btrfs-progs: tests: test mkfs.btrfs fails on small backing size thin provision device
[btrfs-progs-unstable/devel.git] / volumes.c
blobad3016dcdb20d0576b5178778f5f6f063fbcbd02
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <stdio.h>
19 #include <stdlib.h>
20 #include <sys/types.h>
21 #include <sys/stat.h>
22 #include <uuid/uuid.h>
23 #include <fcntl.h>
24 #include <unistd.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "print-tree.h"
29 #include "volumes.h"
30 #include "utils.h"
31 #include "kernel-lib/raid56.h"
33 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
34 [BTRFS_RAID_RAID10] = {
35 .sub_stripes = 2,
36 .dev_stripes = 1,
37 .devs_max = 0, /* 0 == as many as possible */
38 .devs_min = 4,
39 .tolerated_failures = 1,
40 .devs_increment = 2,
41 .ncopies = 2,
43 [BTRFS_RAID_RAID1] = {
44 .sub_stripes = 1,
45 .dev_stripes = 1,
46 .devs_max = 2,
47 .devs_min = 2,
48 .tolerated_failures = 1,
49 .devs_increment = 2,
50 .ncopies = 2,
52 [BTRFS_RAID_DUP] = {
53 .sub_stripes = 1,
54 .dev_stripes = 2,
55 .devs_max = 1,
56 .devs_min = 1,
57 .tolerated_failures = 0,
58 .devs_increment = 1,
59 .ncopies = 2,
61 [BTRFS_RAID_RAID0] = {
62 .sub_stripes = 1,
63 .dev_stripes = 1,
64 .devs_max = 0,
65 .devs_min = 2,
66 .tolerated_failures = 0,
67 .devs_increment = 1,
68 .ncopies = 1,
70 [BTRFS_RAID_SINGLE] = {
71 .sub_stripes = 1,
72 .dev_stripes = 1,
73 .devs_max = 1,
74 .devs_min = 1,
75 .tolerated_failures = 0,
76 .devs_increment = 1,
77 .ncopies = 1,
79 [BTRFS_RAID_RAID5] = {
80 .sub_stripes = 1,
81 .dev_stripes = 1,
82 .devs_max = 0,
83 .devs_min = 2,
84 .tolerated_failures = 1,
85 .devs_increment = 1,
86 .ncopies = 2,
88 [BTRFS_RAID_RAID6] = {
89 .sub_stripes = 1,
90 .dev_stripes = 1,
91 .devs_max = 0,
92 .devs_min = 3,
93 .tolerated_failures = 2,
94 .devs_increment = 1,
95 .ncopies = 3,
99 struct stripe {
100 struct btrfs_device *dev;
101 u64 physical;
104 static inline int nr_parity_stripes(struct map_lookup *map)
106 if (map->type & BTRFS_BLOCK_GROUP_RAID5)
107 return 1;
108 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
109 return 2;
110 else
111 return 0;
114 static inline int nr_data_stripes(struct map_lookup *map)
116 return map->num_stripes - nr_parity_stripes(map);
119 #define is_parity_stripe(x) ( ((x) == BTRFS_RAID5_P_STRIPE) || ((x) == BTRFS_RAID6_Q_STRIPE) )
121 static LIST_HEAD(fs_uuids);
124 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
125 * return NULL.
127 * If devid and uuid are both specified, the match must be exact, otherwise
128 * only devid is used.
130 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
131 u64 devid, u8 *uuid)
133 struct list_head *head = &fs_devices->devices;
134 struct btrfs_device *dev;
136 list_for_each_entry(dev, head, dev_list) {
137 if (dev->devid == devid &&
138 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
139 return dev;
142 return NULL;
145 static struct btrfs_fs_devices *find_fsid(u8 *fsid)
147 struct btrfs_fs_devices *fs_devices;
149 list_for_each_entry(fs_devices, &fs_uuids, list) {
150 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
151 return fs_devices;
153 return NULL;
156 static int device_list_add(const char *path,
157 struct btrfs_super_block *disk_super,
158 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
160 struct btrfs_device *device;
161 struct btrfs_fs_devices *fs_devices;
162 u64 found_transid = btrfs_super_generation(disk_super);
164 fs_devices = find_fsid(disk_super->fsid);
165 if (!fs_devices) {
166 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
167 if (!fs_devices)
168 return -ENOMEM;
169 INIT_LIST_HEAD(&fs_devices->devices);
170 list_add(&fs_devices->list, &fs_uuids);
171 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
172 fs_devices->latest_devid = devid;
173 fs_devices->latest_trans = found_transid;
174 fs_devices->lowest_devid = (u64)-1;
175 device = NULL;
176 } else {
177 device = find_device(fs_devices, devid,
178 disk_super->dev_item.uuid);
180 if (!device) {
181 device = kzalloc(sizeof(*device), GFP_NOFS);
182 if (!device) {
183 /* we can safely leave the fs_devices entry around */
184 return -ENOMEM;
186 device->fd = -1;
187 device->devid = devid;
188 device->generation = found_transid;
189 memcpy(device->uuid, disk_super->dev_item.uuid,
190 BTRFS_UUID_SIZE);
191 device->name = kstrdup(path, GFP_NOFS);
192 if (!device->name) {
193 kfree(device);
194 return -ENOMEM;
196 device->label = kstrdup(disk_super->label, GFP_NOFS);
197 if (!device->label) {
198 kfree(device->name);
199 kfree(device);
200 return -ENOMEM;
202 device->total_devs = btrfs_super_num_devices(disk_super);
203 device->super_bytes_used = btrfs_super_bytes_used(disk_super);
204 device->total_bytes =
205 btrfs_stack_device_total_bytes(&disk_super->dev_item);
206 device->bytes_used =
207 btrfs_stack_device_bytes_used(&disk_super->dev_item);
208 list_add(&device->dev_list, &fs_devices->devices);
209 device->fs_devices = fs_devices;
210 } else if (!device->name || strcmp(device->name, path)) {
211 char *name;
214 * The existing device has newer generation, so this one could
215 * be a stale one, don't add it.
217 if (found_transid < device->generation) {
218 warning(
219 "adding device %s gen %llu but found an existing device %s gen %llu",
220 path, found_transid, device->name,
221 device->generation);
222 return -EEXIST;
225 name = strdup(path);
226 if (!name)
227 return -ENOMEM;
228 kfree(device->name);
229 device->name = name;
233 if (found_transid > fs_devices->latest_trans) {
234 fs_devices->latest_devid = devid;
235 fs_devices->latest_trans = found_transid;
237 if (fs_devices->lowest_devid > devid) {
238 fs_devices->lowest_devid = devid;
240 *fs_devices_ret = fs_devices;
241 return 0;
244 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
246 struct btrfs_fs_devices *seed_devices;
247 struct btrfs_device *device;
248 int ret = 0;
250 again:
251 if (!fs_devices)
252 return 0;
253 while (!list_empty(&fs_devices->devices)) {
254 device = list_entry(fs_devices->devices.next,
255 struct btrfs_device, dev_list);
256 if (device->fd != -1) {
257 if (fsync(device->fd) == -1) {
258 warning("fsync on device %llu failed: %m",
259 device->devid);
260 ret = -errno;
262 if (posix_fadvise(device->fd, 0, 0, POSIX_FADV_DONTNEED))
263 fprintf(stderr, "Warning, could not drop caches\n");
264 close(device->fd);
265 device->fd = -1;
267 device->writeable = 0;
268 list_del(&device->dev_list);
269 /* free the memory */
270 free(device->name);
271 free(device->label);
272 free(device);
275 seed_devices = fs_devices->seed;
276 fs_devices->seed = NULL;
277 if (seed_devices) {
278 struct btrfs_fs_devices *orig;
280 orig = fs_devices;
281 fs_devices = seed_devices;
282 list_del(&orig->list);
283 free(orig);
284 goto again;
285 } else {
286 list_del(&fs_devices->list);
287 free(fs_devices);
290 return ret;
293 void btrfs_close_all_devices(void)
295 struct btrfs_fs_devices *fs_devices;
297 while (!list_empty(&fs_uuids)) {
298 fs_devices = list_entry(fs_uuids.next, struct btrfs_fs_devices,
299 list);
300 btrfs_close_devices(fs_devices);
304 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, int flags)
306 int fd;
307 struct btrfs_device *device;
308 int ret;
310 list_for_each_entry(device, &fs_devices->devices, dev_list) {
311 if (!device->name) {
312 printk("no name for device %llu, skip it now\n", device->devid);
313 continue;
316 fd = open(device->name, flags);
317 if (fd < 0) {
318 ret = -errno;
319 error("cannot open device '%s': %m", device->name);
320 goto fail;
323 if (posix_fadvise(fd, 0, 0, POSIX_FADV_DONTNEED))
324 fprintf(stderr, "Warning, could not drop caches\n");
326 if (device->devid == fs_devices->latest_devid)
327 fs_devices->latest_bdev = fd;
328 if (device->devid == fs_devices->lowest_devid)
329 fs_devices->lowest_bdev = fd;
330 device->fd = fd;
331 if (flags & O_RDWR)
332 device->writeable = 1;
334 return 0;
335 fail:
336 btrfs_close_devices(fs_devices);
337 return ret;
340 int btrfs_scan_one_device(int fd, const char *path,
341 struct btrfs_fs_devices **fs_devices_ret,
342 u64 *total_devs, u64 super_offset, unsigned sbflags)
344 struct btrfs_super_block *disk_super;
345 char buf[BTRFS_SUPER_INFO_SIZE];
346 int ret;
347 u64 devid;
349 disk_super = (struct btrfs_super_block *)buf;
350 ret = btrfs_read_dev_super(fd, disk_super, super_offset, sbflags);
351 if (ret < 0)
352 return -EIO;
353 devid = btrfs_stack_device_id(&disk_super->dev_item);
354 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_METADUMP)
355 *total_devs = 1;
356 else
357 *total_devs = btrfs_super_num_devices(disk_super);
359 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
361 return ret;
365 * find_free_dev_extent_start - find free space in the specified device
366 * @device: the device which we search the free space in
367 * @num_bytes: the size of the free space that we need
368 * @search_start: the position from which to begin the search
369 * @start: store the start of the free space.
