2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include "transaction.h"
21 #include "print-tree.h"
26 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
27 *root
, struct btrfs_path
*path
, int level
);
28 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
29 *root
, struct btrfs_key
*ins_key
,
30 struct btrfs_path
*path
, int data_size
, int extend
);
31 static int push_node_left(struct btrfs_trans_handle
*trans
,
32 struct btrfs_root
*root
, struct extent_buffer
*dst
,
33 struct extent_buffer
*src
, int empty
);
34 static int balance_node_right(struct btrfs_trans_handle
*trans
,
35 struct btrfs_root
*root
,
36 struct extent_buffer
*dst_buf
,
37 struct extent_buffer
*src_buf
);
39 inline void btrfs_init_path(struct btrfs_path
*p
)
41 memset(p
, 0, sizeof(*p
));
44 struct btrfs_path
*btrfs_alloc_path(void)
46 struct btrfs_path
*path
;
47 path
= kzalloc(sizeof(struct btrfs_path
), GFP_NOFS
);
51 void btrfs_free_path(struct btrfs_path
*p
)
55 btrfs_release_path(p
);
59 void btrfs_release_path(struct btrfs_path
*p
)
62 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
65 free_extent_buffer(p
->nodes
[i
]);
67 memset(p
, 0, sizeof(*p
));
70 void add_root_to_dirty_list(struct btrfs_root
*root
)
72 if (root
->track_dirty
&& list_empty(&root
->dirty_list
)) {
73 list_add(&root
->dirty_list
,
74 &root
->fs_info
->dirty_cowonly_roots
);
78 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
79 struct btrfs_root
*root
,
80 struct extent_buffer
*buf
,
81 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
83 struct extent_buffer
*cow
;
86 struct btrfs_root
*new_root
;
87 struct btrfs_disk_key disk_key
;
89 new_root
= kmalloc(sizeof(*new_root
), GFP_NOFS
);
93 memcpy(new_root
, root
, sizeof(*new_root
));
94 new_root
->root_key
.objectid
= new_root_objectid
;
96 WARN_ON(root
->ref_cows
&& trans
->transid
!=
97 root
->fs_info
->running_transaction
->transid
);
98 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
100 level
= btrfs_header_level(buf
);
102 btrfs_item_key(buf
, &disk_key
, 0);
104 btrfs_node_key(buf
, &disk_key
, 0);
105 cow
= btrfs_alloc_free_block(trans
, new_root
, buf
->len
,
106 new_root_objectid
, &disk_key
,
107 level
, buf
->start
, 0);
113 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
114 btrfs_set_header_bytenr(cow
, cow
->start
);
115 btrfs_set_header_generation(cow
, trans
->transid
);
116 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
117 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
118 BTRFS_HEADER_FLAG_RELOC
);
119 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
120 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
122 btrfs_set_header_owner(cow
, new_root_objectid
);
124 write_extent_buffer(cow
, root
->fs_info
->fsid
,
125 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
127 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
128 ret
= btrfs_inc_ref(trans
, new_root
, cow
, 0);
134 btrfs_mark_buffer_dirty(cow
);
140 * check if the tree block can be shared by multiple trees
142 static int btrfs_block_can_be_shared(struct btrfs_root
*root
,
143 struct extent_buffer
*buf
)
146 * Tree blocks not in reference counted trees and tree roots
147 * are never shared. If a block was allocated after the last
148 * snapshot and the block was not allocated by tree relocation,
149 * we know the block is not shared.
151 if (root
->ref_cows
&&
152 buf
!= root
->node
&& buf
!= root
->commit_root
&&
153 (btrfs_header_generation(buf
) <=
154 btrfs_root_last_snapshot(&root
->root_item
) ||
155 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
157 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
158 if (root
->ref_cows
&&
159 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
165 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
166 struct btrfs_root
*root
,
167 struct extent_buffer
*buf
,
168 struct extent_buffer
*cow
)
177 * Backrefs update rules:
179 * Always use full backrefs for extent pointers in tree block
180 * allocated by tree relocation.
182 * If a shared tree block is no longer referenced by its owner
183 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
184 * use full backrefs for extent pointers in tree block.
186 * If a tree block is been relocating
187 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
188 * use full backrefs for extent pointers in tree block.
189 * The reason for this is some operations (such as drop tree)
190 * are only allowed for blocks use full backrefs.
