btrfs-progs: check: switch to iterating over the backref_tree
[btrfs-progs-unstable/devel.git] / backref.c
blob7b3b592538bb2a1fab323d2e82fcf50f8053008e
1 /*
2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include "kerncompat.h"
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "internal.h"
27 #define pr_debug(...) do { } while (0)
29 struct extent_inode_elem {
30 u64 inum;
31 u64 offset;
32 struct extent_inode_elem *next;
35 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
36 struct btrfs_file_extent_item *fi,
37 u64 extent_item_pos,
38 struct extent_inode_elem **eie)
40 u64 offset = 0;
41 struct extent_inode_elem *e;
43 if (!btrfs_file_extent_compression(eb, fi) &&
44 !btrfs_file_extent_encryption(eb, fi) &&
45 !btrfs_file_extent_other_encoding(eb, fi)) {
46 u64 data_offset;
47 u64 data_len;
49 data_offset = btrfs_file_extent_offset(eb, fi);
50 data_len = btrfs_file_extent_num_bytes(eb, fi);
52 if (extent_item_pos < data_offset ||
53 extent_item_pos >= data_offset + data_len)
54 return 1;
55 offset = extent_item_pos - data_offset;
58 e = kmalloc(sizeof(*e), GFP_NOFS);
59 if (!e)
60 return -ENOMEM;
62 e->next = *eie;
63 e->inum = key->objectid;
64 e->offset = key->offset + offset;
65 *eie = e;
67 return 0;
70 static void free_inode_elem_list(struct extent_inode_elem *eie)
72 struct extent_inode_elem *eie_next;
74 for (; eie; eie = eie_next) {
75 eie_next = eie->next;
76 kfree(eie);
80 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
81 u64 extent_item_pos,
82 struct extent_inode_elem **eie)
84 u64 disk_byte;
85 struct btrfs_key key;
86 struct btrfs_file_extent_item *fi;
87 int slot;
88 int nritems;
89 int extent_type;
90 int ret;
93 * from the shared data ref, we only have the leaf but we need
94 * the key. thus, we must look into all items and see that we
95 * find one (some) with a reference to our extent item.
97 nritems = btrfs_header_nritems(eb);
98 for (slot = 0; slot < nritems; ++slot) {
99 btrfs_item_key_to_cpu(eb, &key, slot);
100 if (key.type != BTRFS_EXTENT_DATA_KEY)
101 continue;
102 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
103 extent_type = btrfs_file_extent_type(eb, fi);
104 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
105 continue;
106 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
107 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
108 if (disk_byte != wanted_disk_byte)
109 continue;
111 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
112 if (ret < 0)
113 return ret;
116 return 0;
120 * this structure records all encountered refs on the way up to the root
122 struct __prelim_ref {
123 struct list_head list;
124 u64 root_id;
125 struct btrfs_key key_for_search;
126 int level;
127 int count;
128 struct extent_inode_elem *inode_list;
129 u64 parent;
130 u64 wanted_disk_byte;
134 * the rules for all callers of this function are:
135 * - obtaining the parent is the goal
136 * - if you add a key, you must know that it is a correct key
137 * - if you cannot add the parent or a correct key, then we will look into the
138 * block later to set a correct key
140 * delayed refs
141 * ============
142 * backref type | shared | indirect | shared | indirect
143 * information | tree | tree | data | data
144 * --------------------+--------+----------+--------+----------
145 * parent logical | y | - | - | -
146 * key to resolve | - | y | y | y
147 * tree block logical | - | - | - | -
148 * root for resolving | y | y | y | y
150 * - column 1: we've the parent -> done
151 * - column 2, 3, 4: we use the key to find the parent
153 * on disk refs (inline or keyed)
154 * ==============================
155 * backref type | shared | indirect | shared | indirect
156 * information | tree | tree | data | data
157 * --------------------+--------+----------+--------+----------
158 * parent logical | y | - | y | -
159 * key to resolve | - | - | - | y
160 * tree block logical | y | y | y | y
161 * root for resolving | - | y | y | y
163 * - column 1, 3: we've the parent -> done
164 * - column 2: we take the first key from the block to find the parent
165 * (see __add_missing_keys)
166 * - column 4: we use the key to find the parent
168 * additional information that's available but not required to find the parent
169 * block might help in merging entries to gain some speed.
172 static int __add_prelim_ref(struct list_head *head, u64 root_id,
173 struct btrfs_key *key, int level,
174 u64 parent, u64 wanted_disk_byte, int count,
175 gfp_t gfp_mask)
177 struct __prelim_ref *ref;
179 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
180 return 0;
182 ref = kmalloc(sizeof(*ref), gfp_mask);
183 if (!ref)
184 return -ENOMEM;
186 ref->root_id = root_id;
187 if (key)
188 ref->key_for_search = *key;
189 else
190 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
192 ref->inode_list = NULL;
193 ref->level = level;
194 ref->count = count;
195 ref->parent = parent;
196 ref->wanted_disk_byte = wanted_disk_byte;
197 list_add_tail(&ref->list, head);
199 return 0;
202 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
203 struct ulist *parents, struct __prelim_ref *ref,
204 int level, u64 time_seq, const u64 *extent_item_pos,
205 u64 total_refs)
207 int ret = 0;
208 int slot;
209 struct extent_buffer *eb;
210 struct btrfs_key key;
211 struct btrfs_key *key_for_search = &ref->key_for_search;
212 struct btrfs_file_extent_item *fi;
213 struct extent_inode_elem *eie = NULL, *old = NULL;
214 u64 disk_byte;
215 u64 wanted_disk_byte = ref->wanted_disk_byte;
216 u64 count = 0;
218 if (level != 0) {
219 eb = path->nodes[level];
220 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
221 if (ret < 0)
222 return ret;
223 return 0;
227 * We normally enter this function with the path already pointing to
228 * the first item to check. But sometimes, we may enter it with
229 * slot==nritems. In that case, go to the next leaf before we continue.