370 * @len: the size of the free space. that we find, or the size
371 * of the max free space if we don't find suitable free space
373 * this uses a pretty simple search, the expectation is that it is
374 * called very infrequently and that a given device has a small number
375 * of extents
377 * @start is used to store the start of the free space if we find. But if we
378 * don't find suitable free space, it will be used to store the start position
379 * of the max free space.
381 * @len is used to store the size of the free space that we find.
382 * But if we don't find suitable free space, it is used to store the size of
383 * the max free space.
385 static int find_free_dev_extent_start(struct btrfs_device *device,
386 u64 num_bytes, u64 search_start,
387 u64 *start, u64 *len)
389 struct btrfs_key key;
390 struct btrfs_root *root = device->dev_root;
391 struct btrfs_dev_extent *dev_extent;
392 struct btrfs_path *path;
393 u64 hole_size;
394 u64 max_hole_start;
395 u64 max_hole_size;
396 u64 extent_end;
397 u64 search_end = device->total_bytes;
398 int ret;
399 int slot;
400 struct extent_buffer *l;
401 u64 min_search_start;
404 * We don't want to overwrite the superblock on the drive nor any area
405 * used by the boot loader (grub for example), so we make sure to start
406 * at an offset of at least 1MB.
408 min_search_start = max(root->fs_info->alloc_start, (u64)SZ_1M);
409 search_start = max(search_start, min_search_start);
411 path = btrfs_alloc_path();
412 if (!path)
413 return -ENOMEM;
415 max_hole_start = search_start;
416 max_hole_size = 0;
418 if (search_start >= search_end) {
419 ret = -ENOSPC;
420 goto out;
423 path->reada = 2;
425 key.objectid = device->devid;
426 key.offset = search_start;
427 key.type = BTRFS_DEV_EXTENT_KEY;
429 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
430 if (ret < 0)
431 goto out;
432 if (ret > 0) {
433 ret = btrfs_previous_item(root, path, key.objectid, key.type);
434 if (ret < 0)
435 goto out;
438 while (1) {
439 l = path->nodes[0];
440 slot = path->slots[0];
441 if (slot >= btrfs_header_nritems(l)) {
442 ret = btrfs_next_leaf(root, path);
443 if (ret == 0)
444 continue;
445 if (ret < 0)
446 goto out;
448 break;
450 btrfs_item_key_to_cpu(l, &key, slot);
452 if (key.objectid < device->devid)
453 goto next;
455 if (key.objectid > device->devid)
456 break;
458 if (key.type != BTRFS_DEV_EXTENT_KEY)
459 goto next;
461 if (key.offset > search_start) {
462 hole_size = key.offset - search_start;
465 * Have to check before we set max_hole_start, otherwise
466 * we could end up sending back this offset anyway.
468 if (hole_size > max_hole_size) {
469 max_hole_start = search_start;
470 max_hole_size = hole_size;
474 * If this free space is greater than which we need,
475 * it must be the max free space that we have found
476 * until now, so max_hole_start must point to the start
477 * of this free space and the length of this free space
478 * is stored in max_hole_size. Thus, we return
479 * max_hole_start and max_hole_size and go back to the
480 * caller.
482 if (hole_size >= num_bytes) {
483 ret = 0;
484 goto out;
488 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
489 extent_end = key.offset + btrfs_dev_extent_length(l,
490 dev_extent);
491 if (extent_end > search_start)
492 search_start = extent_end;
493 next:
494 path->slots[0]++;
495 cond_resched();
499 * At this point, search_start should be the end of
500 * allocated dev extents, and when shrinking the device,
501 * search_end may be smaller than search_start.
503 if (search_end > search_start) {
504 hole_size = search_end - search_start;
506 if (hole_size > max_hole_size) {
507 max_hole_start = search_start;
508 max_hole_size = hole_size;
512 /* See above. */
513 if (max_hole_size < num_bytes)
514 ret = -ENOSPC;
515 else
516 ret = 0;
518 out:
519 btrfs_free_path(path);
520 *start = max_hole_start;
521 if (len)
522 *len = max_hole_size;
523 return ret;
526 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
527 u64 *start, u64 *len)
529 /* FIXME use last free of some kind */
530 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
533 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
534 struct btrfs_device *device,
535 u64 chunk_offset, u64 num_bytes, u64 *start,
536 int convert)
538 int ret;
539 struct btrfs_path *path;
540 struct btrfs_root *root = device->dev_root;
541 struct btrfs_dev_extent *extent;
542 struct extent_buffer *leaf;
543 struct btrfs_key key;
545 path = btrfs_alloc_path();
546 if (!path)
547 return -ENOMEM;
550 * For convert case, just skip search free dev_extent, as caller
551 * is responsible to make sure it's free.
553 if (!convert) {
554 ret = find_free_dev_extent(device, num_bytes, start, NULL);
555 if (ret)
556 goto err;
559 key.objectid = device->devid;
560 key.offset = *start;
561 key.type = BTRFS_DEV_EXTENT_KEY;
562 ret = btrfs_insert_empty_item(trans, root, path, &key,
563 sizeof(*extent));
564 BUG_ON(ret);
566 leaf = path->nodes[0];
567 extent = btrfs_item_ptr(leaf, path->slots[0],
568 struct btrfs_dev_extent);
569 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
570 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
571 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
572 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
574 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
575 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
576 BTRFS_UUID_SIZE);
578 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
579 btrfs_mark_buffer_dirty(leaf);
580 err:
581 btrfs_free_path(path);
582 return ret;
585 static int find_next_chunk(struct btrfs_fs_info *fs_info, u64 *offset)
587 struct btrfs_root *root = fs_info->chunk_root;
588 struct btrfs_path *path;
589 int ret;
590 struct btrfs_key key;
591 struct btrfs_chunk *chunk;
592 struct btrfs_key found_key;
594 path = btrfs_alloc_path();
595 if (!path)
596 return -ENOMEM;
598 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
599 key.offset = (u64)-1;
600 key.type = BTRFS_CHUNK_ITEM_KEY;
602 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
603 if (ret < 0)
604 goto error;
606 BUG_ON(ret == 0);
608 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
609 if (ret) {
610 *offset = 0;
611 } else {
612 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
613 path->slots[0]);
614 if (found_key.objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)
615 *offset = 0;
616 else {
617 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
618 struct btrfs_chunk);
619 *offset = found_key.offset +
620 btrfs_chunk_length(path->nodes[0], chunk);
623 ret = 0;
624 error:
625 btrfs_free_path(path);
626 return ret;
629 static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
630 u64 *objectid)
632 int ret;
633 struct btrfs_key key;
634 struct btrfs_key found_key;
636 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
637 key.type = BTRFS_DEV_ITEM_KEY;
638 key.offset = (u64)-1;
640 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
641 if (ret < 0)
642 goto error;
644 BUG_ON(ret == 0);
646 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
647 BTRFS_DEV_ITEM_KEY);
648 if (ret) {
649 *objectid = 1;
650 } else {
651 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
652 path->slots[0]);
653 *objectid = found_key.offset + 1;
655 ret = 0;
656 error:
657 btrfs_release_path(path);
658 return ret;
662 * the device information is stored in the chunk root
663 * the btrfs_device struct should be fully filled in
665 int btrfs_add_device(struct btrfs_trans_handle *trans,
666 struct btrfs_fs_info *fs_info,
667 struct btrfs_device *device)
669 int ret;
670 struct btrfs_path *path;
671 struct btrfs_dev_item *dev_item;
672 struct extent_buffer *leaf;
673 struct btrfs_key key;
674 struct btrfs_root *root = fs_info->chunk_root;
675 unsigned long ptr;
676 u64 free_devid = 0;
678 path = btrfs_alloc_path();
679 if (!path)
680 return -ENOMEM;
682 ret = find_next_devid(root, path, &free_devid);
683 if (ret)
684 goto out;
686 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
687 key.type = BTRFS_DEV_ITEM_KEY;
688 key.offset = free_devid;
690 ret = btrfs_insert_empty_item(trans, root, path, &key,
691 sizeof(*dev_item));
692 if (ret)
693 goto out;
695 leaf = path->nodes[0];
696 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
698 device->devid = free_devid;
699 btrfs_set_device_id(leaf, dev_item, device->devid);
700 btrfs_set_device_generation(leaf, dev_item, 0);
701 btrfs_set_device_type(leaf, dev_item, device->type);
702 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
703 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
704 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
705 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
706 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
707 btrfs_set_device_group(leaf, dev_item, 0);
708 btrfs_set_device_seek_speed(leaf, dev_item, 0);
709 btrfs_set_device_bandwidth(leaf, dev_item, 0);
710 btrfs_set_device_start_offset(leaf, dev_item, 0);
712 ptr = (unsigned long)btrfs_device_uuid(dev_item);
713 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
714 ptr = (unsigned long)btrfs_device_fsid(dev_item);
715 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_UUID_SIZE);
716 btrfs_mark_buffer_dirty(leaf);
717 ret = 0;
719 out:
720 btrfs_free_path(path);
721 return ret;
724 int btrfs_update_device(struct btrfs_trans_handle *trans,
725 struct btrfs_device *device)
727 int ret;
728 struct btrfs_path *path;
729 struct btrfs_root *root;
730 struct btrfs_dev_item *dev_item;
731 struct extent_buffer *leaf;
732 struct btrfs_key key;
734 root = device->dev_root->fs_info->chunk_root;
736 path = btrfs_alloc_path();
737 if (!path)
738 return -ENOMEM;
740 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
741 key.type = BTRFS_DEV_ITEM_KEY;
742 key.offset = device->devid;
744 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
745 if (ret < 0)
746 goto out;
748 if (ret > 0) {
749 ret = -ENOENT;
750 goto out;
753 leaf = path->nodes[0];
754 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
756 btrfs_set_device_id(leaf, dev_item, device->devid);
757 btrfs_set_device_type(leaf, dev_item, device->type);
758 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
759 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
760 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
761 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
762 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
763 btrfs_mark_buffer_dirty(leaf);
765 out:
766 btrfs_free_path(path);
767 return ret;
770 int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
771 struct btrfs_chunk *chunk, int item_size)
773 struct btrfs_super_block *super_copy = fs_info->super_copy;
774 struct btrfs_disk_key disk_key;
775 u32 array_size;
776 u8 *ptr;
778 array_size = btrfs_super_sys_array_size(super_copy);
779 if (array_size + item_size + sizeof(disk_key)
780 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
781 return -EFBIG;
783 ptr = super_copy->sys_chunk_array + array_size;
784 btrfs_cpu_key_to_disk(&disk_key, key);
785 memcpy(ptr, &disk_key, sizeof(disk_key));
786 ptr += sizeof(disk_key);
787 memcpy(ptr, chunk, item_size);
788 item_size += sizeof(disk_key);
789 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
790 return 0;
793 static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
794 int sub_stripes)
796 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
797 return calc_size;
798 else if (type & BTRFS_BLOCK_GROUP_RAID10)
799 return calc_size * (num_stripes / sub_stripes);
800 else if (type & BTRFS_BLOCK_GROUP_RAID5)
801 return calc_size * (num_stripes - 1);
802 else if (type & BTRFS_BLOCK_GROUP_RAID6)
803 return calc_size * (num_stripes - 2);
804 else
805 return calc_size * num_stripes;
809 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
811 /* TODO, add a way to store the preferred stripe size */
812 return BTRFS_STRIPE_LEN;
816 * btrfs_device_avail_bytes - count bytes available for alloc_chunk
818 * It is not equal to "device->total_bytes - device->bytes_used".