193 if (btrfs_block_can_be_shared(root
, buf
)) {
194 ret
= btrfs_lookup_extent_info(trans
, root
, buf
->start
,
195 btrfs_header_level(buf
), 1,
201 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
202 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
203 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
208 owner
= btrfs_header_owner(buf
);
209 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) &&
210 owner
== BTRFS_TREE_RELOC_OBJECTID
);
213 if ((owner
== root
->root_key
.objectid
||
214 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) &&
215 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
216 ret
= btrfs_inc_ref(trans
, root
, buf
, 1);
219 if (root
->root_key
.objectid
==
220 BTRFS_TREE_RELOC_OBJECTID
) {
221 ret
= btrfs_dec_ref(trans
, root
, buf
, 0);
223 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
226 new_flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
229 if (root
->root_key
.objectid
==
230 BTRFS_TREE_RELOC_OBJECTID
)
231 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
233 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
236 if (new_flags
!= 0) {
237 ret
= btrfs_set_block_flags(trans
, root
, buf
->start
,
238 btrfs_header_level(buf
),
243 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
244 if (root
->root_key
.objectid
==
245 BTRFS_TREE_RELOC_OBJECTID
)
246 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
248 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
250 ret
= btrfs_dec_ref(trans
, root
, buf
, 1);
253 clean_tree_block(trans
, root
, buf
);
258 int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
259 struct btrfs_root
*root
,
260 struct extent_buffer
*buf
,
261 struct extent_buffer
*parent
, int parent_slot
,
262 struct extent_buffer
**cow_ret
,
263 u64 search_start
, u64 empty_size
)
265 struct extent_buffer
*cow
;
266 struct btrfs_disk_key disk_key
;
269 WARN_ON(root
->ref_cows
&& trans
->transid
!=
270 root
->fs_info
->running_transaction
->transid
);
271 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
273 level
= btrfs_header_level(buf
);
276 btrfs_item_key(buf
, &disk_key
, 0);
278 btrfs_node_key(buf
, &disk_key
, 0);
280 cow
= btrfs_alloc_free_block(trans
, root
, buf
->len
,
281 root
->root_key
.objectid
, &disk_key
,
282 level
, search_start
, empty_size
);
286 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
287 btrfs_set_header_bytenr(cow
, cow
->start
);
288 btrfs_set_header_generation(cow
, trans
->transid
);
289 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
290 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
291 BTRFS_HEADER_FLAG_RELOC
);
292 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
293 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
295 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
297 write_extent_buffer(cow
, root
->fs_info
->fsid
,
298 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
300 WARN_ON(!(buf
->flags
& EXTENT_BAD_TRANSID
) &&
301 btrfs_header_generation(buf
) > trans
->transid
);
303 update_ref_for_cow(trans
, root
, buf
, cow
);
305 if (buf
== root
->node
) {
307 extent_buffer_get(cow
);
309 btrfs_free_extent(trans
, root
, buf
->start
, buf
->len
,
310 0, root
->root_key
.objectid
, level
, 0);
311 free_extent_buffer(buf
);
312 add_root_to_dirty_list(root
);
314 btrfs_set_node_blockptr(parent
, parent_slot
,
316 WARN_ON(trans
->transid
== 0);
317 btrfs_set_node_ptr_generation(parent
, parent_slot
,
319 btrfs_mark_buffer_dirty(parent
);
320 WARN_ON(btrfs_header_generation(parent
) != trans
->transid
);
322 btrfs_free_extent(trans
, root
, buf
->start
, buf
->len
,
323 0, root
->root_key
.objectid
, level
, 1);
325 if (!list_empty(&buf
->recow
)) {
326 list_del_init(&buf
->recow
);
327 free_extent_buffer(buf
);
329 free_extent_buffer(buf
);
330 btrfs_mark_buffer_dirty(cow
);
335 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
336 struct btrfs_root
*root
,
337 struct extent_buffer
*buf
)
339 if (btrfs_header_generation(buf
) == trans
->transid
&&
340 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
341 !(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
342 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
347 int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
348 struct btrfs_root
*root
, struct extent_buffer
*buf
,
349 struct extent_buffer
*parent
, int parent_slot
,
350 struct extent_buffer
**cow_ret
)
355 if (trans->transaction != root->fs_info->running_transaction) {
356 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
357 root->fs_info->running_transaction->transid);
361 if (trans
->transid
!= root
->fs_info
->generation
) {
362 printk(KERN_CRIT
"trans %llu running %llu\n",
363 (unsigned long long)trans
->transid
,
364 (unsigned long long)root
->fs_info
->generation
);
367 if (!should_cow_block(trans
, root
, buf
)) {
372 search_start
= buf
->start
& ~((u64
)SZ_1G
- 1);
373 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
374 parent_slot
, cow_ret
, search_start
, 0);
378 int btrfs_comp_cpu_keys(struct btrfs_key
*k1
, struct btrfs_key
*k2
)
380 if (k1
->objectid
> k2
->objectid
)
382 if (k1
->objectid
< k2
->objectid
)
384 if (k1
->type
> k2
->type
)
386 if (k1
->type
< k2
->type
)
388 if (k1
->offset
> k2
->offset
)
390 if (k1
->offset
< k2
->offset
)
396 * compare two keys in a memcmp fashion
398 static int btrfs_comp_keys(struct btrfs_disk_key
*disk
, struct btrfs_key
*k2
)
402 btrfs_disk_key_to_cpu(&k1
, disk
);
403 return btrfs_comp_cpu_keys(&k1
, k2
);
407 * The leaf data grows from end-to-front in the node.
