 ULIST_ITER_INIT(&uiter
);
412 node
= ulist_next(parents
, &uiter
);
413 ref
->parent
= node
? node
->val
: 0;
414 ref
->inode_list
= node
?
415 (struct extent_inode_elem
*)(uintptr_t)node
->aux
: NULL
;
417 /* additional parents require new refs being added here */
418 while ((node
= ulist_next(parents
, &uiter
))) {
419 new_ref
= kmalloc(sizeof(*new_ref
), GFP_NOFS
);
424 memcpy(new_ref
, ref
, sizeof(*ref
));
425 new_ref
->parent
= node
->val
;
426 new_ref
->inode_list
= (struct extent_inode_elem
*)
427 (uintptr_t)node
->aux
;
428 list_add_tail(&new_ref
->list
, &prefstate
->pending
);
430 ulist_reinit(parents
);
437 static inline int ref_for_same_block(struct __prelim_ref
*ref1
,
438 struct __prelim_ref
*ref2
)
440 if (ref1
->level
!= ref2
->level
)
442 if (ref1
->root_id
!= ref2
->root_id
)
444 if (ref1
->key_for_search
.type
!= ref2
->key_for_search
.type
)
446 if (ref1
->key_for_search
.objectid
!= ref2
->key_for_search
.objectid
)
448 if (ref1
->key_for_search
.offset
!= ref2
->key_for_search
.offset
)
450 if (ref1
->parent
!= ref2
->parent
)
457 * read tree blocks and add keys where required.
459 static int __add_missing_keys(struct btrfs_fs_info
*fs_info
,
460 struct pref_state
*prefstate
)
462 struct extent_buffer
*eb
;
464 while (!list_empty(&prefstate
->pending_missing_keys
)) {
465 struct __prelim_ref
*ref
;
467 ref
= list_first_pref(&prefstate
->pending_missing_keys
);
469 ASSERT(ref
->root_id
);
470 ASSERT(!ref
->parent
);
471 ASSERT(!ref
->key_for_search
.type
);
472 BUG_ON(!ref
->wanted_disk_byte
);
473 eb
= read_tree_block(fs_info
, ref
->wanted_disk_byte
, 0);
474 if (!extent_buffer_uptodate(eb
)) {
475 free_extent_buffer(eb
);
478 if (btrfs_header_level(eb
) == 0)
479 btrfs_item_key_to_cpu(eb
, &ref
->key_for_search
, 0);
481 btrfs_node_key_to_cpu(eb
, &ref
->key_for_search
, 0);
482 free_extent_buffer(eb
);
483 list_move(&ref
->list
, &prefstate
->pending
);
489 * merge two lists of backrefs and adjust counts accordingly
491 * mode = 1: merge identical keys, if key is set
492 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
493 * additionally, we could even add a key range for the blocks we
494 * looked into to merge even more (-> replace unresolved refs by those
496 * mode = 2: merge identical parents
498 static void __merge_refs(struct pref_state
*prefstate
, int mode
)
500 struct list_head
*head
= &prefstate
->pending
;
501 struct list_head
*pos1
;
503 list_for_each(pos1
, head
) {
504 struct list_head
*n2
;
505 struct list_head
*pos2
;
506 struct __prelim_ref
*ref1
;
508 ref1
= list_entry(pos1
, struct __prelim_ref
, list
);
510 for (pos2
= pos1
->next
, n2
= pos2
->next
; pos2
!= head
;
511 pos2
= n2
, n2
= pos2
->next
) {
512 struct __prelim_ref
*ref2
;
513 struct __prelim_ref
*xchg
;
514 struct extent_inode_elem
*eie
;
516 ref2
= list_entry(pos2
, struct __prelim_ref
, list
);
519 if (!ref_for_same_block(ref1
, ref2
))
521 if (!ref1
->parent
&& ref2
->parent
) {
527 if (ref1
->parent
!= ref2
->parent
)
531 eie
= ref1
->inode_list
;
532 while (eie
&& eie
->next
)
535 eie
->next
= ref2
->inode_list
;
537 ref1
->inode_list
= ref2
->inode_list
;
538 ref1
->count
+= ref2
->count
;
540 list_del(&ref2
->list
);
548 * add all inline backrefs for bytenr to the list
550 static int __add_inline_refs(struct btrfs_fs_info
*fs_info
,
551 struct pref_state
*prefstate
,
552 struct btrfs_path
*path
, u64 bytenr
,
553 int *info_level
, u64
*total_refs
)
557 struct extent_buffer
*leaf
;
558 struct btrfs_key key
;
559 struct btrfs_key found_key
;
562 struct btrfs_extent_item
*ei
;
566 * enumerate all inline refs
568 leaf
= path
->nodes
[0];
569 slot
= path
->slots
[0];
571 item_size
= btrfs_item_size_nr(leaf
, slot
);
572 BUG_ON(item_size
< sizeof(*ei
));
574 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_extent_item
);
575 flags
= btrfs_extent_flags(leaf
, ei
);
576 *total_refs