231 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
232 ret = btrfs_next_leaf(root, path);
234 while (!ret && count < total_refs) {
235 eb = path->nodes[0];
236 slot = path->slots[0];
238 btrfs_item_key_to_cpu(eb, &key, slot);
240 if (key.objectid != key_for_search->objectid ||
241 key.type != BTRFS_EXTENT_DATA_KEY)
242 break;
244 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
245 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
247 if (disk_byte == wanted_disk_byte) {
248 eie = NULL;
249 old = NULL;
250 count++;
251 if (extent_item_pos) {
252 ret = check_extent_in_eb(&key, eb, fi,
253 *extent_item_pos,
254 &eie);
255 if (ret < 0)
256 break;
258 if (ret > 0)
259 goto next;
260 ret = ulist_add_merge_ptr(parents, eb->start,
261 eie, (void **)&old, GFP_NOFS);
262 if (ret < 0)
263 break;
264 if (!ret && extent_item_pos) {
265 while (old->next)
266 old = old->next;
267 old->next = eie;
269 eie = NULL;
271 next:
272 ret = btrfs_next_item(root, path);
275 if (ret > 0)
276 ret = 0;
277 else if (ret < 0)
278 free_inode_elem_list(eie);
279 return ret;
283 * resolve an indirect backref in the form (root_id, key, level)
284 * to a logical address
286 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
287 struct btrfs_path *path, u64 time_seq,
288 struct __prelim_ref *ref,
289 struct ulist *parents,
290 const u64 *extent_item_pos, u64 total_refs)
292 struct btrfs_root *root;
293 struct btrfs_key root_key;
294 struct extent_buffer *eb;
295 int ret = 0;
296 int root_level;
297 int level = ref->level;
299 root_key.objectid = ref->root_id;
300 root_key.type = BTRFS_ROOT_ITEM_KEY;
301 root_key.offset = (u64)-1;
303 root = btrfs_read_fs_root(fs_info, &root_key);
304 if (IS_ERR(root)) {
305 ret = PTR_ERR(root);
306 goto out;
309 root_level = btrfs_root_level(&root->root_item);
311 if (root_level + 1 == level)
312 goto out;
314 path->lowest_level = level;
315 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path, 0, 0);
317 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
318 "%d for key (%llu %u %llu)\n",
319 ref->root_id, level, ref->count, ret,
320 ref->key_for_search.objectid, ref->key_for_search.type,
321 ref->key_for_search.offset);
322 if (ret < 0)
323 goto out;
325 eb = path->nodes[level];
326 while (!eb) {
327 if (!level) {
328 ret = 1;
329 WARN_ON(1);
330 goto out;
332 level--;
333 eb = path->nodes[level];
336 ret = add_all_parents(root, path, parents, ref, level, time_seq,
337 extent_item_pos, total_refs);
338 out:
339 path->lowest_level = 0;
340 btrfs_release_path(path);
341 return ret;
345 * resolve all indirect backrefs from the list
347 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
348 struct btrfs_path *path, u64 time_seq,
349 struct list_head *head,
350 const u64 *extent_item_pos, u64 total_refs)
352 int err;
353 int ret = 0;
354 struct __prelim_ref *ref;
355 struct __prelim_ref *ref_safe;
356 struct __prelim_ref *new_ref;
357 struct ulist *parents;
358 struct ulist_node *node;
359 struct ulist_iterator uiter;
361 parents = ulist_alloc(GFP_NOFS);
362 if (!parents)
363 return -ENOMEM;
366 * _safe allows us to insert directly after the current item without
367 * iterating over the newly inserted items.
368 * we're also allowed to re-assign ref during iteration.
370 list_for_each_entry_safe(ref, ref_safe, head, list) {
371 if (ref->parent) /* already direct */
372 continue;
373 if (ref->count == 0)
374 continue;
375 err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
376 parents, extent_item_pos,
377 total_refs);
379 * we can only tolerate ENOENT,otherwise,we should catch error
380 * and return directly.
382 if (err == -ENOENT) {
383 continue;
384 } else if (err) {
385 ret = err;
386 goto out;
389 /* we put the first parent into the ref at hand */
390 ULIST_ITER_INIT(&uiter);
391 node = ulist_next(parents, &uiter);
392 ref->parent = node ? node->val : 0;
393 ref->inode_list = node ?
394 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
396 /* additional parents require new refs being added here */
397 while ((node = ulist_next(parents, &uiter))) {
398 new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
399 if (!new_ref) {
400 ret = -ENOMEM;
401 goto out;
403 memcpy(new_ref, ref, sizeof(*ref));
404 new_ref->parent = node->val;
405 new_ref->inode_list = (struct extent_inode_elem *)
406 (uintptr_t)node->aux;
407 list_add(&new_ref->list, &ref->list);
409 ulist_reinit(parents);
411 out:
412 ulist_free(parents);
413 return ret;
416 static inline int ref_for_same_block(struct __prelim_ref *ref1,
417 struct __prelim_ref *ref2)
419 if (ref1->level != ref2->level)
420 return 0;
421 if (ref1->root_id != ref2->root_id)
422 return 0;
423 if (ref1->key_for_search.type != ref2->key_for_search.type)
424 return 0;
425 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
426 return 0;
427 if (ref1->key_for_search.offset != ref2->key_for_search.offset)
428 return 0;
429 if (ref1->parent != ref2->parent)
430 return 0;
432 return 1;
436 * read tree blocks and add keys where required.