408 * this returns the address of the start of the last item,
409 * which is the stop of the leaf data stack
411 static inline unsigned int leaf_data_end(const struct btrfs_fs_info
*fs_info
,
412 const struct extent_buffer
*leaf
)
414 u32 nr
= btrfs_header_nritems(leaf
);
416 return BTRFS_LEAF_DATA_SIZE(fs_info
);
417 return btrfs_item_offset_nr(leaf
, nr
- 1);
420 enum btrfs_tree_block_status
421 btrfs_check_node(struct btrfs_root
*root
, struct btrfs_disk_key
*parent_key
,
422 struct extent_buffer
*buf
)
425 struct btrfs_key cpukey
;
426 struct btrfs_disk_key key
;
427 u32 nritems
= btrfs_header_nritems(buf
);
428 enum btrfs_tree_block_status ret
= BTRFS_TREE_BLOCK_INVALID_NRITEMS
;
430 if (nritems
== 0 || nritems
> BTRFS_NODEPTRS_PER_BLOCK(root
->fs_info
))
433 ret
= BTRFS_TREE_BLOCK_INVALID_PARENT_KEY
;
434 if (parent_key
&& parent_key
->type
) {
435 btrfs_node_key(buf
, &key
, 0);
436 if (memcmp(parent_key
, &key
, sizeof(key
)))
439 ret
= BTRFS_TREE_BLOCK_BAD_KEY_ORDER
;
440 for (i
= 0; nritems
> 1 && i
< nritems
- 2; i
++) {
441 btrfs_node_key(buf
, &key
, i
);
442 btrfs_node_key_to_cpu(buf
, &cpukey
, i
+ 1);
443 if (btrfs_comp_keys(&key
, &cpukey
) >= 0)
446 return BTRFS_TREE_BLOCK_CLEAN
;
448 if (btrfs_header_owner(buf
) == BTRFS_EXTENT_TREE_OBJECTID
) {
450 btrfs_disk_key_to_cpu(&cpukey
, parent_key
);
452 btrfs_node_key_to_cpu(buf
, &cpukey
, 0);
453 btrfs_add_corrupt_extent_record(root
->fs_info
, &cpukey
,
454 buf
->start
, buf
->len
,
455 btrfs_header_level(buf
));
460 enum btrfs_tree_block_status
461 btrfs_check_leaf(struct btrfs_root
*root
, struct btrfs_disk_key
*parent_key
,
462 struct extent_buffer
*buf
)
465 struct btrfs_key cpukey
;
466 struct btrfs_disk_key key
;
467 u32 nritems
= btrfs_header_nritems(buf
);
468 enum btrfs_tree_block_status ret
= BTRFS_TREE_BLOCK_INVALID_NRITEMS
;
470 if (nritems
* sizeof(struct btrfs_item
) > buf
->len
) {
471 fprintf(stderr
, "invalid number of items %llu\n",
472 (unsigned long long)buf
->start
);
476 if (btrfs_header_level(buf
) != 0) {
477 ret
= BTRFS_TREE_BLOCK_INVALID_LEVEL
;
478 fprintf(stderr
, "leaf is not a leaf %llu\n",
479 (unsigned long long)btrfs_header_bytenr(buf
));
482 if (btrfs_leaf_free_space(root
, buf
) < 0) {
483 ret
= BTRFS_TREE_BLOCK_INVALID_FREE_SPACE
;
484 fprintf(stderr
, "leaf free space incorrect %llu %d\n",
485 (unsigned long long)btrfs_header_bytenr(buf
),
486 btrfs_leaf_free_space(root
, buf
));
491 return BTRFS_TREE_BLOCK_CLEAN
;
493 btrfs_item_key(buf
, &key
, 0);
494 if (parent_key
&& parent_key
->type
&&
495 memcmp(parent_key
, &key
, sizeof(key
))) {
496 ret
= BTRFS_TREE_BLOCK_INVALID_PARENT_KEY
;
497 fprintf(stderr
, "leaf parent key incorrect %llu\n",
498 (unsigned long long)btrfs_header_bytenr(buf
));
501 for (i
= 0; nritems
> 1 && i
< nritems
- 1; i
++) {
502 btrfs_item_key(buf
, &key
, i
);
503 btrfs_item_key_to_cpu(buf
, &cpukey
, i
+ 1);
504 if (btrfs_comp_keys(&key
, &cpukey
) >= 0) {
505 ret
= BTRFS_TREE_BLOCK_BAD_KEY_ORDER
;
506 fprintf(stderr
, "bad key ordering %d %d\n", i
, i
+1);
509 if (btrfs_item_offset_nr(buf
, i
) !=
510 btrfs_item_end_nr(buf
, i
+ 1)) {
511 ret
= BTRFS_TREE_BLOCK_INVALID_OFFSETS
;
512 fprintf(stderr
, "incorrect offsets %u %u\n",
513 btrfs_item_offset_nr(buf
, i
),
514 btrfs_item_end_nr(buf
, i
+ 1));
517 if (i
== 0 && btrfs_item_end_nr(buf
, i
) !=
518 BTRFS_LEAF_DATA_SIZE(root
->fs_info
)) {
519 ret
= BTRFS_TREE_BLOCK_INVALID_OFFSETS
;
520 fprintf(stderr
, "bad item end %u wanted %u\n",
521 btrfs_item_end_nr(buf
, i
),
522 (unsigned)BTRFS_LEAF_DATA_SIZE(root
->fs_info
));
527 for (i
= 0; i
< nritems
; i
++) {
528 if (btrfs_item_end_nr(buf
, i
) >
529 BTRFS_LEAF_DATA_SIZE(root
->fs_info
)) {
530 btrfs_item_key(buf
, &key
, 0);
531 btrfs_print_key(&key
);
533 ret
= BTRFS_TREE_BLOCK_INVALID_OFFSETS
;
534 fprintf(stderr
, "slot end outside of leaf %llu > %llu\n",
535 (unsigned long long)btrfs_item_end_nr(buf
, i
),
536 (unsigned long long)BTRFS_LEAF_DATA_SIZE(