819 * We do not allocate any chunk in 1M at beginning of device, and not
820 * allowed to allocate any chunk before alloc_start if it is specified.
821 * So search holes from max(1M, alloc_start) to device->total_bytes.
823 static int btrfs_device_avail_bytes(struct btrfs_trans_handle *trans,
824 struct btrfs_device *device,
825 u64 *avail_bytes)
827 struct btrfs_path *path;
828 struct btrfs_root *root = device->dev_root;
829 struct btrfs_key key;
830 struct btrfs_dev_extent *dev_extent = NULL;
831 struct extent_buffer *l;
832 u64 search_start = root->fs_info->alloc_start;
833 u64 search_end = device->total_bytes;
834 u64 extent_end = 0;
835 u64 free_bytes = 0;
836 int ret;
837 int slot = 0;
839 search_start = max(BTRFS_BLOCK_RESERVED_1M_FOR_SUPER, search_start);
841 path = btrfs_alloc_path();
842 if (!path)
843 return -ENOMEM;
845 key.objectid = device->devid;
846 key.offset = root->fs_info->alloc_start;
847 key.type = BTRFS_DEV_EXTENT_KEY;
849 path->reada = 2;
850 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
851 if (ret < 0)
852 goto error;
853 ret = btrfs_previous_item(root, path, 0, key.type);
854 if (ret < 0)
855 goto error;
857 while (1) {
858 l = path->nodes[0];
859 slot = path->slots[0];
860 if (slot >= btrfs_header_nritems(l)) {
861 ret = btrfs_next_leaf(root, path);
862 if (ret == 0)
863 continue;
864 if (ret < 0)
865 goto error;
866 break;
868 btrfs_item_key_to_cpu(l, &key, slot);
870 if (key.objectid < device->devid)
871 goto next;
872 if (key.objectid > device->devid)
873 break;
874 if (key.type != BTRFS_DEV_EXTENT_KEY)
875 goto next;
876 if (key.offset > search_end)
877 break;
878 if (key.offset > search_start)
879 free_bytes += key.offset - search_start;
881 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
882 extent_end = key.offset + btrfs_dev_extent_length(l,
883 dev_extent);
884 if (extent_end > search_start)
885 search_start = extent_end;
886 if (search_start > search_end)
887 break;
888 next:
889 path->slots[0]++;
890 cond_resched();
893 if (search_start < search_end)
894 free_bytes += search_end - search_start;
896 *avail_bytes = free_bytes;
897 ret = 0;
898 error:
899 btrfs_free_path(path);
900 return ret;
903 #define BTRFS_MAX_DEVS(info) ((BTRFS_LEAF_DATA_SIZE(info) \
904 - sizeof(struct btrfs_item) \
905 - sizeof(struct btrfs_chunk)) \
906 / sizeof(struct btrfs_stripe) + 1)
908 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
909 - 2 * sizeof(struct btrfs_disk_key) \
910 - 2 * sizeof(struct btrfs_chunk)) \
911 / sizeof(struct btrfs_stripe) + 1)
913 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
914 struct btrfs_fs_info *info, u64 *start,
915 u64 *num_bytes, u64 type)
917 u64 dev_offset;
918 struct btrfs_root *extent_root = info->extent_root;
919 struct btrfs_root *chunk_root = info->chunk_root;
920 struct btrfs_stripe *stripes;
921 struct btrfs_device *device = NULL;
922 struct btrfs_chunk *chunk;
923 struct list_head private_devs;
924 struct list_head *dev_list = &info->fs_devices->devices;
925 struct list_head *cur;
926 struct map_lookup *map;
927 int min_stripe_size = SZ_1M;
928 u64 calc_size = SZ_8M;
929 u64 min_free;
930 u64 max_chunk_size = 4 * calc_size;
931 u64 avail = 0;
932 u64 max_avail = 0;
933 u64 percent_max;
934 int num_stripes = 1;
935 int max_stripes = 0;
936 int min_stripes = 1;
937 int sub_stripes = 0;
938 int looped = 0;
939 int ret;
940 int index;
941 int stripe_len = BTRFS_STRIPE_LEN;
942 struct btrfs_key key;
943 u64 offset;
945 if (list_empty(dev_list)) {
946 return -ENOSPC;
949 if (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
950 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
951 calc_size = SZ_8M;
952 max_chunk_size = calc_size * 2;
953 min_stripe_size = SZ_1M;
954 max_stripes = BTRFS_MAX_DEVS_SYS_CHUNK;
955 } else if (type & BTRFS_BLOCK_GROUP_DATA) {
956 calc_size = SZ_1G;
957 max_chunk_size = 10 * calc_size;
958 min_stripe_size = SZ_64M;
959 max_stripes = BTRFS_MAX_DEVS(info);
960 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
961 calc_size = SZ_1G;
962 max_chunk_size = 4 * calc_size;
963 min_stripe_size = SZ_32M;
964 max_stripes = BTRFS_MAX_DEVS(info);
967 if (type & BTRFS_BLOCK_GROUP_RAID1) {
968 num_stripes = min_t(u64, 2,
969 btrfs_super_num_devices(info->super_copy));
970 if (num_stripes < 2)
971 return -ENOSPC;
972 min_stripes = 2;
974 if (type & BTRFS_BLOCK_GROUP_DUP) {
975 num_stripes = 2;
976 min_stripes = 2;
978 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
979 num_stripes = btrfs_super_num_devices(info->super_copy);
980 if (num_stripes > max_stripes)
981 num_stripes = max_stripes;
982 min_stripes = 2;
984 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
985 num_stripes = btrfs_super_num_devices(info->super_copy);
986 if (num_stripes > max_stripes)
987 num_stripes = max_stripes;
988 if (num_stripes < 4)
989 return -ENOSPC;
990 num_stripes &= ~(u32)1;
991 sub_stripes = 2;
992 min_stripes = 4;
994 if (type & (BTRFS_BLOCK_GROUP_RAID5)) {
995 num_stripes = btrfs_super_num_devices(info->super_copy);
996 if (num_stripes > max_stripes)
997 num_stripes = max_stripes;
998 if (num_stripes < 2)
999 return -ENOSPC;
1000 min_stripes = 2;
1001 stripe_len = find_raid56_stripe_len(num_stripes - 1,
1002 btrfs_super_stripesize(info->super_copy));
1004 if (type & (BTRFS_BLOCK_GROUP_RAID6)) {
1005 num_stripes = btrfs_super_num_devices(info->super_copy);
1006 if (num_stripes > max_stripes)
1007 num_stripes = max_stripes;
1008 if (num_stripes < 3)
1009 return -ENOSPC;
1010 min_stripes = 3;
1011 stripe_len = find_raid56_stripe_len(num_stripes - 2,
1012 btrfs_super_stripesize(info->super_copy));
1015 /* we don't want a chunk larger than 10% of the FS */
1016 percent_max = div_factor(btrfs_super_total_bytes(info->super_copy), 1);
1017 max_chunk_size = min(percent_max, max_chunk_size);
1019 again:
1020 if (chunk_bytes_by_type(type, calc_size, num_stripes, sub_stripes) >
1021 max_chunk_size) {
1022 calc_size = max_chunk_size;
1023 calc_size /= num_stripes;
1024 calc_size /= stripe_len;
1025 calc_size *= stripe_len;
1027 /* we don't want tiny stripes */
1028 calc_size = max_t(u64, calc_size, min_stripe_size);
1030 calc_size /= stripe_len;
1031 calc_size *= stripe_len;
1032 INIT_LIST_HEAD(&private_devs);
1033 cur = dev_list->next;
1034 index = 0;
1036 if (type & BTRFS_BLOCK_GROUP_DUP)
1037 min_free = calc_size * 2;
1038 else
1039 min_free = calc_size;
1041 /* build a private list of devices we will allocate from */
1042 while(index < num_stripes) {
1043 device = list_entry(cur, struct btrfs_device, dev_list);
1044 ret = btrfs_device_avail_bytes(trans, device, &avail);
1045 if (ret)
1046 return ret;
1047 cur = cur->next;
1048 if (avail >= min_free) {
1049 list_move_tail(&device->dev_list, &private_devs);
1050 index++;
1051 if (type & BTRFS_BLOCK_GROUP_DUP)
1052 index++;
1053 } else if (avail > max_avail)
1054 max_avail = avail;
1055 if (cur == dev_list)
1056 break;
1058 if (index < num_stripes) {
1059 list_splice(&private_devs, dev_list);
1060 if (index >= min_stripes) {
1061 num_stripes = index;
1062 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
1063 num_stripes /= sub_stripes;
1064 num_stripes *= sub_stripes;
1066 looped = 1;
1067 goto again;
1069 if (!looped && max_avail > 0) {
1070 looped = 1;
1071 calc_size = max_avail;
1072 goto again;
1074 return -ENOSPC;
1076 ret = find_next_chunk(info, &offset);
1077 if (ret)
1078 return ret;
1079 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1080 key.type = BTRFS_CHUNK_ITEM_KEY;
1081 key.offset = offset;
1083 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
1084 if (!chunk)
1085 return -ENOMEM;
1087 map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
1088 if (!map) {
1089 kfree(chunk);
1090 return -ENOMEM;