438 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
439 struct list_head *head)
441 struct list_head *pos;
442 struct extent_buffer *eb;
444 list_for_each(pos, head) {
445 struct __prelim_ref *ref;
446 ref = list_entry(pos, struct __prelim_ref, list);
448 if (ref->parent)
449 continue;
450 if (ref->key_for_search.type)
451 continue;
452 BUG_ON(!ref->wanted_disk_byte);
453 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
454 fs_info->tree_root->nodesize, 0);
455 if (!extent_buffer_uptodate(eb)) {
456 free_extent_buffer(eb);
457 return -EIO;
459 if (btrfs_header_level(eb) == 0)
460 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
461 else
462 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
463 free_extent_buffer(eb);
465 return 0;
469 * merge two lists of backrefs and adjust counts accordingly
471 * mode = 1: merge identical keys, if key is set
472 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
473 * additionally, we could even add a key range for the blocks we
474 * looked into to merge even more (-> replace unresolved refs by those
475 * having a parent).
476 * mode = 2: merge identical parents
478 static void __merge_refs(struct list_head *head, int mode)
480 struct list_head *pos1;
482 list_for_each(pos1, head) {
483 struct list_head *n2;
484 struct list_head *pos2;
485 struct __prelim_ref *ref1;
487 ref1 = list_entry(pos1, struct __prelim_ref, list);
489 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
490 pos2 = n2, n2 = pos2->next) {
491 struct __prelim_ref *ref2;
492 struct __prelim_ref *xchg;
493 struct extent_inode_elem *eie;
495 ref2 = list_entry(pos2, struct __prelim_ref, list);
497 if (mode == 1) {
498 if (!ref_for_same_block(ref1, ref2))
499 continue;
500 if (!ref1->parent && ref2->parent) {
501 xchg = ref1;
502 ref1 = ref2;
503 ref2 = xchg;
505 } else {
506 if (ref1->parent != ref2->parent)
507 continue;
510 eie = ref1->inode_list;
511 while (eie && eie->next)
512 eie = eie->next;
513 if (eie)
514 eie->next = ref2->inode_list;
515 else
516 ref1->inode_list = ref2->inode_list;
517 ref1->count += ref2->count;
519 list_del(&ref2->list);
520 kfree(ref2);
527 * add all inline backrefs for bytenr to the list
529 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
530 struct btrfs_path *path, u64 bytenr,
531 int *info_level, struct list_head *prefs,
532 u64 *total_refs)
534 int ret = 0;
535 int slot;
536 struct extent_buffer *leaf;
537 struct btrfs_key key;
538 struct btrfs_key found_key;
539 unsigned long ptr;
540 unsigned long end;
541 struct btrfs_extent_item *ei;
542 u64 flags;
543 u64 item_size;
546 * enumerate all inline refs
548 leaf = path->nodes[0];
549 slot = path->slots[0];
551 item_size = btrfs_item_size_nr(leaf, slot);
552 BUG_ON(item_size < sizeof(*ei));
554 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
555 flags = btrfs_extent_flags(leaf, ei);
556 *total_refs += btrfs_extent_refs(leaf, ei);
557 btrfs_item_key_to_cpu(leaf, &found_key, slot);
559 ptr = (unsigned long)(ei + 1);
560 end = (unsigned long)ei + item_size;
562 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
563 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
564 struct btrfs_tree_block_info *info;
566 info = (struct btrfs_tree_block_info *)ptr;
567 *info_level = btrfs_tree_block_level(leaf, info);
568 ptr += sizeof(struct btrfs_tree_block_info);
569 BUG_ON(ptr > end);
570 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
571 *info_level = found_key.offset;
572 } else {
573 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
576 while (ptr < end) {
577 struct btrfs_extent_inline_ref *iref;
578 u64 offset;
579 int type;
581 iref = (struct btrfs_extent_inline_ref *)ptr;
582 type = btrfs_extent_inline_ref_type(leaf, iref);
583 offset = btrfs_extent_inline_ref_offset(leaf, iref);
585 switch (type) {
586 case BTRFS_SHARED_BLOCK_REF_KEY:
587 ret = __add_prelim_ref(prefs, 0, NULL,
588 *info_level + 1, offset,
589 bytenr, 1, GFP_NOFS);
590 break;
591 case BTRFS_SHARED_DATA_REF_KEY: {
592 struct btrfs_shared_data_ref *sdref;
593 int count;
595 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
596 count = btrfs_shared_data_ref_count(leaf, sdref);
597 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
598 bytenr, count, GFP_NOFS);
599 break;
601 case BTRFS_TREE_BLOCK_REF_KEY:
602 ret = __add_prelim_ref(prefs, offset, NULL,
603 *info_level + 1, 0,
604 bytenr, 1, GFP_NOFS);
605 break;
606 case BTRFS_EXTENT_DATA_REF_KEY: {
607 struct btrfs_extent_data_ref *dref;
608 int count;
609 u64 root;
611 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
612 count = btrfs_extent_data_ref_count(leaf, dref);
613 key.objectid = btrfs_extent_data_ref_objectid(leaf,
614 dref);
615 key.type = BTRFS_EXTENT_DATA_KEY;
616 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
617 root = btrfs_extent_data_ref_root(leaf, dref);
618 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
619 bytenr, count, GFP_NOFS);
620 break;
622 default:
623 WARN_ON(1);
625 if (ret)
626 return ret;
627 ptr += btrfs_extent_inline_ref_size(type);
630 return 0;
634 * add all non-inline backrefs for bytenr to the list
636 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
637 struct btrfs_path *path, u64 bytenr,
638 int info_level, struct list_head *prefs)
640 struct btrfs_root *extent_root = fs_info->extent_root;
641 int ret;
642 int slot;
643 struct extent_buffer *leaf;
644 struct btrfs_key key;
646 while (1) {
647 ret = btrfs_next_item(extent_root, path);
648 if (ret < 0)
649 break;
650 if (ret) {
651 ret = 0;
652 break;
655 slot = path->slots[0];
656 leaf = path->nodes[0];
657 btrfs_item_key_to_cpu(leaf, &key, slot);