+= btrfs_extent_refs(leaf
, ei
);
577 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
579 ptr
= (unsigned long)(ei
+ 1);
580 end
= (unsigned long)ei
+ item_size
;
582 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
583 flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
584 struct btrfs_tree_block_info
*info
;
586 info
= (struct btrfs_tree_block_info
*)ptr
;
587 *info_level
= btrfs_tree_block_level(leaf
, info
);
588 ptr
+= sizeof(struct btrfs_tree_block_info
);
590 } else if (found_key
.type
== BTRFS_METADATA_ITEM_KEY
) {
591 *info_level
= found_key
.offset
;
593 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
597 struct btrfs_extent_inline_ref
*iref
;
601 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
602 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
603 offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
606 case BTRFS_SHARED_BLOCK_REF_KEY
:
607 ret
= __add_prelim_ref(prefstate
, 0, NULL
,
608 *info_level
+ 1, offset
,
609 bytenr
, 1, GFP_NOFS
);
611 case BTRFS_SHARED_DATA_REF_KEY
: {
612 struct btrfs_shared_data_ref
*sdref
;
615 sdref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
616 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
617 ret
= __add_prelim_ref(prefstate
, 0, NULL
, 0, offset
,
618 bytenr
, count
, GFP_NOFS
);
621 case BTRFS_TREE_BLOCK_REF_KEY
:
622 ret
= __add_prelim_ref(prefstate
, offset
, NULL
,
624 bytenr
, 1, GFP_NOFS
);
626 case BTRFS_EXTENT_DATA_REF_KEY
: {
627 struct btrfs_extent_data_ref
*dref
;
631 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
632 count
= btrfs_extent_data_ref_count(leaf
, dref
);
633 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
635 key
.type
= BTRFS_EXTENT_DATA_KEY
;
636 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
637 root
= btrfs_extent_data_ref_root(leaf
, dref
);
638 ret
= __add_prelim_ref(prefstate
, root
, &key
, 0, 0,
639 bytenr
, count
, GFP_NOFS
);
647 ptr
+= btrfs_extent_inline_ref_size(type
);
654 * add all non-inline backrefs for bytenr to the list
656 static int __add_keyed_refs(struct btrfs_fs_info
*fs_info
,
657 struct pref_state
*prefstate
,
658 struct btrfs_path
*path
, u64 bytenr
,
661 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
664 struct extent_buffer
*leaf
;
665 struct btrfs_key key
;
668 ret
= btrfs_next_item(extent_root
, path
);
676 slot
= path
->slots
[0];
677 leaf
= path
->nodes
[0];
678 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
680 if (key
.objectid
!= bytenr
)
682 if (key
.type
< BTRFS_TREE_BLOCK_REF_KEY
)
684 if (key
.type
> BTRFS_SHARED_DATA_REF_KEY
)
688 case BTRFS_SHARED_BLOCK_REF_KEY
:
689 ret
= __add_prelim_ref(prefstate
, 0, NULL
,
690 info_level
+ 1, key
.offset
,
691 bytenr
, 1, GFP_NOFS
);
693 case BTRFS_SHARED_DATA_REF_KEY
: {
694 struct btrfs_shared_data_ref
*sdref
;
697 sdref
= btrfs_item_ptr(leaf
, slot
,
698 struct btrfs_shared_data_ref
);
699 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
700 ret
= __add_prelim_ref(prefstate
, 0, NULL
, 0, key
.offset
,
701 bytenr
, count
, GFP_NOFS
);
704 case BTRFS_TREE_BLOCK_REF_KEY
:
705 ret
= __add_prelim_ref(prefstate
, key
.offset
, NULL
,
707 bytenr
, 1, GFP_NOFS
);
709 case BTRFS_EXTENT_DATA_REF_KEY
: {
710 struct btrfs_extent_data_ref
*dref
;
714 dref
= btrfs_item_ptr(leaf
, slot
,
715 struct btrfs_extent_data_ref
);
716 count
= btrfs_extent_data_ref_count(leaf
, dref
);
717 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
719 key
.type
= BTRFS_EXTENT_DATA_KEY
;
720 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
721 root
= btrfs_extent_data_ref_root(leaf
, dref
);
722 ret
= __add_prelim_ref(prefstate
, root
, &key
, 0, 0,
723 bytenr
, count
, GFP_NOFS
);
738 * this adds all existing backrefs (inline backrefs, backrefs and delayed
739 * refs) for the given bytenr to the refs list, merges duplicates and resolves
740 * indirect refs to their parent bytenr.