1093 stripes = &chunk->stripe;
1094 *num_bytes = chunk_bytes_by_type(type, calc_size,
1095 num_stripes, sub_stripes);
1096 index = 0;
1097 while(index < num_stripes) {
1098 struct btrfs_stripe *stripe;
1099 BUG_ON(list_empty(&private_devs));
1100 cur = private_devs.next;
1101 device = list_entry(cur, struct btrfs_device, dev_list);
1103 /* loop over this device again if we're doing a dup group */
1104 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
1105 (index == num_stripes - 1))
1106 list_move_tail(&device->dev_list, dev_list);
1108 ret = btrfs_alloc_dev_extent(trans, device, key.offset,
1109 calc_size, &dev_offset, 0);
1110 if (ret < 0)
1111 goto out_chunk_map;
1113 device->bytes_used += calc_size;
1114 ret = btrfs_update_device(trans, device);
1115 if (ret < 0)
1116 goto out_chunk_map;
1118 map->stripes[index].dev = device;
1119 map->stripes[index].physical = dev_offset;
1120 stripe = stripes + index;
1121 btrfs_set_stack_stripe_devid(stripe, device->devid);
1122 btrfs_set_stack_stripe_offset(stripe, dev_offset);
1123 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
1124 index++;
1126 BUG_ON(!list_empty(&private_devs));
1128 /* key was set above */
1129 btrfs_set_stack_chunk_length(chunk, *num_bytes);
1130 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
1131 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
1132 btrfs_set_stack_chunk_type(chunk, type);
1133 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
1134 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
1135 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
1136 btrfs_set_stack_chunk_sector_size(chunk, info->sectorsize);
1137 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
1138 map->sector_size = info->sectorsize;
1139 map->stripe_len = stripe_len;
1140 map->io_align = stripe_len;
1141 map->io_width = stripe_len;
1142 map->type = type;
1143 map->num_stripes = num_stripes;
1144 map->sub_stripes = sub_stripes;
1146 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
1147 btrfs_chunk_item_size(num_stripes));
1148 BUG_ON(ret);
1149 *start = key.offset;;
1151 map->ce.start = key.offset;
1152 map->ce.size = *num_bytes;
1154 ret = insert_cache_extent(&info->mapping_tree.cache_tree, &map->ce);
1155 if (ret < 0)
1156 goto out_chunk_map;
1158 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1159 ret = btrfs_add_system_chunk(info, &key,
1160 chunk, btrfs_chunk_item_size(num_stripes));
1161 if (ret < 0)
1162 goto out_chunk;
1165 kfree(chunk);
1166 return ret;
1168 out_chunk_map:
1169 kfree(map);
1170 out_chunk:
1171 kfree(chunk);
1172 return ret;
1176 * Alloc a DATA chunk with SINGLE profile.
1178 * If 'convert' is set, it will alloc a chunk with 1:1 mapping
1179 * (btrfs logical bytenr == on-disk bytenr)
1180 * For that case, caller must make sure the chunk and dev_extent are not
1181 * occupied.
1183 int btrfs_alloc_data_chunk(struct btrfs_trans_handle *trans,
1184 struct btrfs_fs_info *info, u64 *start,
1185 u64 num_bytes, u64 type, int convert)
1187 u64 dev_offset;
1188 struct btrfs_root *extent_root = info->extent_root;
1189 struct btrfs_root *chunk_root = info->chunk_root;
1190 struct btrfs_stripe *stripes;
1191 struct btrfs_device *device = NULL;
1192 struct btrfs_chunk *chunk;
1193 struct list_head *dev_list = &info->fs_devices->devices;
1194 struct list_head *cur;
1195 struct map_lookup *map;
1196 u64 calc_size = SZ_8M;
1197 int num_stripes = 1;
1198 int sub_stripes = 0;
1199 int ret;
1200 int index;
1201 int stripe_len = BTRFS_STRIPE_LEN;
1202 struct btrfs_key key;
1204 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1205 key.type = BTRFS_CHUNK_ITEM_KEY;
1206 if (convert) {
1207 if (*start != round_down(*start, info->sectorsize)) {
1208 error("DATA chunk start not sectorsize aligned: %llu",
1209 (unsigned long long)*start);
1210 return -EINVAL;
1212 key.offset = *start;
1213 dev_offset = *start;
1214 } else {
1215 u64 tmp;
1217 ret = find_next_chunk(info, &tmp);
1218 key.offset = tmp;
1219 if (ret)
1220 return ret;
1223 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
1224 if (!chunk)
1225 return -ENOMEM;
1227 map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
1228 if (!map) {
1229 kfree(chunk);
1230 return -ENOMEM;
1233 stripes = &chunk->stripe;
1234 calc_size = num_bytes;
1236 index = 0;
1237 cur = dev_list->next;
1238 device = list_entry(cur, struct btrfs_device, dev_list);
1240 while (index < num_stripes) {
1241 struct btrfs_stripe *stripe;
1243 ret = btrfs_alloc_dev_extent(trans, device, key.offset,
1244 calc_size, &dev_offset, convert);
1245 BUG_ON(ret);
1247 device->bytes_used += calc_size;
1248 ret = btrfs_update_device(trans, device);
1249 BUG_ON(ret);
1251 map->stripes[index].dev = device;
1252 map->stripes[index].physical = dev_offset;
1253 stripe = stripes + index;
1254 btrfs_set_stack_stripe_devid(stripe, device->devid);
1255 btrfs_set_stack_stripe_offset(stripe, dev_offset);
1256 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
1257 index++;
1260 /* key was set above */
1261 btrfs_set_stack_chunk_length(chunk, num_bytes);
1262 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
1263 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
1264 btrfs_set_stack_chunk_type(chunk, type);
1265 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
1266 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
1267 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
1268 btrfs_set_stack_chunk_sector_size(chunk, info->sectorsize);
1269 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
1270 map->sector_size = info->sectorsize;
1271 map->stripe_len = stripe_len;
1272 map->io_align = stripe_len;
1273 map->io_width = stripe_len;
1274 map->type = type;
1275 map->num_stripes = num_stripes;
1276 map->sub_stripes = sub_stripes;
1278 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
1279 btrfs_chunk_item_size(num_stripes));
1280 BUG_ON(ret);
1281 if (!convert)
1282 *start = key.offset;
1284 map->ce.start = key.offset;
1285 map->ce.size = num_bytes;
1287 ret = insert_cache_extent(&info->mapping_tree.cache_tree, &map->ce);
1288 BUG_ON(ret);
1290 kfree(chunk);
1291 return ret;
1294 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
1296 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
1297 struct cache_extent *ce;
1298 struct map_lookup *map;
1299 int ret;
1301 ce = search_cache_extent(&map_tree->cache_tree, logical);
1302 if (!ce) {
1303 fprintf(stderr, "No mapping for %llu-%llu\n",
1304 (unsigned long long)logical,
1305 (unsigned long long)logical+len);
1306 return 1;
1308 if (ce->start > logical || ce->start + ce->size < logical) {
1309 fprintf(stderr, "Invalid mapping for %llu-%llu, got "
1310 "%llu-%llu\n", (unsigned long long)logical,
1311 (unsigned long long)logical+len,
1312 (unsigned long long)ce->start,
1313 (unsigned long long)ce->start + ce->size);
1314 return 1;
1316 map = container_of(ce, struct map_lookup, ce);
1318 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
1319 ret = map->num_stripes;
1320 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1321 ret = map->sub_stripes;
1322 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
1323 ret = 2;
1324 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
1325 ret = 3;
1326 else
1327 ret = 1;
1328 return ret;
1331 int btrfs_next_bg(struct btrfs_fs_info *fs_info, u64 *logical,
1332 u64 *size, u64 type)
1334 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
1335 struct cache_extent *ce;
1336 struct map_lookup *map;
1337 u64 cur = *logical;
1339 ce = search_cache_extent(&map_tree->cache_tree, cur);
1341 while (ce) {
1343 * only jump to next bg if our cur is not 0
1344 * As the initial logical for btrfs_next_bg() is 0, and
1345 * if we jump to next bg, we skipped a valid bg.