542 return BTRFS_TREE_BLOCK_CLEAN
;
544 if (btrfs_header_owner(buf
) == BTRFS_EXTENT_TREE_OBJECTID
) {
546 btrfs_disk_key_to_cpu(&cpukey
, parent_key
);
548 btrfs_item_key_to_cpu(buf
, &cpukey
, 0);
550 btrfs_add_corrupt_extent_record(root
->fs_info
, &cpukey
,
551 buf
->start
, buf
->len
, 0);
556 static int noinline
check_block(struct btrfs_root
*root
,
557 struct btrfs_path
*path
, int level
)
559 struct btrfs_disk_key key
;
560 struct btrfs_disk_key
*key_ptr
= NULL
;
561 struct extent_buffer
*parent
;
562 enum btrfs_tree_block_status ret
;
564 if (path
->skip_check_block
)
566 if (path
->nodes
[level
+ 1]) {
567 parent
= path
->nodes
[level
+ 1];
568 btrfs_node_key(parent
, &key
, path
->slots
[level
+ 1]);
572 ret
= btrfs_check_leaf(root
, key_ptr
, path
->nodes
[0]);
574 ret
= btrfs_check_node(root
, key_ptr
, path
->nodes
[level
]);
575 if (ret
== BTRFS_TREE_BLOCK_CLEAN
)
581 * search for key in the extent_buffer. The items start at offset p,
582 * and they are item_size apart. There are 'max' items in p.
584 * the slot in the array is returned via slot, and it points to
585 * the place where you would insert key if it is not found in
588 * slot may point to max if the key is bigger than all of the keys
590 static int generic_bin_search(struct extent_buffer
*eb
, unsigned long p
,
591 int item_size
, struct btrfs_key
*key
,
598 unsigned long offset
;
599 struct btrfs_disk_key
*tmp
;
602 mid
= (low
+ high
) / 2;
603 offset
= p
+ mid
* item_size
;
605 tmp
= (struct btrfs_disk_key
*)(eb
->data
+ offset
);
606 ret
= btrfs_comp_keys(tmp
, key
);
622 * simple bin_search frontend that does the right thing for
625 static int bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
626 int level
, int *slot
)
629 return generic_bin_search(eb
,
630 offsetof(struct btrfs_leaf
, items
),
631 sizeof(struct btrfs_item
),
632 key
, btrfs_header_nritems(eb
),
635 return generic_bin_search(eb
,
636 offsetof(struct btrfs_node
, ptrs
),
637 sizeof(struct btrfs_key_ptr
),
638 key
, btrfs_header_nritems(eb
),
642 struct extent_buffer
*read_node_slot(struct btrfs_fs_info
*fs_info
,
643 struct extent_buffer
*parent
, int slot
)
645 int level
= btrfs_header_level(parent
);
648 if (slot
>= btrfs_header_nritems(parent
))
654 return read_tree_block(fs_info
, btrfs_node_blockptr(parent
, slot
),
655 btrfs_node_ptr_generation(parent
, slot
));
658 static int balance_level(struct btrfs_trans_handle
*trans
,
659 struct btrfs_root
*root
,
660 struct btrfs_path
*path
, int level
)
662 struct extent_buffer
*right
= NULL
;
663 struct extent_buffer
*mid
;
664 struct extent_buffer
*left
= NULL
;
665 struct extent_buffer
*parent
= NULL
;
666 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
670 int orig_slot
= path
->slots
[level
];
676 mid
= path
->nodes
[level
];
677 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
679 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
681 if (level
< BTRFS_MAX_LEVEL
- 1) {
682 parent
= path
->nodes
[level
+ 1];
683 pslot
= path
->slots
[level
+ 1];
687 * deal with the case where there is only one pointer in the root
688 * by promoting the node below to a root
691 struct extent_buffer
*child
;
693 if (btrfs_header_nritems(mid
) != 1)
696 /* promote the child to a root */
697 child
= read_node_slot(fs_info
, mid
, 0);
698 BUG_ON(!extent_buffer_uptodate(child
));
699 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
703 add_root_to_dirty_list(root
);
704 path
->nodes
[level
] = NULL
;
705 clean_tree_block(trans
, root
, mid
);
706 /* once for the path */
707 free_extent_buffer(mid
);
709 ret
= btrfs_free_extent(trans
, root
, mid
->start
, mid
->len
,
710 0, root
->root_key
.objectid
,
712 /* once for the root ptr */
713 free_extent_buffer(mid
);
716 if (btrfs_header_nritems(mid
) >
717 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) / 4)
720 left
= read_node_slot(fs_info
, parent
, pslot
- 1);
721 if (extent_buffer_uptodate(left