741 * When roots are found, they're added to the roots list
743 * FIXME some caching might speed things up
745 static int find_parent_nodes(struct btrfs_trans_handle
*trans
,
746 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
747 u64 time_seq
, struct ulist
*refs
,
748 struct ulist
*roots
, const u64
*extent_item_pos
)
750 struct btrfs_key key
;
751 struct btrfs_path
*path
;
754 struct pref_state prefstate
;
755 struct __prelim_ref
*ref
;
756 struct extent_inode_elem
*eie
= NULL
;
759 init_pref_state(&prefstate
);
761 key
.objectid
= bytenr
;
762 key
.offset
= (u64
)-1;
763 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
764 key
.type
= BTRFS_METADATA_ITEM_KEY
;
766 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
768 path
= btrfs_alloc_path();
772 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 0);
777 if (path
->slots
[0]) {
778 struct extent_buffer
*leaf
;
782 leaf
= path
->nodes
[0];
783 slot
= path
->slots
[0];
784 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
785 if (key
.objectid
== bytenr
&&
786 (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
787 key
.type
== BTRFS_METADATA_ITEM_KEY
)) {
788 ret
= __add_inline_refs(fs_info
, &prefstate
, path
,
793 ret
= __add_keyed_refs(fs_info
, &prefstate
, path
,
799 btrfs_release_path(path
);
801 ret
= __add_missing_keys(fs_info
, &prefstate
);
805 __merge_refs(&prefstate
, 1);
807 ret
= __resolve_indirect_refs(fs_info
, &prefstate
, path
, time_seq
,
808 extent_item_pos
, total_refs
);
812 __merge_refs(&prefstate
, 2);
814 BUG_ON(!list_empty(&prefstate
.pending_missing_keys
));
815 BUG_ON(!list_empty(&prefstate
.pending_indirect_refs
));
817 while (!list_empty(&prefstate
.pending
)) {
818 ref
= list_first_pref(&prefstate
.pending
);
819 WARN_ON(ref
->count
< 0);
820 if (roots
&& ref
->count
&& ref
->root_id
&& ref
->parent
== 0) {
821 /* no parent == root of tree */
822 ret
= ulist_add(roots
, ref
->root_id
, 0, GFP_NOFS
);
826 if (ref
->count
&& ref
->parent
) {
827 if (extent_item_pos
&& !ref
->inode_list
&&
829 struct extent_buffer
*eb
;
831 eb
= read_tree_block(fs_info
, ref
->parent
, 0);
832 if (!extent_buffer_uptodate(eb
)) {
833 free_extent_buffer(eb
);
837 ret
= find_extent_in_eb(eb
, bytenr
,
838 *extent_item_pos
, &eie
);
839 free_extent_buffer(eb
);
842 ref
->inode_list
= eie
;
844 ret
= ulist_add_merge_ptr(refs
, ref
->parent
,
846 (void **)&eie
, GFP_NOFS
);
849 if (!ret
&& extent_item_pos
) {
851 * we've recorded that parent, so we must extend
852 * its inode list here
857 eie
->next
= ref
->inode_list
;
861 list_del(&ref
->list
);
866 btrfs_free_path(path
);
867 while (!list_empty(&prefstate
.pending
)) {
868 ref
= list_first_pref(&prefstate
.pending
);
869 list_del(&ref
->list
);
873 free_inode_elem_list(eie
);
877 static void free_leaf_list(struct ulist
*blocks
)
879 struct ulist_node
*node
= NULL
;
880 struct extent_inode_elem
*eie
;
881 struct ulist_iterator uiter
;
883 ULIST_ITER_INIT(&uiter
);
884 while ((node
= ulist_next(blocks
, &uiter
))) {
887 eie
= (struct extent_inode_elem
*)(uintptr_t)node
->aux
;
888 free_inode_elem_list(eie
);
896 * Finds all leafs with a reference to the specified combination of bytenr and
897 * offset. key_list_head will point to a list of corresponding keys (caller must
898 * free each list element). The leafs will be stored in the leafs ulist, which
899 * must be freed with ulist_free.