1347 if (cur) {
1348 ce = next_cache_extent(ce);
1349 if (!ce)
1350 return -ENOENT;
1353 cur = ce->start;
1354 map = container_of(ce, struct map_lookup, ce);
1355 if (map->type & type) {
1356 *logical = ce->start;
1357 *size = ce->size;
1358 return 0;
1360 if (!cur)
1361 ce = next_cache_extent(ce);
1364 return -ENOENT;
1367 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1368 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1370 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
1371 struct cache_extent *ce;
1372 struct map_lookup *map;
1373 u64 *buf;
1374 u64 bytenr;
1375 u64 length;
1376 u64 stripe_nr;
1377 u64 rmap_len;
1378 int i, j, nr = 0;
1380 ce = search_cache_extent(&map_tree->cache_tree, chunk_start);
1381 BUG_ON(!ce);
1382 map = container_of(ce, struct map_lookup, ce);
1384 length = ce->size;
1385 rmap_len = map->stripe_len;
1386 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1387 length = ce->size / (map->num_stripes / map->sub_stripes);
1388 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
1389 length = ce->size / map->num_stripes;
1390 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
1391 BTRFS_BLOCK_GROUP_RAID6)) {
1392 length = ce->size / nr_data_stripes(map);
1393 rmap_len = map->stripe_len * nr_data_stripes(map);
1396 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
1398 for (i = 0; i < map->num_stripes; i++) {
1399 if (map->stripes[i].physical > physical ||
1400 map->stripes[i].physical + length <= physical)
1401 continue;
1403 stripe_nr = (physical - map->stripes[i].physical) /
1404 map->stripe_len;
1406 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1407 stripe_nr = (stripe_nr * map->num_stripes + i) /
1408 map->sub_stripes;
1409 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1410 stripe_nr = stripe_nr * map->num_stripes + i;
1411 } /* else if RAID[56], multiply by nr_data_stripes().
1412 * Alternatively, just use rmap_len below instead of
1413 * map->stripe_len */
1415 bytenr = ce->start + stripe_nr * rmap_len;
1416 for (j = 0; j < nr; j++) {
1417 if (buf[j] == bytenr)
1418 break;
1420 if (j == nr)
1421 buf[nr++] = bytenr;
1424 *logical = buf;
1425 *naddrs = nr;
1426 *stripe_len = rmap_len;
1428 return 0;
1431 static inline int parity_smaller(u64 a, u64 b)
1433 return a > b;
1436 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
1437 static void sort_parity_stripes(struct btrfs_multi_bio *bbio, u64 *raid_map)
1439 struct btrfs_bio_stripe s;
1440 int i;
1441 u64 l;
1442 int again = 1;
1444 while (again) {
1445 again = 0;
1446 for (i = 0; i < bbio->num_stripes - 1; i++) {
1447 if (parity_smaller(raid_map[i], raid_map[i+1])) {
1448 s = bbio->stripes[i];
1449 l = raid_map[i];
1450 bbio->stripes[i] = bbio->stripes[i+1];
1451 raid_map[i] = raid_map[i+1];
1452 bbio->stripes[i+1] = s;
1453 raid_map[i+1] = l;
1454 again = 1;
1460 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
1461 u64 logical, u64 *length,
1462 struct btrfs_multi_bio **multi_ret, int mirror_num,
1463 u64 **raid_map_ret)
1465 return __btrfs_map_block(fs_info, rw, logical, length, NULL,
1466 multi_ret, mirror_num, raid_map_ret);
1469 int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
1470 u64 logical, u64 *length, u64 *type,
1471 struct btrfs_multi_bio **multi_ret, int mirror_num,
1472 u64 **raid_map_ret)
1474 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
1475 struct cache_extent *ce;
1476 struct map_lookup *map;
1477 u64 offset;
1478 u64 stripe_offset;
1479 u64 stripe_nr;
1480 u64 *raid_map = NULL;
1481 int stripes_allocated = 8;
1482 int stripes_required = 1;
1483 int stripe_index;
1484 int i;
1485 struct btrfs_multi_bio *multi = NULL;
1487 if (multi_ret && rw == READ) {
1488 stripes_allocated = 1;
1490 again:
1491 ce = search_cache_extent(&map_tree->cache_tree, logical);
1492 if (!ce) {
1493 kfree(multi);
1494 *length = (u64)-1;
1495 return -ENOENT;
1497 if (ce->start > logical) {
1498 kfree(multi);
1499 *length = ce->start - logical;
1500 return -ENOENT;
1503 if (multi_ret) {
1504 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
1505 GFP_NOFS);
1506 if (!multi)
1507 return -ENOMEM;
1509 map = container_of(ce, struct map_lookup, ce);
1510 offset = logical - ce->start;
1512 if (rw == WRITE) {
1513 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
1514 BTRFS_BLOCK_GROUP_DUP)) {
1515 stripes_required = map->num_stripes;
1516 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1517 stripes_required = map->sub_stripes;
1520 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)
1521 && multi_ret && ((rw & WRITE) || mirror_num > 1) && raid_map_ret) {
1522 /* RAID[56] write or recovery. Return all stripes */
1523 stripes_required = map->num_stripes;
1525 /* Only allocate the map if we've already got a large enough multi_ret */
1526 if (stripes_allocated >= stripes_required) {
1527 raid_map = kmalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
1528 if (!raid_map) {
1529 kfree(multi);
1530 return -ENOMEM;
1535 /* if our multi bio struct is too small, back off and try again */
1536 if (multi_ret && stripes_allocated < stripes_required) {
1537 stripes_allocated = stripes_required;
1538 kfree(multi);
1539 multi = NULL;
1540 goto again;
1542 stripe_nr = offset;
1544 * stripe_nr counts the total number of stripes we have to stride
1545 * to get to this block
1547 stripe_nr = stripe_nr / map->stripe_len;
1549 stripe_offset = stripe_nr * map->stripe_len;
1550 BUG_ON(offset < stripe_offset);
1552 /* stripe_offset is the offset of this block in its stripe*/
1553 stripe_offset = offset - stripe_offset;
1555 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
1556 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
1557 BTRFS_BLOCK_GROUP_RAID10 |
1558 BTRFS_BLOCK_GROUP_DUP)) {
1559 /* we limit the length of each bio to what fits in a stripe */
1560 *length = min_t(u64, ce->size - offset,
1561 map->stripe_len - stripe_offset);
1562 } else {
1563 *length = ce->size - offset;
1566 if (!multi_ret)
1567 goto out;
1569 multi->num_stripes = 1;
1570 stripe_index = 0;
1571 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1572 if (rw == WRITE)
1573 multi->num_stripes = map->num_stripes;
1574 else if (mirror_num)
1575 stripe_index = mirror_num - 1;
1576 else
1577 stripe_index = stripe_nr % map->num_stripes;
1578 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1579 int factor = map->num_stripes / map->sub_stripes;
1581 stripe_index = stripe_nr % factor;
1582 stripe_index *= map->sub_stripes;
1584 if (rw == WRITE)
1585 multi->num_stripes = map->sub_stripes;
1586 else if (mirror_num)
1587 stripe_index += mirror_num - 1;
1589 stripe_nr = stripe_nr / factor;
1590 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1591 if (rw == WRITE)
1592 multi->num_stripes = map->num_stripes;
1593 else if (mirror_num)
1594 stripe_index = mirror_num - 1;
1595 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
1596 BTRFS_BLOCK_GROUP_RAID6)) {
1598 if (raid_map) {
1599 int rot;
1600 u64 tmp;
1601 u64 raid56_full_stripe_start;
1602 u64 full_stripe_len = nr_data_stripes(map) * map->stripe_len;
1605 * align the start of our data stripe in the logical
1606 * address space
1608 raid56_full_stripe_start = offset / full_stripe_len;
1609 raid56_full_stripe_start *= full_stripe_len;
1611 /* get the data stripe number */
1612 stripe_nr = raid56_full_stripe_start / map->stripe_len;
1613 stripe_nr = stripe_nr / nr_data_stripes(map);
1615 /* Work out the disk rotation on this stripe-set */
1616 rot = stripe_nr % map->num_stripes;
1618 /* Fill in the logical address of each stripe */
1619 tmp = stripe_nr * nr_data_stripes(map);
1621 for (i = 0; i < nr_data_stripes(map); i++)
1622 raid_map[(i+rot) % map->num_stripes] =
1623 ce->start + (tmp + i) * map->stripe_len;
1625 raid_map[(i+rot) % map->num_stripes] = BTRFS_RAID5_P_STRIPE;
1626 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
1627 raid_map[(i+rot+1) % map->num_stripes] = BTRFS_RAID6_Q_STRIPE;
1629 *length = map->stripe_len;
1630 stripe_index = 0;
1631 stripe_offset = 0;
1632 multi->num_stripes = map->num_stripes;
1633 } else {
1634 stripe_index = stripe_nr % nr_data_stripes(map);
1635 stripe_nr = stripe_nr / nr_data_stripes(map);
1638 * Mirror #0 or #1 means the original data block.
1639 * Mirror #2 is RAID5 parity block.
1640 * Mirror #3 is RAID6 Q block.