)) {
722 wret
= btrfs_cow_block(trans
, root
, left
,
723 parent
, pslot
- 1, &left
);
729 right
= read_node_slot(fs_info
, parent
, pslot
+ 1);
730 if (extent_buffer_uptodate(right
)) {
731 wret
= btrfs_cow_block(trans
, root
, right
,
732 parent
, pslot
+ 1, &right
);
739 /* first, try to make some room in the middle buffer */
741 orig_slot
+= btrfs_header_nritems(left
);
742 wret
= push_node_left(trans
, root
, left
, mid
, 1);
748 * then try to empty the right most buffer into the middle
751 wret
= push_node_left(trans
, root
, mid
, right
, 1);
752 if (wret
< 0 && wret
!= -ENOSPC
)
754 if (btrfs_header_nritems(right
) == 0) {
755 u64 bytenr
= right
->start
;
756 u32 blocksize
= right
->len
;
758 clean_tree_block(trans
, root
, right
);
759 free_extent_buffer(right
);
761 wret
= btrfs_del_ptr(root
, path
, level
+ 1, pslot
+ 1);
764 wret
= btrfs_free_extent(trans
, root
, bytenr
,
766 root
->root_key
.objectid
,
771 struct btrfs_disk_key right_key
;
772 btrfs_node_key(right
, &right_key
, 0);
773 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
774 btrfs_mark_buffer_dirty(parent
);
777 if (btrfs_header_nritems(mid
) == 1) {
779 * we're not allowed to leave a node with one item in the
780 * tree during a delete. A deletion from lower in the tree
781 * could try to delete the only pointer in this node.
782 * So, pull some keys from the left.
783 * There has to be a left pointer at this point because
784 * otherwise we would have pulled some pointers from the
788 wret
= balance_node_right(trans
, root
, mid
, left
);
794 wret
= push_node_left(trans
, root
, left
, mid
, 1);
800 if (btrfs_header_nritems(mid
) == 0) {
801 /* we've managed to empty the middle node, drop it */
802 u64 bytenr
= mid
->start
;
803 u32 blocksize
= mid
->len
;
804 clean_tree_block(trans
, root
, mid
);
805 free_extent_buffer(mid
);
807 wret
= btrfs_del_ptr(root
, path
, level
+ 1, pslot
);
810 wret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
,
811 0, root
->root_key
.objectid
,
816 /* update the parent key to reflect our changes */
817 struct btrfs_disk_key mid_key
;
818 btrfs_node_key(mid
, &mid_key
, 0);
819 btrfs_set_node_key(parent
, &mid_key
, pslot
);
820 btrfs_mark_buffer_dirty(parent
);
823 /* update the path */
825 if (btrfs_header_nritems(left
) > orig_slot
) {
826 extent_buffer_get(left
);
827 path
->nodes
[level
] = left
;
828 path
->slots
[level
+ 1] -= 1;
829 path
->slots
[level
] = orig_slot
;
831 free_extent_buffer(mid
);
833 orig_slot
-= btrfs_header_nritems(left
);
834 path
->slots
[level
] = orig_slot
;
837 /* double check we haven't messed things up */
838 check_block(root
, path
, level
);
840 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
844 free_extent_buffer(right
);
846 free_extent_buffer(left
);
850 /* returns zero if the push worked, non-zero otherwise */
851 static int noinline
push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
852 struct btrfs_root
*root
,
853 struct btrfs_path
*path
, int level
)
855 struct extent_buffer
*right
= NULL
;
856 struct extent_buffer
*mid
;
857 struct extent_buffer
*left
= NULL
;
858 struct extent_buffer
*parent
= NULL
;
859 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
863 int orig_slot
= path
->slots
[level
];
868 mid
= path
->nodes
[level
];
869 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
871 if (level
< BTRFS_MAX_LEVEL
- 1) {
872 parent
= path
->nodes
[level
+ 1];
873 pslot
= path
->slots
[level
+ 1];
879 left
= read_node_slot(fs_info
, parent
, pslot
- 1);
881 /* first, try to make some room in the middle buffer */
882 if (extent_buffer_uptodate(left
)) {
884 left_nr
= btrfs_header_nritems(left
);
885 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 1) {
888 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
893 wret
= push_node_left(trans
, root
,
900 struct btrfs_disk_key disk_key
;
901 orig_slot
+= left_nr
;
902 btrfs_node_key(mid
, &disk_key
, 0);
903 btrfs_set_node_key(parent