659 if (key.objectid != bytenr)
660 break;
661 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
662 continue;
663 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
664 break;
666 switch (key.type) {
667 case BTRFS_SHARED_BLOCK_REF_KEY:
668 ret = __add_prelim_ref(prefs, 0, NULL,
669 info_level + 1, key.offset,
670 bytenr, 1, GFP_NOFS);
671 break;
672 case BTRFS_SHARED_DATA_REF_KEY: {
673 struct btrfs_shared_data_ref *sdref;
674 int count;
676 sdref = btrfs_item_ptr(leaf, slot,
677 struct btrfs_shared_data_ref);
678 count = btrfs_shared_data_ref_count(leaf, sdref);
679 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
680 bytenr, count, GFP_NOFS);
681 break;
683 case BTRFS_TREE_BLOCK_REF_KEY:
684 ret = __add_prelim_ref(prefs, key.offset, NULL,
685 info_level + 1, 0,
686 bytenr, 1, GFP_NOFS);
687 break;
688 case BTRFS_EXTENT_DATA_REF_KEY: {
689 struct btrfs_extent_data_ref *dref;
690 int count;
691 u64 root;
693 dref = btrfs_item_ptr(leaf, slot,
694 struct btrfs_extent_data_ref);
695 count = btrfs_extent_data_ref_count(leaf, dref);
696 key.objectid = btrfs_extent_data_ref_objectid(leaf,
697 dref);
698 key.type = BTRFS_EXTENT_DATA_KEY;
699 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
700 root = btrfs_extent_data_ref_root(leaf, dref);
701 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
702 bytenr, count, GFP_NOFS);
703 break;
705 default:
706 WARN_ON(1);
708 if (ret)
709 return ret;
713 return ret;
717 * this adds all existing backrefs (inline backrefs, backrefs and delayed
718 * refs) for the given bytenr to the refs list, merges duplicates and resolves
719 * indirect refs to their parent bytenr.
720 * When roots are found, they're added to the roots list
722 * FIXME some caching might speed things up
724 static int find_parent_nodes(struct btrfs_trans_handle *trans,
725 struct btrfs_fs_info *fs_info, u64 bytenr,
726 u64 time_seq, struct ulist *refs,
727 struct ulist *roots, const u64 *extent_item_pos)
729 struct btrfs_key key;
730 struct btrfs_path *path;
731 int info_level = 0;
732 int ret;
733 struct list_head prefs;
734 struct __prelim_ref *ref;
735 struct extent_inode_elem *eie = NULL;
736 u64 total_refs = 0;
738 INIT_LIST_HEAD(&prefs);
740 key.objectid = bytenr;
741 key.offset = (u64)-1;
742 if (btrfs_fs_incompat(fs_info,
743 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA))
744 key.type = BTRFS_METADATA_ITEM_KEY;
745 else
746 key.type = BTRFS_EXTENT_ITEM_KEY;
748 path = btrfs_alloc_path();
749 if (!path)
750 return -ENOMEM;
752 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
753 if (ret < 0)
754 goto out;
755 BUG_ON(ret == 0);
757 if (path->slots[0]) {
758 struct extent_buffer *leaf;
759 int slot;
761 path->slots[0]--;
762 leaf = path->nodes[0];
763 slot = path->slots[0];
764 btrfs_item_key_to_cpu(leaf, &key, slot);
765 if (key.objectid == bytenr &&
766 (key.type == BTRFS_EXTENT_ITEM_KEY ||
767 key.type == BTRFS_METADATA_ITEM_KEY)) {
768 ret = __add_inline_refs(fs_info, path, bytenr,
769 &info_level, &prefs,
770 &total_refs);
771 if (ret)
772 goto out;
773 ret = __add_keyed_refs(fs_info, path, bytenr,
774 info_level, &prefs);
775 if (ret)
776 goto out;
779 btrfs_release_path(path);
781 ret = __add_missing_keys(fs_info, &prefs);
782 if (ret)
783 goto out;
785 __merge_refs(&prefs, 1);
787 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
788 extent_item_pos, total_refs);
789 if (ret)
790 goto out;
792 __merge_refs(&prefs, 2);
794 while (!list_empty(&prefs)) {
795 ref = list_first_entry(&prefs, struct __prelim_ref, list);
796 WARN_ON(ref->count < 0);
797 if (roots && ref->count && ref->root_id && ref->parent == 0) {
798 /* no parent == root of tree */
799 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
800 if (ret < 0)
801 goto out;
803 if (ref->count && ref->parent) {
804 if (extent_item_pos && !ref->inode_list &&
805 ref->level == 0) {
806 u32 bsz;
807 struct extent_buffer *eb;
808 bsz = fs_info->extent_root->nodesize;
809 eb = read_tree_block(fs_info->extent_root,
810 ref->parent, bsz, 0);
811 if (!extent_buffer_uptodate(eb)) {
812 free_extent_buffer(eb);
813 ret = -EIO;
814 goto out;
816 ret = find_extent_in_eb(eb, bytenr,
817 *extent_item_pos, &eie);
818 free_extent_buffer(eb);
819 if (ret < 0)
820 goto out;
821 ref->inode_list = eie;
823 ret = ulist_add_merge_ptr(refs, ref->parent,
824 ref->inode_list,
825 (void **)&eie, GFP_NOFS);
826 if (ret < 0)
827 goto out;
828 if (!ret && extent_item_pos) {
830 * we've recorded that parent, so we must extend
831 * its inode list here
833 BUG_ON(!eie);
834 while (eie->next)
835 eie = eie->next;
836 eie->next = ref->inode_list;
838 eie = NULL;
840 list_del(&ref->list);
841 kfree(ref);
844 out:
845 btrfs_free_path(path);
846 while (!list_empty(&prefs)) {
847 ref = list_first_entry(&prefs, struct __prelim_ref, list);
848 list_del(&ref->list);
849 kfree(ref);
851 if (ret < 0)
852 free_inode_elem_list(eie);
853 return ret;
856 static void free_leaf_list(struct ulist *blocks)
858 struct ulist_node *node = NULL;
859 struct extent_inode_elem *eie;
860 struct ulist_iterator uiter;
862 ULIST_ITER_INIT(&uiter);
863 while ((node = ulist_next(blocks, &uiter))) {
864 if (!node->aux)
865 continue;
866 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
867 free_inode_elem_list(eie);
868 node->aux = 0;
871 ulist_free(blocks);
875 * Finds all leafs with a reference to the specified combination of bytenr and
876 * offset. key_list_head will point to a list of corresponding keys (caller must
877 * free each list element). The leafs will be stored in the leafs ulist, which
878 * must be freed with ulist_free.