1642 if (mirror_num > 1)
1643 stripe_index = nr_data_stripes(map) + mirror_num - 2;
1645 /* We distribute the parity blocks across stripes */
1646 stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
1648 } else {
1650 * after this do_div call, stripe_nr is the number of stripes
1651 * on this device we have to walk to find the data, and
1652 * stripe_index is the number of our device in the stripe array
1654 stripe_index = stripe_nr % map->num_stripes;
1655 stripe_nr = stripe_nr / map->num_stripes;
1657 BUG_ON(stripe_index >= map->num_stripes);
1659 for (i = 0; i < multi->num_stripes; i++) {
1660 multi->stripes[i].physical =
1661 map->stripes[stripe_index].physical + stripe_offset +
1662 stripe_nr * map->stripe_len;
1663 multi->stripes[i].dev = map->stripes[stripe_index].dev;
1664 stripe_index++;
1666 *multi_ret = multi;
1668 if (type)
1669 *type = map->type;
1671 if (raid_map) {
1672 sort_parity_stripes(multi, raid_map);
1673 *raid_map_ret = raid_map;
1675 out:
1676 return 0;
1679 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
1680 u8 *uuid, u8 *fsid)
1682 struct btrfs_device *device;
1683 struct btrfs_fs_devices *cur_devices;
1685 cur_devices = fs_info->fs_devices;
1686 while (cur_devices) {
1687 if (!fsid ||
1688 (!memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE) ||
1689 fs_info->ignore_fsid_mismatch)) {
1690 device = find_device(cur_devices, devid, uuid);
1691 if (device)
1692 return device;
1694 cur_devices = cur_devices->seed;
1696 return NULL;
1699 struct btrfs_device *
1700 btrfs_find_device_by_devid(struct btrfs_fs_devices *fs_devices,
1701 u64 devid, int instance)
1703 struct list_head *head = &fs_devices->devices;
1704 struct btrfs_device *dev;
1705 int num_found = 0;
1707 list_for_each_entry(dev, head, dev_list) {
1708 if (dev->devid == devid && num_found++ == instance)
1709 return dev;
1711 return NULL;
1714 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
1716 struct cache_extent *ce;
1717 struct map_lookup *map;
1718 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
1719 int readonly = 0;
1720 int i;
1723 * During chunk recovering, we may fail to find block group's
1724 * corresponding chunk, we will rebuild it later
1726 ce = search_cache_extent(&map_tree->cache_tree, chunk_offset);
1727 if (!fs_info->is_chunk_recover)
1728 BUG_ON(!ce);
1729 else
1730 return 0;
1732 map = container_of(ce, struct map_lookup, ce);
1733 for (i = 0; i < map->num_stripes; i++) {
1734 if (!map->stripes[i].dev->writeable) {
1735 readonly = 1;
1736 break;
1740 return readonly;
1743 static struct btrfs_device *fill_missing_device(u64 devid)
1745 struct btrfs_device *device;
1747 device = kzalloc(sizeof(*device), GFP_NOFS);
1748 device->devid = devid;
1749 device->fd = -1;
1750 return device;
1754 * slot == -1: SYSTEM chunk
1755 * return -EIO on error, otherwise return 0
1757 int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
1758 struct extent_buffer *leaf,
1759 struct btrfs_chunk *chunk,
1760 int slot, u64 logical)
1762 u64 length;
1763 u64 stripe_len;
1764 u16 num_stripes;
1765 u16 sub_stripes;
1766 u64 type;
1767 u32 chunk_ondisk_size;
1768 u32 sectorsize = fs_info->sectorsize;
1770 length = btrfs_chunk_length(leaf, chunk);
1771 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
1772 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1773 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
1774 type = btrfs_chunk_type(leaf, chunk);
1777 * These valid checks may be insufficient to cover every corner cases.
1779 if (!IS_ALIGNED(logical, sectorsize)) {
1780 error("invalid chunk logical %llu", logical);
1781 return -EIO;
1783 if (btrfs_chunk_sector_size(leaf, chunk) != sectorsize) {
1784 error("invalid chunk sectorsize %llu",
1785 (unsigned long long)btrfs_chunk_sector_size(leaf, chunk));
1786 return -EIO;
1788 if (!length || !IS_ALIGNED(length, sectorsize)) {
1789 error("invalid chunk length %llu", length);
1790 return -EIO;
1792 if (stripe_len != BTRFS_STRIPE_LEN) {
1793 error("invalid chunk stripe length: %llu", stripe_len);
1794 return -EIO;
1796 /* Check on chunk item type */
1797 if (slot == -1 && (type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
1798 error("invalid chunk type %llu", type);
1799 return -EIO;
1801 if (type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
1802 BTRFS_BLOCK_GROUP_PROFILE_MASK)) {
1803 error("unrecognized chunk type: %llu",
1804 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
1805 BTRFS_BLOCK_GROUP_PROFILE_MASK) & type);
1806 return -EIO;
1808 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1809 error("missing chunk type flag: %llu", type);
1810 return -EIO;
1812 if (!(is_power_of_2(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) ||
1813 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)) {
1814 error("conflicting chunk type detected: %llu", type);
1815 return -EIO;
1817 if ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
1818 !is_power_of_2(type & BTRFS_BLOCK_GROUP_PROFILE_MASK)) {
1819 error("conflicting chunk profile detected: %llu", type);
1820 return -EIO;
1823 chunk_ondisk_size = btrfs_chunk_item_size(num_stripes);
1825 * Btrfs_chunk contains at least one stripe, and for sys_chunk
1826 * it can't exceed the system chunk array size
1827 * For normal chunk, it should match its chunk item size.
1829 if (num_stripes < 1 ||
1830 (slot == -1 && chunk_ondisk_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) ||
1831 (slot >= 0 && chunk_ondisk_size > btrfs_item_size_nr(leaf, slot))) {
1832 error("invalid num_stripes: %u", num_stripes);
1833 return -EIO;
1836 * Device number check against profile
1838 if ((type & BTRFS_BLOCK_GROUP_RAID10 && (sub_stripes != 2 ||
1839 !IS_ALIGNED(num_stripes, sub_stripes))) ||
1840 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
1841 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
1842 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
1843 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
1844 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
1845 num_stripes != 1)) {
1846 error("Invalid num_stripes:sub_stripes %u:%u for profile %llu",
1847 num_stripes, sub_stripes,
1848 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
1849 return -EIO;
1852 return 0;
1856 * Slot is used to verify the chunk item is valid
1858 * For sys chunk in superblock, pass -1 to indicate sys chunk.
1860 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1861 struct extent_buffer *leaf,
1862 struct btrfs_chunk *chunk, int slot)
1864 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
1865 struct map_lookup *map;
1866 struct cache_extent *ce;
1867 u64 logical;
1868 u64 length;
1869 u64 devid;
1870 u8 uuid[BTRFS_UUID_SIZE];
1871 int num_stripes;
1872 int ret;
1873 int i;
1875 logical = key->offset;
1876 length = btrfs_chunk_length(leaf, chunk);
1877 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1878 /* Validation check */
1879 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, slot, logical);
1880 if (ret) {
1881 error("%s checksums match, but it has an invalid chunk, %s",
1882 (slot == -1) ? "Superblock" : "Metadata",
1883 (slot == -1) ? "try btrfsck --repair -s <superblock> ie, 0,1,2" : "");
1884 return ret;
1887 ce = search_cache_extent(&map_tree->cache_tree, logical);
1889 /* already mapped? */
1890 if (ce && ce->start <= logical && ce->start + ce->size > logical) {
1891 return 0;
1894 map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
1895 if (!map)
1896 return -ENOMEM;
1898 map->ce.start = logical;
1899 map->ce.size = length;
1900 map->num_stripes = num_stripes;
1901 map->io_width = btrfs_chunk_io_width(leaf, chunk);
1902 map->io_align = btrfs_chunk_io_align(leaf, chunk);
1903 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
1904 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
1905 map->type = btrfs_chunk_type(leaf, chunk);
1906 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
1908 for (i = 0; i < num_stripes; i++) {
1909 map->stripes[i].physical =
1910 btrfs_stripe_offset_nr(leaf, chunk, i);
1911 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
1912 read_extent_buffer(leaf, uuid, (unsigned long)
1913 btrfs_stripe_dev_uuid_nr(chunk, i),
1914 BTRFS_UUID_SIZE);
1915 map->stripes[i].dev = btrfs_find_device(fs_info, devid, uuid,
1916 NULL);
1917 if (!map->stripes[i].dev) {
1918 map->stripes[i].dev = fill_missing_device(devid);
1919 printf("warning, device %llu is missing\n",
1920 (unsigned long long)devid);
1921 list_add(&map->stripes[i].dev->dev_list,
1922 &fs_info->fs_devices->devices);
1926 ret = insert_cache_extent(&map_tree->cache_tree, &map->ce);
1927 BUG_ON(ret);
1929 return 0;
1932 static int fill_device_from_item(struct extent_buffer *leaf,
1933 struct btrfs_dev_item *dev_item,
1934 struct btrfs_device *device)
1936 unsigned long ptr;
1938 device->devid = btrfs_device_id(leaf, dev_item);
1939 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
1940 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
1941 device->type = btrfs_device_type(leaf, dev_item);
1942 device->io_align = btrfs_device_io_align(leaf, dev_item);
1943 device->io_width = btrfs_device_io_width(leaf, dev_item);
1944 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
1946 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1947 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1949 return 0;
1952 static int open_seed_devices(struct btrfs_fs_info *fs_info, u8 *fsid)
1954 struct btrfs_fs_devices *fs_devices;
1955 int ret;
1957 fs_devices = fs_info->fs_devices->seed;
1958 while (fs_devices) {
1959 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
1960 ret = 0;
1961 goto out;
1963 fs_devices = fs_devices->seed;
1966 fs_devices = find_fsid(fsid);
1967 if (!fs_devices) {
1968 /* missing all seed devices */
1969 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1970 if (!fs_devices) {
1971 ret = -ENOMEM;
1972 goto out;
1974 INIT_LIST_HEAD(&fs_devices->devices);
1975 list_add(&fs_devices->list, &fs_uuids);
1976 memcpy(fs_devices->fsid, fsid, BTRFS_FSID_SIZE);
1979 ret = btrfs_open_devices(fs_devices, O_RDONLY);
1980 if (ret)
1981 goto out;
1983 fs_devices->seed = fs_info->fs_devices->seed;
1984 fs_info->fs_devices->seed = fs_devices;