901 * returns 0 on success, <0 on error
903 static int btrfs_find_all_leafs(struct btrfs_trans_handle
*trans
,
904 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
905 u64 time_seq
, struct ulist
**leafs
,
906 const u64
*extent_item_pos
)
910 *leafs
= ulist_alloc(GFP_NOFS
);
914 ret
= find_parent_nodes(trans
, fs_info
, bytenr
,
915 time_seq
, *leafs
, NULL
, extent_item_pos
);
916 if (ret
< 0 && ret
!= -ENOENT
) {
917 free_leaf_list(*leafs
);
925 * walk all backrefs for a given extent to find all roots that reference this
926 * extent. Walking a backref means finding all extents that reference this
927 * extent and in turn walk the backrefs of those, too. Naturally this is a
928 * recursive process, but here it is implemented in an iterative fashion: We
929 * find all referencing extents for the extent in question and put them on a
930 * list. In turn, we find all referencing extents for those, further appending
931 * to the list. The way we iterate the list allows adding more elements after
932 * the current while iterating. The process stops when we reach the end of the
933 * list. Found roots are added to the roots list.
935 * returns 0 on success, < 0 on error.
937 static int __btrfs_find_all_roots(struct btrfs_trans_handle
*trans
,
938 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
939 u64 time_seq
, struct ulist
**roots
)
942 struct ulist_node
*node
= NULL
;
943 struct ulist_iterator uiter
;
946 tmp
= ulist_alloc(GFP_NOFS
);
949 *roots
= ulist_alloc(GFP_NOFS
);
955 ULIST_ITER_INIT(&uiter
);
957 ret
= find_parent_nodes(trans
, fs_info
, bytenr
,
958 time_seq
, tmp
, *roots
, NULL
);
959 if (ret
< 0 && ret
!= -ENOENT
) {
964 node
= ulist_next(tmp
, &uiter
);
975 int btrfs_find_all_roots(struct btrfs_trans_handle
*trans
,
976 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
977 u64 time_seq
, struct ulist
**roots
)
979 return __btrfs_find_all_roots(trans
, fs_info
, bytenr
, time_seq
, roots
);
983 * this makes the path point to (inum INODE_ITEM ioff)
985 int inode_item_info(u64 inum
, u64 ioff
, struct btrfs_root
*fs_root
,
986 struct btrfs_path
*path
)
988 struct btrfs_key key
;
989 return btrfs_find_item(fs_root
, path
, inum
, ioff
,
990 BTRFS_INODE_ITEM_KEY
, &key
);
993 static int inode_ref_info(u64 inum
, u64 ioff
, struct btrfs_root
*fs_root
,
994 struct btrfs_path
*path
,
995 struct btrfs_key
*found_key
)
997 return btrfs_find_item(fs_root
, path
, inum
, ioff
,
998 BTRFS_INODE_REF_KEY
, found_key
);
1001 int btrfs_find_one_extref(struct btrfs_root
*root
, u64 inode_objectid
,
1002 u64 start_off
, struct btrfs_path
*path
,
1003 struct btrfs_inode_extref
**ret_extref
,
1007 struct btrfs_key key
;
1008 struct btrfs_key found_key
;
1009 struct btrfs_inode_extref
*extref
;
1010 struct extent_buffer
*leaf
;
1013 key
.objectid
= inode_objectid
;
1014 key
.type
= BTRFS_INODE_EXTREF_KEY
;
1015 key
.offset
= start_off
;
1017 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1022 leaf
= path
->nodes
[0];
1023 slot
= path
->slots
[0];
1024 if (slot
>= btrfs_header_nritems(leaf
)) {
1026 * If the item at offset is not found,
1027 * btrfs_search_slot will point us to the slot
1028 * where it should be inserted. In our case
1029 * that will be the slot directly before the
1030 * next INODE_REF_KEY_V2 item. In the case
1031 * that we're pointing to the last slot in a
1032 * leaf, we must move one leaf over.