880 * returns 0 on success, <0 on error
882 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
883 struct btrfs_fs_info *fs_info, u64 bytenr,
884 u64 time_seq, struct ulist **leafs,
885 const u64 *extent_item_pos)
887 int ret;
889 *leafs = ulist_alloc(GFP_NOFS);
890 if (!*leafs)
891 return -ENOMEM;
893 ret = find_parent_nodes(trans, fs_info, bytenr,
894 time_seq, *leafs, NULL, extent_item_pos);
895 if (ret < 0 && ret != -ENOENT) {
896 free_leaf_list(*leafs);
897 return ret;
900 return 0;
904 * walk all backrefs for a given extent to find all roots that reference this
905 * extent. Walking a backref means finding all extents that reference this
906 * extent and in turn walk the backrefs of those, too. Naturally this is a
907 * recursive process, but here it is implemented in an iterative fashion: We
908 * find all referencing extents for the extent in question and put them on a
909 * list. In turn, we find all referencing extents for those, further appending
910 * to the list. The way we iterate the list allows adding more elements after
911 * the current while iterating. The process stops when we reach the end of the
912 * list. Found roots are added to the roots list.
914 * returns 0 on success, < 0 on error.
916 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
917 struct btrfs_fs_info *fs_info, u64 bytenr,
918 u64 time_seq, struct ulist **roots)
920 struct ulist *tmp;
921 struct ulist_node *node = NULL;
922 struct ulist_iterator uiter;
923 int ret;
925 tmp = ulist_alloc(GFP_NOFS);
926 if (!tmp)
927 return -ENOMEM;
928 *roots = ulist_alloc(GFP_NOFS);
929 if (!*roots) {
930 ulist_free(tmp);
931 return -ENOMEM;
934 ULIST_ITER_INIT(&uiter);
935 while (1) {
936 ret = find_parent_nodes(trans, fs_info, bytenr,
937 time_seq, tmp, *roots, NULL);
938 if (ret < 0 && ret != -ENOENT) {
939 ulist_free(tmp);
940 ulist_free(*roots);
941 return ret;
943 node = ulist_next(tmp, &uiter);
944 if (!node)
945 break;
946 bytenr = node->val;
947 cond_resched();
950 ulist_free(tmp);
951 return 0;
954 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
955 struct btrfs_fs_info *fs_info, u64 bytenr,
956 u64 time_seq, struct ulist **roots)
958 return __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
962 * this makes the path point to (inum INODE_ITEM ioff)
964 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
965 struct btrfs_path *path)
967 struct btrfs_key key;
968 return btrfs_find_item(fs_root, path, inum, ioff,
969 BTRFS_INODE_ITEM_KEY, &key);
972 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
973 struct btrfs_path *path,
974 struct btrfs_key *found_key)
976 return btrfs_find_item(fs_root, path, inum, ioff,
977 BTRFS_INODE_REF_KEY, found_key);
980 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
981 u64 start_off, struct btrfs_path *path,
982 struct btrfs_inode_extref **ret_extref,
983 u64 *found_off)
985 int ret, slot;
986 struct btrfs_key key;
987 struct btrfs_key found_key;
988 struct btrfs_inode_extref *extref;
989 struct extent_buffer *leaf;
990 unsigned long ptr;
992 key.objectid = inode_objectid;
993 btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
994 key.offset = start_off;
996 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
997 if (ret < 0)
998 return ret;
1000 while (1) {
1001 leaf = path->nodes[0];
1002 slot = path->slots[0];
1003 if (slot >= btrfs_header_nritems(leaf)) {
1005 * If the item at offset is not found,
1006 * btrfs_search_slot will point us to the slot
1007 * where it should be inserted. In our case
1008 * that will be the slot directly before the
1009 * next INODE_REF_KEY_V2 item. In the case
1010 * that we're pointing to the last slot in a
1011 * leaf, we must move one leaf over.
1013 ret = btrfs_next_leaf(root, path);
1014 if (ret) {
1015 if (ret >= 1)
1016 ret = -ENOENT;
1017 break;
1019 continue;
1022 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1025 * Check that we're still looking at an extended ref key for
1026 * this particular objectid. If we have different
1027 * objectid or type then there are no more to be found
1028 * in the tree and we can exit.