1985 out:
1986 return ret;
1989 static int read_one_dev(struct btrfs_fs_info *fs_info,
1990 struct extent_buffer *leaf,
1991 struct btrfs_dev_item *dev_item)
1993 struct btrfs_device *device;
1994 u64 devid;
1995 int ret = 0;
1996 u8 fs_uuid[BTRFS_UUID_SIZE];
1997 u8 dev_uuid[BTRFS_UUID_SIZE];
1999 devid = btrfs_device_id(leaf, dev_item);
2000 read_extent_buffer(leaf, dev_uuid,
2001 (unsigned long)btrfs_device_uuid(dev_item),
2002 BTRFS_UUID_SIZE);
2003 read_extent_buffer(leaf, fs_uuid,
2004 (unsigned long)btrfs_device_fsid(dev_item),
2005 BTRFS_UUID_SIZE);
2007 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_UUID_SIZE)) {
2008 ret = open_seed_devices(fs_info, fs_uuid);
2009 if (ret)
2010 return ret;
2013 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2014 if (!device) {
2015 device = kzalloc(sizeof(*device), GFP_NOFS);
2016 if (!device)
2017 return -ENOMEM;
2018 device->fd = -1;
2019 list_add(&device->dev_list,
2020 &fs_info->fs_devices->devices);
2023 fill_device_from_item(leaf, dev_item, device);
2024 device->dev_root = fs_info->dev_root;
2025 return ret;
2028 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
2030 struct btrfs_super_block *super_copy = fs_info->super_copy;
2031 struct extent_buffer *sb;
2032 struct btrfs_disk_key *disk_key;
2033 struct btrfs_chunk *chunk;
2034 u8 *array_ptr;
2035 unsigned long sb_array_offset;
2036 int ret = 0;
2037 u32 num_stripes;
2038 u32 array_size;
2039 u32 len = 0;
2040 u32 cur_offset;
2041 struct btrfs_key key;
2043 if (fs_info->nodesize < BTRFS_SUPER_INFO_SIZE) {
2044 printf("ERROR: nodesize %u too small to read superblock\n",
2045 fs_info->nodesize);
2046 return -EINVAL;
2048 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
2049 if (!sb)
2050 return -ENOMEM;
2051 btrfs_set_buffer_uptodate(sb);
2052 write_extent_buffer(sb, super_copy, 0, sizeof(*super_copy));
2053 array_size = btrfs_super_sys_array_size(super_copy);
2055 array_ptr = super_copy->sys_chunk_array;
2056 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
2057 cur_offset = 0;
2059 while (cur_offset < array_size) {
2060 disk_key = (struct btrfs_disk_key *)array_ptr;
2061 len = sizeof(*disk_key);
2062 if (cur_offset + len > array_size)
2063 goto out_short_read;
2065 btrfs_disk_key_to_cpu(&key, disk_key);
2067 array_ptr += len;
2068 sb_array_offset += len;
2069 cur_offset += len;
2071 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2072 chunk = (struct btrfs_chunk *)sb_array_offset;
2074 * At least one btrfs_chunk with one stripe must be
2075 * present, exact stripe count check comes afterwards
2077 len = btrfs_chunk_item_size(1);
2078 if (cur_offset + len > array_size)
2079 goto out_short_read;
2081 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
2082 if (!num_stripes) {
2083 printk(
2084 "ERROR: invalid number of stripes %u in sys_array at offset %u\n",
2085 num_stripes, cur_offset);
2086 ret = -EIO;
2087 break;
2090 len = btrfs_chunk_item_size(num_stripes);
2091 if (cur_offset + len > array_size)
2092 goto out_short_read;
2094 ret = read_one_chunk(fs_info, &key, sb, chunk, -1);
2095 if (ret)
2096 break;
2097 } else {
2098 printk(
2099 "ERROR: unexpected item type %u in sys_array at offset %u\n",
2100 (u32)key.type, cur_offset);
2101 ret = -EIO;
2102 break;
2104 array_ptr += len;
2105 sb_array_offset += len;
2106 cur_offset += len;
2108 free_extent_buffer(sb);
2109 return ret;
2111 out_short_read:
2112 printk("ERROR: sys_array too short to read %u bytes at offset %u\n",
2113 len, cur_offset);
2114 free_extent_buffer(sb);
2115 return -EIO;
2118 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
2120 struct btrfs_path *path;
2121 struct extent_buffer *leaf;
2122 struct btrfs_key key;
2123 struct btrfs_key found_key;
2124 struct btrfs_root *root = fs_info->chunk_root;
2125 int ret;
2126 int slot;
2128 path = btrfs_alloc_path();
2129 if (!path)
2130 return -ENOMEM;
2133 * Read all device items, and then all the chunk items. All
2134 * device items are found before any chunk item (their object id
2135 * is smaller than the lowest possible object id for a chunk
2136 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
2138 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2139 key.offset = 0;
2140 key.type = 0;
2141 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2142 if (ret < 0)
2143 goto error;
2144 while(1) {
2145 leaf = path->nodes[0];
2146 slot = path->slots[0];
2147 if (slot >= btrfs_header_nritems(leaf)) {
2148 ret = btrfs_next_leaf(root, path);
2149 if (ret == 0)
2150 continue;
2151 if (ret < 0)
2152 goto error;
2153 break;
2155 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2156 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
2157 struct btrfs_dev_item *dev_item;
2158 dev_item = btrfs_item_ptr(leaf, slot,
2159 struct btrfs_dev_item);
2160 ret = read_one_dev(fs_info, leaf, dev_item);
2161 BUG_ON(ret);
2162 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
2163 struct btrfs_chunk *chunk;
2164 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2165 ret = read_one_chunk(fs_info, &found_key, leaf, chunk,
2166 slot);
2167 BUG_ON(ret);
2169 path->slots[0]++;
2172 ret = 0;
2173 error:
2174 btrfs_free_path(path);
2175 return ret;
2178 struct list_head *btrfs_scanned_uuids(void)
2180 return &fs_uuids;
2183 static int rmw_eb(struct btrfs_fs_info *info,
2184 struct extent_buffer *eb, struct extent_buffer *orig_eb)
2186 int ret;
2187 unsigned long orig_off = 0;
2188 unsigned long dest_off = 0;
2189 unsigned long copy_len = eb->len;
2191 ret = read_whole_eb(info, eb, 0);
2192 if (ret)
2193 return ret;
2195 if (eb->start + eb->len <= orig_eb->start ||
2196 eb->start >= orig_eb->start + orig_eb->len)
2197 return 0;
2199 * | ----- orig_eb ------- |
2200 * | ----- stripe ------- |
2201 * | ----- orig_eb ------- |
2202 * | ----- orig_eb ------- |
2204 if (eb->start > orig_eb->start)
2205 orig_off = eb->start - orig_eb->start;
2206 if (orig_eb->start > eb->start)
2207 dest_off = orig_eb->start - eb->start;
2209 if (copy_len > orig_eb->len - orig_off)
2210 copy_len = orig_eb->len - orig_off;
2211 if (copy_len > eb->len - dest_off)
2212 copy_len = eb->len - dest_off;
2214 memcpy(eb->data + dest_off, orig_eb->data + orig_off, copy_len);
2215 return 0;
2218 static int split_eb_for_raid56(struct btrfs_fs_info *info,
2219 struct extent_buffer *orig_eb,
2220 struct extent_buffer **ebs,
2221 u64 stripe_len, u64 *raid_map,
2222 int num_stripes)
2224 struct extent_buffer **tmp_ebs;
2225 u64 start = orig_eb->start;
2226 u64 this_eb_start;
2227 int i;
2228 int ret = 0;
2230 tmp_ebs = calloc(num_stripes, sizeof(*tmp_ebs));
2231 if (!tmp_ebs)
2232 return -ENOMEM;
2234 /* Alloc memory in a row for data stripes */
2235 for (i = 0; i < num_stripes; i++) {
2236 if (raid_map[i] >= BTRFS_RAID5_P_STRIPE)
2237 break;
2239 tmp_ebs[i] = calloc(1, sizeof(**tmp_ebs) + stripe_len);
2240 if (!tmp_ebs[i]) {
2241 ret = -ENOMEM;
2242 goto clean_up;
2246 for (i = 0; i < num_stripes; i++) {
2247 struct extent_buffer *eb = tmp_ebs[i];
2249 if (raid_map[i] >= BTRFS_RAID5_P_STRIPE)
2250 break;
2252 eb->start = raid_map[i];
2253 eb->len = stripe_len;
2254 eb->refs = 1;
2255 eb->flags = 0;
2256 eb->fd = -1;
2257 eb->dev_bytenr = (u64)-1;
2259 this_eb_start = raid_map[i];
2261 if (start > this_eb_start ||
2262 start + orig_eb->len < this_eb_start + stripe_len) {
2263 ret = rmw_eb(info, eb, orig_eb);
2264 if (ret)
2265 goto clean_up;
2266 } else {
2267 memcpy(eb->data, orig_eb->data + eb->start - start,
2268 stripe_len);
2270 ebs[i] = eb;
2272 free(tmp_ebs);
2273 return ret;
2274 clean_up:
2275 for (i = 0; i < num_stripes; i++)
2276 free(tmp_ebs[i]);
2277 free(tmp_ebs);
2278 return ret;
2281 int write_raid56_with_parity(struct btrfs_fs_info *info,
2282 struct extent_buffer *eb,
2283 struct btrfs_multi_bio *multi,
2284 u64 stripe_len, u64 *raid_map)
2286 struct extent_buffer **ebs, *p_eb = NULL, *q_eb = NULL;
2287 int i;
2288 int ret;
2289 int alloc_size = eb->len;
2290 void **pointers;
2292 ebs = malloc(sizeof(*ebs) * multi->num_stripes);
2293 pointers = malloc(sizeof(*pointers) * multi->num_stripes);
2294 if (!ebs || !pointers) {
2295 free(ebs);
2296 free(pointers);
2297 return -ENOMEM;
2300 if (stripe_len > alloc_size)
2301 alloc_size = stripe_len;
2303 ret = split_eb_for_raid56(info, eb, ebs, stripe_len, raid_map,
2304 multi->num_stripes);
2305 if (ret)
2306 goto out;
2308 for (i = 0; i < multi->num_stripes; i++) {
2309 struct extent_buffer *new_eb;
2310 if (raid_map[i] < BTRFS_RAID5_P_STRIPE) {
2311 ebs[i]->dev_bytenr = multi->stripes[i].physical;
2312 ebs[i]->fd = multi->stripes[i].dev->fd;
2313 multi->stripes[i].dev->total_ios++;
2314 if (ebs[i]->start != raid_map[i]) {
2315 ret = -EINVAL;
2316 goto out_free_split;
2318 continue;
2320 new_eb = malloc(sizeof(*eb) + alloc_size);
2321 if (!new_eb) {
2322 ret = -ENOMEM;
2323 goto out_free_split;
2325 new_eb->dev_bytenr = multi->stripes[i].physical;
2326 new_eb->fd = multi->stripes[i].dev->fd;
2327 multi->stripes[i].dev->total_ios++;
2328 new_eb->len = stripe_len;
2330 if (raid_map[i] == BTRFS_RAID5_P_STRIPE)
2331 p_eb = new_eb;
2332 else if (raid_map[i] == BTRFS_RAID6_Q_STRIPE)
2333 q_eb = new_eb;
2335 if (q_eb) {
2336 ebs[multi->num_stripes - 2] = p_eb;
2337 ebs[multi->num_stripes - 1] = q_eb;
2339 for (i = 0; i < multi->num_stripes; i++)
2340 pointers[i] = ebs[i]->data;
2342 raid6_gen_syndrome(multi->num_stripes, stripe_len, pointers);
2343 } else {
2344 ebs[multi->num_stripes - 1] = p_eb;
2345 for (i = 0; i < multi->num_stripes; i++)
2346 pointers[i] = ebs[i]->data;
2347 ret = raid5_gen_result(multi->num_stripes, stripe_len,
2348 multi->num_stripes - 1, pointers);
2349 if (ret < 0)
2350 goto out_free_split;
2353 for (i = 0; i < multi->num_stripes; i++) {
2354 ret = write_extent_to_disk(ebs[i]);
2355 if (ret < 0)
2356 goto out_free_split;
2359 out_free_split:
2360 for (i = 0; i < multi->num_stripes; i++) {
2361 if (ebs[i] != eb)
2362 free(ebs[i]);
2364 out:
2365 free(ebs);
2366 free(pointers);
2368 return ret;
2372 * Get stripe length from chunk item and its stripe items
2374 * Caller should only call this function after validating the chunk item
2375 * by using btrfs_check_chunk_valid().