1034 ret
= btrfs_next_leaf(root
, path
);
1043 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
1046 * Check that we're still looking at an extended ref key for
1047 * this particular objectid. If we have different
1048 * objectid or type then there are no more to be found
1049 * in the tree and we can exit.
1052 if (found_key
.objectid
!= inode_objectid
)
1054 if (found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)
1058 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1059 extref
= (struct btrfs_inode_extref
*)ptr
;
1060 *ret_extref
= extref
;
1062 *found_off
= found_key
.offset
;
1070 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1071 * Elements of the path are separated by '/' and the path is guaranteed to be
1072 * 0-terminated. the path is only given within the current file system.
1073 * Therefore, it never starts with a '/'. the caller is responsible to provide
1074 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1075 * the start point of the resulting string is returned. this pointer is within
1077 * in case the path buffer would overflow, the pointer is decremented further
1078 * as if output was written to the buffer, though no more output is actually
1079 * generated. that way, the caller can determine how much space would be
1080 * required for the path to fit into the buffer. in that case, the returned
1081 * value will be smaller than dest. callers must check this!
1083 char *btrfs_ref_to_path(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
1084 u32 name_len
, unsigned long name_off
,
1085 struct extent_buffer
*eb_in
, u64 parent
,
1086 char *dest
, u32 size
)
1091 s64 bytes_left
= ((s64
)size
) - 1;
1092 struct extent_buffer
*eb
= eb_in
;
1093 struct btrfs_key found_key
;
1094 struct btrfs_inode_ref
*iref
;
1096 if (bytes_left
>= 0)
1097 dest
[bytes_left
] = '\0';
1100 bytes_left
-= name_len
;
1101 if (bytes_left
>= 0)
1102 read_extent_buffer(eb
, dest
+ bytes_left
,
1103 name_off
, name_len
);
1105 free_extent_buffer(eb
);
1106 ret
= inode_ref_info(parent
, 0, fs_root
, path
, &found_key
);
1112 next_inum
= found_key
.offset
;
1114 /* regular exit ahead */
1115 if (parent
== next_inum
)
1118 slot
= path
->slots
[0];
1119 eb
= path
->nodes
[0];
1120 /* make sure we can use eb after releasing the path */
1123 btrfs_release_path(path
);
1124 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1126 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1127 name_off
= (unsigned long)(iref
+ 1);
1131 if (bytes_left
>= 0)
1132 dest
[bytes_left
] = '/';
1135 btrfs_release_path(path
);
1138 return ERR_PTR(ret
);
1140 return dest
+ bytes_left
;
1144 * this makes the path point to (logical EXTENT_ITEM *)
1145 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1146 * tree blocks and <0 on error.
1148 int extent_from_logical(struct btrfs_fs_info
*fs_info
, u64 logical
,
1149 struct btrfs_path
*path
, struct btrfs_key
*found_key
,
1156 struct extent_buffer
*eb
;
1157 struct btrfs_extent_item
*ei
;
1158 struct btrfs_key key
;
1160 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
1161 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1163 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1164 key
.objectid
= logical
;
1165 key
.offset
= (u64
)-1;
1167 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
1171 ret
= btrfs_previous_extent_item(fs_info
->extent_root
, path
, 0);
1177 btrfs_item_key_to_cpu(path
->nodes
[0], found_key
, path
->slots
[0]);
1178 if (found_key
->type
== BTRFS_METADATA_ITEM_KEY
)
1179 size
= fs_info
->nodesize
;
1180 else if (found_key
->type
== BTRFS_EXTENT_ITEM_KEY
)
1181 size
= found_key
->offset
;
1183 if (found_key
->objectid
> logical
||
1184 found_key
->objectid
+ size
<= logical
) {
1185 pr_debug("logical %llu is not within any extent\n", logical
);
1189 eb
= path
->nodes
[0];
1190 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
1191 BUG_ON(item_size
< sizeof(*ei
));
1193 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
1194 flags
= btrfs_extent_flags(eb
, ei
);
1196 pr_debug("logical %llu is at position %llu within the extent (%llu "
1197 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1198 logical
, logical
- found_key
->objectid
, found_key
->objectid
,
1199 found_key
->offset
, flags
, item_size
);
1202 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1203 *flags_ret
= BTRFS_EXTENT_FLAG_TREE_BLOCK
;
1204 else if (flags
& BTRFS_EXTENT_FLAG_DATA
)
1205 *flags_ret
= BTRFS_EXTENT_FLAG_DATA
;
1216 * helper function to iterate extent inline refs. ptr must point to a 0 value
1217 * for the first call and may be modified. it is used to track state.