, &disk_key
, pslot
);
904 btrfs_mark_buffer_dirty(parent
);
905 if (btrfs_header_nritems(left
) > orig_slot
) {
906 path
->nodes
[level
] = left
;
907 path
->slots
[level
+ 1] -= 1;
908 path
->slots
[level
] = orig_slot
;
909 free_extent_buffer(mid
);
912 btrfs_header_nritems(left
);
913 path
->slots
[level
] = orig_slot
;
914 free_extent_buffer(left
);
918 free_extent_buffer(left
);
920 right
= read_node_slot(fs_info
, parent
, pslot
+ 1);
923 * then try to empty the right most buffer into the middle
925 if (extent_buffer_uptodate(right
)) {
927 right_nr
= btrfs_header_nritems(right
);
928 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
->fs_info
) - 1) {
931 ret
= btrfs_cow_block(trans
, root
, right
,
937 wret
= balance_node_right(trans
, root
,
944 struct btrfs_disk_key disk_key
;
946 btrfs_node_key(right
, &disk_key
, 0);
947 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
948 btrfs_mark_buffer_dirty(parent
);
950 if (btrfs_header_nritems(mid
) <= orig_slot
) {
951 path
->nodes
[level
] = right
;
952 path
->slots
[level
+ 1] += 1;
953 path
->slots
[level
] = orig_slot
-
954 btrfs_header_nritems(mid
);
955 free_extent_buffer(mid
);
957 free_extent_buffer(right
);
961 free_extent_buffer(right
);
967 * readahead one full node of leaves
969 void reada_for_search(struct btrfs_root
*root
, struct btrfs_path
*path
,
970 int level
, int slot
, u64 objectid
)
972 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
973 struct extent_buffer
*node
;
974 struct btrfs_disk_key disk_key
;
980 int direction
= path
->reada
;
981 struct extent_buffer
*eb
;
988 if (!path
->nodes
[level
])
991 node
= path
->nodes
[level
];
992 search
= btrfs_node_blockptr(node
, slot
);
993 eb
= btrfs_find_tree_block(fs_info
, search
, fs_info
->nodesize
);
995 free_extent_buffer(eb
);
999 highest_read
= search
;
1000 lowest_read
= search
;
1002 nritems
= btrfs_header_nritems(node
);
1005 if (direction
< 0) {
1009 } else if (direction
> 0) {
1014 if (path
->reada
< 0 && objectid
) {
1015 btrfs_node_key(node
, &disk_key
, nr
);
1016 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
1019 search
= btrfs_node_blockptr(node
, nr
);
1020 if ((search
>= lowest_read
&& search
<= highest_read
) ||
1021 (search
< lowest_read
&& lowest_read
- search
<= 32768) ||
1022 (search
> highest_read
&& search
- highest_read
<= 32768)) {
1023 readahead_tree_block(fs_info
, search
,
1024 btrfs_node_ptr_generation(node
, nr
));
1025 nread
+= fs_info
->nodesize
;
1028 if (path
->reada
< 2 && (nread
> SZ_256K
|| nscan
> 32))
1030 if(nread
> SZ_1M
|| nscan
> 128)
1033 if (search
< lowest_read
)
1034 lowest_read
= search
;
1035 if (search
> highest_read
)
1036 highest_read
= search
;
1040 int btrfs_find_item(struct btrfs_root
*fs_root
, struct btrfs_path
*found_path
,
1041 u64 iobjectid
, u64 ioff
, u8 key_type
,
1042 struct btrfs_key
*found_key
)
1045 struct btrfs_key key
;
1046 struct extent_buffer
*eb
;
1047 struct btrfs_path
*path
;
1049 key
.type
= key_type
;
1050 key
.objectid
= iobjectid
;
1053 if (found_path
== NULL
) {
1054 path
= btrfs_alloc_path();
1060 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
1061 if ((ret
< 0) || (found_key
== NULL
))
1064 eb
= path
->nodes
[0];
1065 if (ret
&& path
->slots
[0] >= btrfs_header_nritems(eb
)) {
1066 ret
= btrfs_next_leaf(fs_root
, path
);
1069 eb
= path
->nodes
[0];
1072 btrfs_item_key_to_cpu(eb
, found_key
, path
->slots
[0]);
1073 if (found_key
->type
!= key
.type
||
1074 found_key
->objectid
!= key
.objectid
) {
1080 if (path
!= found_path
)
1081 btrfs_free_path(path
);
1086 * look for key in the tree. path is filled in with nodes along the way
1087 * if key is found, we return zero and you can find the item in the leaf
1088 * level of the path (level 0)
1090 * If the key isn't found, the path points to the slot where it should
1091 * be inserted, and 1 is returned. If there are other errors during the
1092 * search a negative error number is returned.