2377 u64 btrfs_stripe_length(struct btrfs_fs_info *fs_info,
2378 struct extent_buffer *leaf,
2379 struct btrfs_chunk *chunk)
2381 u64 stripe_len;
2382 u64 chunk_len;
2383 u32 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2384 u64 profile = btrfs_chunk_type(leaf, chunk) &
2385 BTRFS_BLOCK_GROUP_PROFILE_MASK;
2387 chunk_len = btrfs_chunk_length(leaf, chunk);
2389 switch (profile) {
2390 case 0: /* Single profile */
2391 case BTRFS_BLOCK_GROUP_RAID1:
2392 case BTRFS_BLOCK_GROUP_DUP:
2393 stripe_len = chunk_len;
2394 break;
2395 case BTRFS_BLOCK_GROUP_RAID0:
2396 stripe_len = chunk_len / num_stripes;
2397 break;
2398 case BTRFS_BLOCK_GROUP_RAID5:
2399 stripe_len = chunk_len / (num_stripes - 1);
2400 break;
2401 case BTRFS_BLOCK_GROUP_RAID6:
2402 stripe_len = chunk_len / (num_stripes - 2);
2403 break;
2404 case BTRFS_BLOCK_GROUP_RAID10:
2405 stripe_len = chunk_len / (num_stripes /
2406 btrfs_chunk_sub_stripes(leaf, chunk));
2407 break;
2408 default:
2409 /* Invalid chunk profile found */
2410 BUG_ON(1);
2412 return stripe_len;
2416 * Return 0 if size of @device is already good
2417 * Return >0 if size of @device is not aligned but fixed without problems
2418 * Return <0 if something wrong happened when aligning the size of @device
2420 int btrfs_fix_device_size(struct btrfs_fs_info *fs_info,
2421 struct btrfs_device *device)
2423 struct btrfs_trans_handle *trans;
2424 struct btrfs_key key;
2425 struct btrfs_path path;
2426 struct btrfs_root *chunk_root = fs_info->chunk_root;
2427 struct btrfs_dev_item *di;
2428 u64 old_bytes = device->total_bytes;
2429 int ret;
2431 if (IS_ALIGNED(old_bytes, fs_info->sectorsize))
2432 return 0;
2434 /* Align the in-memory total_bytes first, and use it as correct size */
2435 device->total_bytes = round_down(device->total_bytes,
2436 fs_info->sectorsize);
2438 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2439 key.type = BTRFS_DEV_ITEM_KEY;
2440 key.offset = device->devid;
2442 trans = btrfs_start_transaction(chunk_root, 1);
2443 if (IS_ERR(trans)) {
2444 ret = PTR_ERR(trans);
2445 error("error starting transaction: %d (%s)",
2446 ret, strerror(-ret));
2447 return ret;
2450 btrfs_init_path(&path);
2451 ret = btrfs_search_slot(trans, chunk_root, &key, &path, 0, 1);
2452 if (ret > 0) {
2453 error("failed to find DEV_ITEM for devid %llu", device->devid);
2454 ret = -ENOENT;
2455 goto err;
2457 if (ret < 0) {
2458 error("failed to search chunk root: %d (%s)",
2459 ret, strerror(-ret));
2460 goto err;
2462 di = btrfs_item_ptr(path.nodes[0], path.slots[0], struct btrfs_dev_item);
2463 btrfs_set_device_total_bytes(path.nodes[0], di, device->total_bytes);
2464 btrfs_mark_buffer_dirty(path.nodes[0]);
2465 ret = btrfs_commit_transaction(trans, chunk_root);
2466 if (ret < 0) {
2467 error("failed to commit current transaction: %d (%s)",
2468 ret, strerror(-ret));
2469 btrfs_release_path(&path);
2470 return ret;
2472 btrfs_release_path(&path);
2473 printf("Fixed device size for devid %llu, old size: %llu new size: %llu\n",
2474 device->devid, old_bytes, device->total_bytes);
2475 return 1;
2477 err:
2478 /* We haven't modified anything, it's OK to commit current trans */
2479 btrfs_commit_transaction(trans, chunk_root);
2480 btrfs_release_path(&path);
2481 return ret;
2485 * Return 0 if super block total_bytes matches all devices' total_bytes
2486 * Return >0 if super block total_bytes mismatch but fixed without problem
2487 * Return <0 if we failed to fix super block total_bytes
2489 int btrfs_fix_super_size(struct btrfs_fs_info *fs_info)
2491 struct btrfs_trans_handle *trans;
2492 struct btrfs_device *device;
2493 struct list_head *dev_list = &fs_info->fs_devices->devices;
2494 u64 total_bytes = 0;
2495 u64 old_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2496 int ret;
2498 list_for_each_entry(device, dev_list, dev_list) {
2500 * Caller should ensure this function is called after aligning
2501 * all devices' total_bytes.
2503 if (!IS_ALIGNED(device->total_bytes, fs_info->sectorsize)) {
2504 error("device %llu total_bytes %llu not aligned to %u",
2505 device->devid, device->total_bytes,
2506 fs_info->sectorsize);
2507 return -EUCLEAN;
2509 total_bytes += device->total_bytes;
2512 if (total_bytes == old_bytes)
2513 return 0;
2515 btrfs_set_super_total_bytes(fs_info->super_copy, total_bytes);
2517 /* Commit transaction to update all super blocks */
2518 trans = btrfs_start_transaction(fs_info->tree_root, 1);
2519 if (IS_ERR(trans)) {
2520 ret = PTR_ERR(trans);
2521 error("error starting transaction: %d (%s)",
2522 ret, strerror(-ret));
2523 return ret;
2525 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
2526 if (ret < 0) {
2527 error("failed to commit current transaction: %d (%s)",
2528 ret, strerror(-ret));
2529 return ret;
2531 printf("Fixed super total bytes, old size: %llu new size: %llu\n",
2532 old_bytes, total_bytes);
2533 return 1;
2537 * Return 0 if all devices and super block sizes are good
2538 * Return >0 if any device/super size problem was found, but fixed
2539 * Return <0 if something wrong happened during fixing
2541 int btrfs_fix_device_and_super_size(struct btrfs_fs_info *fs_info)
2543 struct btrfs_device *device;
2544 struct list_head *dev_list = &fs_info->fs_devices->devices;
2545 bool have_bad_value = false;
2546 int ret;
2548 /* Seed device is not supported yet */
2549 if (fs_info->fs_devices->seed) {
2550 error("fixing device size with seed device is not supported yet");
2551 return -EOPNOTSUPP;
2554 /* All devices must be set up before repairing */
2555 if (list_empty(dev_list)) {
2556 error("no device found");
2557 return -ENODEV;
2559 list_for_each_entry(device, dev_list, dev_list) {
2560 if (device->fd == -1 || !device->writeable) {
2561 error("devid %llu is missing or not writeable",
2562 device->devid);
2563 error(
2564 "fixing device size needs all device(s) to be present and writeable");
2565 return -ENODEV;
2569 /* Repair total_bytes of each device */
2570 list_for_each_entry(device, dev_list, dev_list) {
2571 ret = btrfs_fix_device_size(fs_info, device);
2572 if (ret < 0)
2573 return ret;
2574 if (ret > 0)
2575 have_bad_value = true;
2578 /* Repair super total_byte */
2579 ret = btrfs_fix_super_size(fs_info);
2580 if (ret > 0)
2581 have_bad_value = true;
2582 if (have_bad_value) {
2583 printf(
2584 "Fixed unaligned/mismatched total_bytes for super block and device items\n");
2585 ret = 1;
2586 } else {
2587 printf("No device size related problem found\n");
2588 ret = 0;
2590 return ret;