1218 * if more refs exist, 0 is returned and the next call to
1219 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1220 * next ref. after the last ref was processed, 1 is returned.
1221 * returns <0 on error
1223 static int __get_extent_inline_ref(unsigned long *ptr
, struct extent_buffer
*eb
,
1224 struct btrfs_key
*key
,
1225 struct btrfs_extent_item
*ei
, u32 item_size
,
1226 struct btrfs_extent_inline_ref
**out_eiref
,
1231 struct btrfs_tree_block_info
*info
;
1235 flags
= btrfs_extent_flags(eb
, ei
);
1236 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1237 if (key
->type
== BTRFS_METADATA_ITEM_KEY
) {
1238 /* a skinny metadata extent */
1240 (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1242 WARN_ON(key
->type
!= BTRFS_EXTENT_ITEM_KEY
);
1243 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1245 (struct btrfs_extent_inline_ref
*)(info
+ 1);
1248 *out_eiref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1250 *ptr
= (unsigned long)*out_eiref
;
1251 if ((unsigned long)(*ptr
) >= (unsigned long)ei
+ item_size
)
1255 end
= (unsigned long)ei
+ item_size
;
1256 *out_eiref
= (struct btrfs_extent_inline_ref
*)(*ptr
);
1257 *out_type
= btrfs_extent_inline_ref_type(eb
, *out_eiref
);
1259 *ptr
+= btrfs_extent_inline_ref_size(*out_type
);
1260 WARN_ON(*ptr
> end
);
1262 return 1; /* last */
1268 * reads the tree block backref for an extent. tree level and root are returned
1269 * through out_level and out_root. ptr must point to a 0 value for the first
1270 * call and may be modified (see __get_extent_inline_ref comment).
1271 * returns 0 if data was provided, 1 if there was no more data to provide or
1274 int tree_backref_for_extent(unsigned long *ptr
, struct extent_buffer
*eb
,
1275 struct btrfs_key
*key
, struct btrfs_extent_item
*ei
,
1276 u32 item_size
, u64
*out_root
, u8
*out_level
)
1280 struct btrfs_tree_block_info
*info
;
1281 struct btrfs_extent_inline_ref
*eiref
;
1283 if (*ptr
== (unsigned long)-1)
1287 ret
= __get_extent_inline_ref(ptr
, eb
, key
, ei
, item_size
,
1292 if (type
== BTRFS_TREE_BLOCK_REF_KEY
||
1293 type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1300 /* we can treat both ref types equally here */
1301 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1302 *out_root
= btrfs_extent_inline_ref_offset(eb
, eiref
);
1303 *out_level
= btrfs_tree_block_level(eb
, info
);
1306 *ptr
= (unsigned long)-1;
1311 static int iterate_leaf_refs(struct extent_inode_elem
*inode_list
,
1312 u64 root
, u64 extent_item_objectid
,
1313 iterate_extent_inodes_t
*iterate
, void *ctx
)
1315 struct extent_inode_elem
*eie
;
1318 for (eie
= inode_list
; eie
; eie
= eie
->next
) {
1319 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1320 "root %llu\n", extent_item_objectid
,
1321 eie
->inum
, eie
->offset
, root
);
1322 ret
= iterate(eie
->inum
, eie
->offset
, root
, ctx
);
1324 pr_debug("stopping iteration for %llu due to ret=%d\n",
1325 extent_item_objectid
, ret
);
1334 * calls iterate() for every inode that references the extent identified by
1335 * the given parameters.
1336 * when the iterator function returns a non-zero value, iteration stops.