1094 * if ins_len > 0, nodes and leaves will be split as we walk down the
1095 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1098 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
1099 *root
, struct btrfs_key
*key
, struct btrfs_path
*p
, int
1102 struct extent_buffer
*b
;
1106 int should_reada
= p
->reada
;
1107 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1108 u8 lowest_level
= 0;
1110 lowest_level
= p
->lowest_level
;
1111 WARN_ON(lowest_level
&& ins_len
> 0);
1112 WARN_ON(p
->nodes
[0] != NULL
);
1114 WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
1118 extent_buffer_get(b
);
1120 level
= btrfs_header_level(b
);
1123 wret
= btrfs_cow_block(trans
, root
, b
,
1124 p
->nodes
[level
+ 1],
1125 p
->slots
[level
+ 1],
1128 free_extent_buffer(b
);
1132 BUG_ON(!cow
&& ins_len
);
1133 if (level
!= btrfs_header_level(b
))
1135 level
= btrfs_header_level(b
);
1136 p
->nodes
[level
] = b
;
1137 ret
= check_block(root
, p
, level
);
1140 ret
= bin_search(b
, key
, level
, &slot
);
1142 if (ret
&& slot
> 0)
1144 p
->slots
[level
] = slot
;
1145 if ((p
->search_for_split
|| ins_len
> 0) &&
1146 btrfs_header_nritems(b
) >=
1147 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 3) {
1148 int sret
= split_node(trans
, root
, p
, level
);
1152 b
= p
->nodes
[level
];
1153 slot
= p
->slots
[level
];
1154 } else if (ins_len
< 0) {
1155 int sret
= balance_level(trans
, root
, p
,
1159 b
= p
->nodes
[level
];
1161 btrfs_release_path(p
);
1164 slot
= p
->slots
[level
];
1165 BUG_ON(btrfs_header_nritems(b
) == 1);
1167 /* this is only true while dropping a snapshot */
1168 if (level
== lowest_level
)
1172 reada_for_search(root
, p
, level
, slot
,
1175 b
= read_node_slot(fs_info
, b
, slot
);
1176 if (!extent_buffer_uptodate(b
))
1179 p
->slots
[level
] = slot
;
1181 ins_len
> btrfs_leaf_free_space(root
, b
)) {
1182 int sret
= split_leaf(trans
, root
, key
,
1183 p
, ins_len
, ret
== 0);
1195 * adjust the pointers going up the tree, starting at level
1196 * making sure the right key of each node is points to 'key'.
1197 * This is used after shifting pointers to the left, so it stops
1198 * fixing up pointers when a given leaf/node is not in slot 0 of the
1201 void btrfs_fixup_low_keys(struct btrfs_root
*root
, struct btrfs_path
*path
,
1202 struct btrfs_disk_key
*key
, int level
)
1205 struct extent_buffer
*t
;
1207 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
1208 int tslot
= path
->slots
[i
];
1209 if (!path
->nodes
[i
])
1212 btrfs_set_node_key(t
, key
, tslot
);
1213 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
1222 * This function isn't completely safe. It's the caller's responsibility
1223 * that the new key won't break the order
1225 int btrfs_set_item_key_safe(struct btrfs_root
*root
, struct btrfs_path
*path
,
1226 struct btrfs_key
*new_key
)
1228 struct btrfs_disk_key disk_key
;
1229 struct extent_buffer
*eb
;
1232 eb
= path
->nodes
[0];
1233 slot
= path
->slots
[0];
1235 btrfs_item_key(eb
, &disk_key
, slot
- 1);
1236 if (btrfs_comp_keys(&disk_key
, new_key
) >= 0)
1239 if (slot
< btrfs_header_nritems(eb
) - 1) {
1240 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
1241 if (btrfs_comp_keys(&disk_key
, new_key
) <= 0)
1245 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
1246 btrfs_set_item_key(eb
, &disk_key
, slot
);
1247 btrfs_mark_buffer_dirty(eb
);
1249 btrfs_fixup_low_keys(root
, path
, &disk_key
, 1);
1254 * update an item key without the safety checks. This is meant to be called by
1257 void btrfs_set_item_key_unsafe(struct btrfs_root
*root
,
1258 struct btrfs_path
*path
,
1259 struct btrfs_key
*new_key
)
1261 struct btrfs_disk_key disk_key
;
1262 struct extent_buffer
*eb
;
1265 eb
= path
->nodes
[0];
1266 slot
= path
->slots
[0];
1268 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
1269 btrfs_set_item_key(eb
, &disk_key
, slot
);
1270 btrfs_mark_buffer_dirty(eb
);
1272 btrfs_fixup_low_keys(root
, path
, &disk_key
, 1);
1276 * try to push data from one node into the next node left in the
1279 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1280 * error, and > 0 if there was no room in the left hand block.
1282 static int push_node_left(struct btrfs_trans_handle
*trans
,
1283 struct btrfs_root
*root
, struct extent_buffer
*dst
,
1284 struct extent_buffer
*src
, int empty
)
1291 src_nritems
= btrfs_header_nritems(src
);
1292 dst_nritems
= btrfs_header_nritems(dst
);
1293 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
->fs_info
) - dst_nritems
;
1294 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
1295 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
1297 if (!empty
&& src_nritems
<= 8)
1300 if (push_items
<= 0) {
1305 push_items
= min(src_nritems
, push_items
);
1306 if (push_items
< src_nritems
) {
1307 /* leave at least 8 pointers in the node if
1308 * we aren't going to empty it
1310 if (src_nritems
- push_items
< 8) {
1311 if (push_items
<= 8)
1317 push_items
= min(src_nritems
- 8, push_items
);
1319 copy_extent_buffer(dst
, src
,
1320 btrfs_node_key_ptr_offset(dst_nritems
),
1321 btrfs_node_key_ptr_offset(0),
1322 push_items
* sizeof(struct btrfs_key_ptr
));
1324 if (push_items
< src_nritems
) {
1325 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
1326 btrfs_node_key_ptr_offset(push_items
),
1327 (src_nritems
- push_items
) *
1328 sizeof(struct btrfs_key_ptr
));
1330 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
1331 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
1332 btrfs_mark_buffer_dirty(src
);
1333 btrfs_mark_buffer_dirty(dst
);
1339 * try to push data from one node into the next node right in the
1342 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1343 * error, and > 0 if there was no room in the right hand block.