1030 ret = -ENOENT;
1031 if (found_key.objectid != inode_objectid)
1032 break;
1033 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1034 break;
1036 ret = 0;
1037 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1038 extref = (struct btrfs_inode_extref *)ptr;
1039 *ret_extref = extref;
1040 if (found_off)
1041 *found_off = found_key.offset;
1042 break;
1045 return ret;
1049 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1050 * Elements of the path are separated by '/' and the path is guaranteed to be
1051 * 0-terminated. the path is only given within the current file system.
1052 * Therefore, it never starts with a '/'. the caller is responsible to provide
1053 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1054 * the start point of the resulting string is returned. this pointer is within
1055 * dest, normally.
1056 * in case the path buffer would overflow, the pointer is decremented further
1057 * as if output was written to the buffer, though no more output is actually
1058 * generated. that way, the caller can determine how much space would be
1059 * required for the path to fit into the buffer. in that case, the returned
1060 * value will be smaller than dest. callers must check this!
1062 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1063 u32 name_len, unsigned long name_off,
1064 struct extent_buffer *eb_in, u64 parent,
1065 char *dest, u32 size)
1067 int slot;
1068 u64 next_inum;
1069 int ret;
1070 s64 bytes_left = ((s64)size) - 1;
1071 struct extent_buffer *eb = eb_in;
1072 struct btrfs_key found_key;
1073 struct btrfs_inode_ref *iref;
1075 if (bytes_left >= 0)
1076 dest[bytes_left] = '\0';
1078 while (1) {
1079 bytes_left -= name_len;
1080 if (bytes_left >= 0)
1081 read_extent_buffer(eb, dest + bytes_left,
1082 name_off, name_len);
1083 if (eb != eb_in)
1084 free_extent_buffer(eb);
1085 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1086 if (ret > 0)
1087 ret = -ENOENT;
1088 if (ret)
1089 break;
1091 next_inum = found_key.offset;
1093 /* regular exit ahead */
1094 if (parent == next_inum)
1095 break;
1097 slot = path->slots[0];
1098 eb = path->nodes[0];
1099 /* make sure we can use eb after releasing the path */
1100 if (eb != eb_in)
1101 eb->refs++;
1102 btrfs_release_path(path);
1103 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1105 name_len = btrfs_inode_ref_name_len(eb, iref);
1106 name_off = (unsigned long)(iref + 1);
1108 parent = next_inum;
1109 --bytes_left;
1110 if (bytes_left >= 0)
1111 dest[bytes_left] = '/';
1114 btrfs_release_path(path);
1116 if (ret)
1117 return ERR_PTR(ret);
1119 return dest + bytes_left;
1123 * this makes the path point to (logical EXTENT_ITEM *)
1124 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1125 * tree blocks and <0 on error.
1127 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1128 struct btrfs_path *path, struct btrfs_key *found_key,
1129 u64 *flags_ret)
1131 int ret;
1132 u64 flags;
1133 u64 size = 0;
1134 u32 item_size;
1135 struct extent_buffer *eb;
1136 struct btrfs_extent_item *ei;
1137 struct btrfs_key key;
1139 if (btrfs_fs_incompat(fs_info,
1140 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA))
1141 key.type = BTRFS_METADATA_ITEM_KEY;
1142 else
1143 key.type = BTRFS_EXTENT_ITEM_KEY;
1144 key.objectid = logical;
1145 key.offset = (u64)-1;
1147 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1148 if (ret < 0)
1149 return ret;
1151 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1152 if (ret) {
1153 if (ret > 0)
1154 ret = -ENOENT;
1155 return ret;
1157 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1158 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1159 size = fs_info->extent_root->nodesize;
1160 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1161 size = found_key->offset;
1163 if (found_key->objectid > logical ||
1164 found_key->objectid + size <= logical) {
1165 pr_debug("logical %llu is not within any extent\n", logical);
1166 return -ENOENT;
1169 eb = path->nodes[0];
1170 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1171 BUG_ON(item_size < sizeof(*ei));
1173 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1174 flags = btrfs_extent_flags(eb, ei);
1176 pr_debug("logical %llu is at position %llu within the extent (%llu "
1177 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1178 logical, logical - found_key->objectid, found_key->objectid,
1179 found_key->offset, flags, item_size);
1181 if (flags_ret) {
1182 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1183 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1184 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1185 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1186 else
1187 BUG_ON(1);
1188 return 0;
1189 } else {
1190 WARN_ON(1);
1191 return -EIO;
1196 * helper function to iterate extent inline refs. ptr must point to a 0 value
1197 * for the first call and may be modified. it is used to track state.
1198 * if more refs exist, 0 is returned and the next call to
1199 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1200 * next ref. after the last ref was processed, 1 is returned.
1201 * returns <0 on error
1203 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1204 struct btrfs_key *key,
1205 struct btrfs_extent_item *ei, u32 item_size,
1206 struct btrfs_extent_inline_ref **out_eiref,
1207 int *out_type)
1209 unsigned long end;
1210 u64 flags;
1211 struct btrfs_tree_block_info *info;
1213 if (!*ptr) {
1214 /* first call */
1215 flags = btrfs_extent_flags(eb, ei);
1216 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1217 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1218 /* a skinny metadata extent */
1219 *out_eiref =
1220 (struct btrfs_extent_inline_ref *)(ei + 1);
1221 } else {
1222 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1223 info = (struct btrfs_tree_block_info *)(ei + 1);
1224 *out_eiref =
1225 (struct btrfs_extent_inline_ref *)(info + 1);
1227 } else {
1228 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1230 *ptr = (unsigned long)*out_eiref;
1231 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1232 return -ENOENT;
1235 end = (unsigned long)ei + item_size;
1236 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1237 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1239 *ptr += btrfs_extent_inline_ref_size(*out_type);
1240 WARN_ON(*ptr > end);
1241 if (*ptr == end)
1242 return 1; /* last */
1244 return 0;
1248 * reads the tree block backref for an extent. tree level and root are returned
1249 * through out_level and out_root. ptr must point to a 0 value for the first
1250 * call and may be modified (see __get_extent_inline_ref comment).