1338 int iterate_extent_inodes(struct btrfs_fs_info
*fs_info
,
1339 u64 extent_item_objectid
, u64 extent_item_pos
,
1340 int search_commit_root
,
1341 iterate_extent_inodes_t
*iterate
, void *ctx
)
1344 struct btrfs_trans_handle
*trans
= NULL
;
1345 struct ulist
*refs
= NULL
;
1346 struct ulist
*roots
= NULL
;
1347 struct ulist_node
*ref_node
= NULL
;
1348 struct ulist_node
*root_node
= NULL
;
1349 struct ulist_iterator ref_uiter
;
1350 struct ulist_iterator root_uiter
;
1352 pr_debug("resolving all inodes for extent %llu\n",
1353 extent_item_objectid
);
1355 ret
= btrfs_find_all_leafs(trans
, fs_info
, extent_item_objectid
,
1356 0, &refs
, &extent_item_pos
);
1360 ULIST_ITER_INIT(&ref_uiter
);
1361 while (!ret
&& (ref_node
= ulist_next(refs
, &ref_uiter
))) {
1362 ret
= __btrfs_find_all_roots(trans
, fs_info
, ref_node
->val
,
1366 ULIST_ITER_INIT(&root_uiter
);
1367 while (!ret
&& (root_node
= ulist_next(roots
, &root_uiter
))) {
1368 pr_debug("root %llu references leaf %llu, data list "
1369 "%#llx\n", root_node
->val
, ref_node
->val
,
1371 ret
= iterate_leaf_refs((struct extent_inode_elem
*)
1372 (uintptr_t)ref_node
->aux
,
1374 extent_item_objectid
,
1380 free_leaf_list(refs
);
1385 int iterate_inodes_from_logical(u64 logical
, struct btrfs_fs_info
*fs_info
,
1386 struct btrfs_path
*path
,
1387 iterate_extent_inodes_t
*iterate
, void *ctx
)
1390 u64 extent_item_pos
;
1392 struct btrfs_key found_key
;
1393 int search_commit_root
= 0;
1395 ret
= extent_from_logical(fs_info
, logical
, path
, &found_key
, &flags
);
1396 btrfs_release_path(path
);
1399 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1402 extent_item_pos
= logical
- found_key
.objectid
;
1403 ret
= iterate_extent_inodes(fs_info
, found_key
.objectid
,
1404 extent_item_pos
, search_commit_root
,
1410 typedef int (iterate_irefs_t
)(u64 parent
, u32 name_len
, unsigned long name_off
,
1411 struct extent_buffer
*eb
, void *ctx
);
1413 static int iterate_inode_refs(u64 inum
, struct btrfs_root
*fs_root
,
1414 struct btrfs_path
*path
,
1415 iterate_irefs_t
*iterate
, void *ctx
)
1424 struct extent_buffer
*eb
;
1425 struct btrfs_item
*item
;
1426 struct btrfs_inode_ref
*iref
;
1427 struct btrfs_key found_key
;
1430 ret
= inode_ref_info(inum
, parent
? parent
+1 : 0, fs_root
, path
,
1435 ret
= found
? 0 : -ENOENT
;
1440 parent
= found_key
.offset
;
1441 slot
= path
->slots
[0];
1442 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
1447 extent_buffer_get(eb
);
1448 btrfs_release_path(path
);
1450 item
= btrfs_item_nr(slot
);
1451 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1453 for (cur
= 0; cur
< btrfs_item_size(eb
, item
); cur
+= len
) {
1454 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1455 /* path must be released before calling iterate()! */
1456 pr_debug("following ref at offset %u for inode %llu in "
1457 "tree %llu\n", cur
, found_key
.objectid
,
1459 ret
= iterate(parent
, name_len
,
1460 (unsigned long)(iref
+ 1), eb
, ctx
);
1463 len
= sizeof(*iref
) + name_len
;
1464 iref
= (struct btrfs_inode_ref
*)((char *)iref
+ len
);
1466 free_extent_buffer(eb
);
1469 btrfs_release_path(path
);
1474 static int iterate_inode_extrefs(u64 inum
, struct btrfs_root
*fs_root
,
1475 struct btrfs_path
*path
,
1476 iterate_irefs_t
*iterate
, void *ctx
)
1483 struct extent_buffer
*eb
;
1484 struct btrfs_inode_extref
*extref
;
1485 struct extent_buffer
*leaf
;
1491 ret
= btrfs_find_one_extref(fs_root
, inum
, offset
, path
, &extref
,
1496 ret
= found
? 0 : -ENOENT
;
1501 slot
= path
->slots
[0];
1502 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
1507 extent_buffer_get(eb
);
1509 btrfs_release_path(path
);
1511 leaf
= path
->nodes
[0];
1512 item_size
= btrfs_item_size_nr(leaf
, slot
);
1513 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
1516 while (cur_offset
< item_size
) {
1519 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur_offset
);
1520 parent
= btrfs_inode_extref_parent(eb
, extref
);
1521 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
1522 ret
= iterate(parent
, name_len
,
1523 (unsigned long)&extref
->name
, eb
, ctx
);
1527 cur_offset
+= btrfs_inode_extref_name_len(leaf
, extref
);
1528 cur_offset
+= sizeof(*extref
);
1530 free_extent_buffer(eb
);
1535 btrfs_release_path(path
);
1540 static int iterate_irefs(u64 inum
, struct btrfs_root
*fs_root
,
1541 struct btrfs_path
*path
, iterate_irefs_t
*iterate
,
1547 ret
= iterate_inode_refs(inum
, fs_root
, path
, iterate
, ctx
);
1550 else if (ret
!= -ENOENT
)
1553 ret
= iterate_inode_extrefs(inum
, fs_root
, path
, iterate
, ctx
);
1554 if (ret
== -ENOENT
&& found_refs
)
1561 * returns 0 if the path could be dumped (probably truncated)
1562 * returns <0 in case of an error
1564 static int inode_to_path(u64 inum
, u32 name_len
, unsigned long name_off
,
1565 struct extent_buffer
*eb
, void *ctx
)
1567 struct inode_fs_paths
*ipath
= ctx
;
1570 int i
= ipath
->fspath
->elem_cnt
;
1571 const int s_ptr
= sizeof(char *);
1574 bytes_left
= ipath
->fspath
->bytes_left
> s_ptr
?
1575 ipath
->fspath
->bytes_left
- s_ptr
: 0;
1577 fspath_min
= (char *)ipath
->fspath
->val
+ (i
+ 1) * s_ptr
;
1578 fspath
= btrfs_ref_to_path(ipath
->fs_root
, ipath
->btrfs_path
, name_len
,
1579 name_off
, eb
, inum
, fspath_min
, bytes_left
);
1581 return PTR_ERR(fspath
);
1583 if (fspath
> fspath_min
) {
1584 ipath
->fspath
->val
[i
] = (u64
)(unsigned long)fspath
;
1585 ++ipath
->fspath
->elem_cnt
;
1586 ipath
->fspath
->bytes_left
= fspath
- fspath_min
;
1588 ++ipath
->fspath
->elem_missed
;
1589 ipath
->fspath
->bytes_missing
+= fspath_min
- fspath
;
1590 ipath
->fspath
->bytes_left
= 0;
1597 * this dumps all file system paths to the inode into the ipath struct, provided
1598 * is has been created large enough. each path is zero-terminated and accessed
1599 * from ipath->fspath->val[i].
1600 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1601 * in ipath->fspath->val[]. When the allocated space wasn't sufficient, the
1602 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
1603 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1604 * have been needed to return all paths.
1606 int paths_from_inode(u64 inum
, struct inode_fs_paths
*ipath
)
1608 return iterate_irefs(inum
, ipath
->fs_root
, ipath
->btrfs_path
,
1609 inode_to_path
, ipath
);
1612 struct btrfs_data_container
*init_data_container(u32 total_bytes
)
1614 struct btrfs_data_container
*data
;
1617 alloc_bytes
= max_t(size_t, total_bytes
, sizeof(*data
));
1618 data
= vmalloc(alloc_bytes
);
1620 return ERR_PTR(-ENOMEM
);
1622 if (total_bytes
>= sizeof(*data
)) {
1623 data
->bytes_left
= total_bytes
- sizeof(*data
);
1624 data
->bytes_missing
= 0;
1626 data
->bytes_missing
= sizeof(*data
) - total_bytes
;
1627 data
->bytes_left
= 0;
1631 data
->elem_missed
= 0;
1637 * allocates space to return multiple file system paths for an inode.
1638 * total_bytes to allocate are passed, note that space usable for actual path
1639 * information will be total_bytes - sizeof(struct inode_fs_paths).
1640 * the returned pointer must be freed with free_ipath() in the end.
1642 struct inode_fs_paths
*init_ipath(s32 total_bytes
, struct btrfs_root
*fs_root
,
1643 struct btrfs_path
*path
)
1645 struct inode_fs_paths
*ifp
;
1646 struct btrfs_data_container
*fspath
;
1648 fspath
= init_data_container(total_bytes
);
1650 return (void *)fspath
;
1652 ifp
= kmalloc(sizeof(*ifp
), GFP_NOFS
);
1655 return ERR_PTR(-ENOMEM
);
1658 ifp
->btrfs_path
= path
;
1659 ifp
->fspath
= fspath
;
1660 ifp
->fs_root
= fs_root
;
1665 void free_ipath(struct inode_fs_paths
*ipath
)
1669 vfree(ipath
->fspath
);