1251 * returns 0 if data was provided, 1 if there was no more data to provide or
1252 * <0 on error.
1254 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1255 struct btrfs_key *key, struct btrfs_extent_item *ei,
1256 u32 item_size, u64 *out_root, u8 *out_level)
1258 int ret;
1259 int type;
1260 struct btrfs_tree_block_info *info;
1261 struct btrfs_extent_inline_ref *eiref;
1263 if (*ptr == (unsigned long)-1)
1264 return 1;
1266 while (1) {
1267 ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1268 &eiref, &type);
1269 if (ret < 0)
1270 return ret;
1272 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1273 type == BTRFS_SHARED_BLOCK_REF_KEY)
1274 break;
1276 if (ret == 1)
1277 return 1;
1280 /* we can treat both ref types equally here */
1281 info = (struct btrfs_tree_block_info *)(ei + 1);
1282 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1283 *out_level = btrfs_tree_block_level(eb, info);
1285 if (ret == 1)
1286 *ptr = (unsigned long)-1;
1288 return 0;
1291 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1292 u64 root, u64 extent_item_objectid,
1293 iterate_extent_inodes_t *iterate, void *ctx)
1295 struct extent_inode_elem *eie;
1296 int ret = 0;
1298 for (eie = inode_list; eie; eie = eie->next) {
1299 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1300 "root %llu\n", extent_item_objectid,
1301 eie->inum, eie->offset, root);
1302 ret = iterate(eie->inum, eie->offset, root, ctx);
1303 if (ret) {
1304 pr_debug("stopping iteration for %llu due to ret=%d\n",
1305 extent_item_objectid, ret);
1306 break;
1310 return ret;
1314 * calls iterate() for every inode that references the extent identified by
1315 * the given parameters.
1316 * when the iterator function returns a non-zero value, iteration stops.
1318 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1319 u64 extent_item_objectid, u64 extent_item_pos,
1320 int search_commit_root,
1321 iterate_extent_inodes_t *iterate, void *ctx)
1323 int ret;
1324 struct btrfs_trans_handle *trans = NULL;
1325 struct ulist *refs = NULL;
1326 struct ulist *roots = NULL;
1327 struct ulist_node *ref_node = NULL;
1328 struct ulist_node *root_node = NULL;
1329 struct ulist_iterator ref_uiter;
1330 struct ulist_iterator root_uiter;
1332 pr_debug("resolving all inodes for extent %llu\n",
1333 extent_item_objectid);
1335 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1336 0, &refs, &extent_item_pos);
1337 if (ret)
1338 goto out;
1340 ULIST_ITER_INIT(&ref_uiter);
1341 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1342 ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
1343 0, &roots);
1344 if (ret)
1345 break;
1346 ULIST_ITER_INIT(&root_uiter);
1347 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1348 pr_debug("root %llu references leaf %llu, data list "
1349 "%#llx\n", root_node->val, ref_node->val,
1350 ref_node->aux);
1351 ret = iterate_leaf_refs((struct extent_inode_elem *)
1352 (uintptr_t)ref_node->aux,
1353 root_node->val,
1354 extent_item_objectid,
1355 iterate, ctx);
1357 ulist_free(roots);
1360 free_leaf_list(refs);
1361 out:
1362 return ret;
1365 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1366 struct btrfs_path *path,
1367 iterate_extent_inodes_t *iterate, void *ctx)
1369 int ret;
1370 u64 extent_item_pos;
1371 u64 flags = 0;
1372 struct btrfs_key found_key;
1373 int search_commit_root = 0;
1375 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1376 btrfs_release_path(path);
1377 if (ret < 0)
1378 return ret;
1379 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1380 return -EINVAL;
1382 extent_item_pos = logical - found_key.objectid;
1383 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1384 extent_item_pos, search_commit_root,
1385 iterate, ctx);
1387 return ret;
1390 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1391 struct extent_buffer *eb, void *ctx);
1393 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1394 struct btrfs_path *path,
1395 iterate_irefs_t *iterate, void *ctx)
1397 int ret = 0;
1398 int slot;
1399 u32 cur;
1400 u32 len;
1401 u32 name_len;
1402 u64 parent = 0;
1403 int found = 0;
1404 struct extent_buffer *eb;
1405 struct btrfs_item *item;
1406 struct btrfs_inode_ref *iref;
1407 struct btrfs_key found_key;
1409 while (!ret) {
1410 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1411 &found_key);
1412 if (ret < 0)
1413 break;
1414 if (ret) {
1415 ret = found ? 0 : -ENOENT;
1416 break;
1418 ++found;
1420 parent = found_key.offset;
1421 slot = path->slots[0];
1422 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1423 if (!eb) {
1424 ret = -ENOMEM;
1425 break;
1427 extent_buffer_get(eb);
1428 btrfs_release_path(path);
1430 item = btrfs_item_nr(slot);
1431 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1433 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1434 name_len = btrfs_inode_ref_name_len(eb, iref);
1435 /* path must be released before calling iterate()! */
1436 pr_debug("following ref at offset %u for inode %llu in "
1437 "tree %llu\n", cur, found_key.objectid,
1438 fs_root->objectid);
1439 ret = iterate(parent, name_len,
1440 (unsigned long)(iref + 1), eb, ctx);
1441 if (ret)
1442 break;
1443 len = sizeof(*iref) + name_len;
1444 iref = (struct btrfs_inode_ref *)((char *)iref + len);
1446 free_extent_buffer(eb);
1449 btrfs_release_path(path);
1451 return ret;
1454 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1455 struct btrfs_path *path,
1456 iterate_irefs_t *iterate, void *ctx)
1458 int ret;
1459 int slot;
1460 u64 offset = 0;
1461 u64 parent;
1462 int found = 0;
1463 struct extent_buffer *eb;
1464 struct btrfs_inode_extref *extref;
1465 struct extent_buffer *leaf;
1466 u32 item_size;
1467 u32 cur_offset;
1468 unsigned long ptr;
1470 while (1) {
1471 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1472 &offset);
1473 if (ret < 0)
1474 break;
1475 if (ret) {
1476 ret = found ? 0 : -ENOENT;
1477 break;
1479 ++found;
1481 slot = path->slots[0];
1482 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1483 if (!eb) {
1484 ret = -ENOMEM;
1485 break;
1487 extent_buffer_get(eb);
1489 btrfs_release_path(path);
1491 leaf = path->nodes[0];
1492 item_size = btrfs_item_size_nr(leaf, slot);
1493 ptr = btrfs_item_ptr_offset(leaf, slot);
1494 cur_offset = 0;
1496 while (cur_offset < item_size) {
1497 u32 name_len;
1499 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1500 parent = btrfs_inode_extref_parent(eb, extref);
1501 name_len = btrfs_inode_extref_name_len(eb, extref);
1502 ret = iterate(parent, name_len,
1503 (unsigned long)&extref->name, eb, ctx);
1504 if (ret)
1505 break;
1507 cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1508 cur_offset += sizeof(*extref);
1510 free_extent_buffer(eb);
1512 offset++;
1515 btrfs_release_path(path);
1517 return ret;
1520 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1521 struct btrfs_path *path, iterate_irefs_t *iterate,
1522 void *ctx)
1524 int ret;
1525 int found_refs = 0;
1527 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1528 if (!ret)
1529 ++found_refs;
1530 else if (ret != -ENOENT)
1531 return ret;
1533 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1534 if (ret == -ENOENT && found_refs)
1535 return 0;
1537 return ret;
1541 * returns 0 if the path could be dumped (probably truncated)
1542 * returns <0 in case of an error
1544 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1545 struct extent_buffer *eb, void *ctx)
1547 struct inode_fs_paths *ipath = ctx;
1548 char *fspath;
1549 char *fspath_min;
1550 int i = ipath->fspath->elem_cnt;
1551 const int s_ptr = sizeof(char *);
1552 u32 bytes_left;
1554 bytes_left = ipath->fspath->bytes_left > s_ptr ?
1555 ipath->fspath->bytes_left - s_ptr : 0;
1557 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1558 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1559 name_off, eb, inum, fspath_min, bytes_left);
1560 if (IS_ERR(fspath))
1561 return PTR_ERR(fspath);
1563 if (fspath > fspath_min) {
1564 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1565 ++ipath->fspath->elem_cnt;
1566 ipath->fspath->bytes_left = fspath - fspath_min;
1567 } else {
1568 ++ipath->fspath->elem_missed;
1569 ipath->fspath->bytes_missing += fspath_min - fspath;
1570 ipath->fspath->bytes_left = 0;
1573 return 0;
1577 * this dumps all file system paths to the inode into the ipath struct, provided
1578 * is has been created large enough. each path is zero-terminated and accessed
1579 * from ipath->fspath->val[i].
1580 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1581 * in ipath->fspath->val[]. When the allocated space wasn't sufficient, the
1582 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
1583 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1584 * have been needed to return all paths.
1586 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1588 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1589 inode_to_path, ipath);
1592 struct btrfs_data_container *init_data_container(u32 total_bytes)
1594 struct btrfs_data_container *data;
1595 size_t alloc_bytes;
1597 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1598 data = vmalloc(alloc_bytes);
1599 if (!data)
1600 return ERR_PTR(-ENOMEM);
1602 if (total_bytes >= sizeof(*data)) {
1603 data->bytes_left = total_bytes - sizeof(*data);
1604 data->bytes_missing = 0;
1605 } else {
1606 data->bytes_missing = sizeof(*data) - total_bytes;
1607 data->bytes_left = 0;
1610 data->elem_cnt = 0;
1611 data->elem_missed = 0;
1613 return data;
1617 * allocates space to return multiple file system paths for an inode.
1618 * total_bytes to allocate are passed, note that space usable for actual path
1619 * information will be total_bytes - sizeof(struct inode_fs_paths).
1620 * the returned pointer must be freed with free_ipath() in the end.
1622 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1623 struct btrfs_path *path)
1625 struct inode_fs_paths *ifp;
1626 struct btrfs_data_container *fspath;
1628 fspath = init_data_container(total_bytes);
1629 if (IS_ERR(fspath))
1630 return (void *)fspath;
1632 ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1633 if (!ifp) {
1634 kfree(fspath);
1635 return ERR_PTR(-ENOMEM);
1638 ifp->btrfs_path = path;
1639 ifp->fspath = fspath;
1640 ifp->fs_root = fs_root;
1642 return ifp;
1645 void free_ipath(struct inode_fs_paths *ipath)
1647 if (!ipath)
1648 return;
1649 vfree(ipath->fspath);
1650 kfree(ipath);