1345 * this will only push up to 1/2 the contents of the left node over
1347 static int balance_node_right(struct btrfs_trans_handle
*trans
,
1348 struct btrfs_root
*root
,
1349 struct extent_buffer
*dst
,
1350 struct extent_buffer
*src
)
1358 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
1359 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
1361 src_nritems
= btrfs_header_nritems(src
);
1362 dst_nritems
= btrfs_header_nritems(dst
);
1363 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
->fs_info
) - dst_nritems
;
1364 if (push_items
<= 0) {
1368 if (src_nritems
< 4) {
1372 max_push
= src_nritems
/ 2 + 1;
1373 /* don't try to empty the node */
1374 if (max_push
>= src_nritems
) {
1378 if (max_push
< push_items
)
1379 push_items
= max_push
;
1381 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
1382 btrfs_node_key_ptr_offset(0),
1384 sizeof(struct btrfs_key_ptr
));
1386 copy_extent_buffer(dst
, src
,
1387 btrfs_node_key_ptr_offset(0),
1388 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
1389 push_items
* sizeof(struct btrfs_key_ptr
));
1391 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
1392 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
1394 btrfs_mark_buffer_dirty(src
);
1395 btrfs_mark_buffer_dirty(dst
);
1401 * helper function to insert a new root level in the tree.
1402 * A new node is allocated, and a single item is inserted to
1403 * point to the existing root
1405 * returns zero on success or < 0 on failure.
1407 static int noinline
insert_new_root(struct btrfs_trans_handle
*trans
,
1408 struct btrfs_root
*root
,
1409 struct btrfs_path
*path
, int level
)
1412 struct extent_buffer
*lower
;
1413 struct extent_buffer
*c
;
1414 struct extent_buffer
*old
;
1415 struct btrfs_disk_key lower_key
;
1417 BUG_ON(path
->nodes
[level
]);
1418 BUG_ON(path
->nodes
[level
-1] != root
->node
);
1420 lower
= path
->nodes
[level
-1];
1422 btrfs_item_key(lower
, &lower_key
, 0);
1424 btrfs_node_key(lower
, &lower_key
, 0);
1426 c
= btrfs_alloc_free_block(trans
, root
, root
->fs_info
->nodesize
,
1427 root
->root_key
.objectid
, &lower_key
,
1428 level
, root
->node
->start
, 0);
1433 memset_extent_buffer(c
, 0, 0, sizeof(struct btrfs_header
));
1434 btrfs_set_header_nritems(c
, 1);
1435 btrfs_set_header_level(c
, level
);
1436 btrfs_set_header_bytenr(c
, c
->start
);
1437 btrfs_set_header_generation(c
, trans
->transid
);
1438 btrfs_set_header_backref_rev(c
, BTRFS_MIXED_BACKREF_REV
);
1439 btrfs_set_header_owner(c
, root
->root_key
.objectid
);
1441 write_extent_buffer(c
, root
->fs_info
->fsid
,
1442 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
1444 write_extent_buffer(c
, root
->fs_info
->chunk_tree_uuid
,
1445 btrfs_header_chunk_tree_uuid(c
),
1448 btrfs_set_node_key(c
, &lower_key
, 0);
1449 btrfs_set_node_blockptr(c
, 0, lower
->start
);
1450 lower_gen
= btrfs_header_generation(lower
);
1451 WARN_ON(lower_gen
!= trans
->transid
);
1453 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
1455 btrfs_mark_buffer_dirty(c
);
1460 /* the super has an extra ref to root->node */
1461 free_extent_buffer(old
);
1463 add_root_to_dirty_list(root
);
1464 extent_buffer_get(c
);
1465 path
->nodes
[level
] = c
;
1466 path
->slots
[level
] = 0;
1471 * worker function to insert a single pointer in a node.
1472 * the node should have enough room for the pointer already
1474 * slot and level indicate where you want the key to go, and
1475 * blocknr is the block the key points to.
1477 * returns zero on success and < 0 on any error
1479 static int insert_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
1480 *root
, struct btrfs_path
*path
, struct btrfs_disk_key
1481 *key
, u64 bytenr
, int slot
, int level
)
1483 struct extent_buffer
*lower
;
1486 BUG_ON(!path
->nodes
[level
]);
1487 lower
= path
->nodes
[level
];
1488 nritems
= btrfs_header_nritems(lower
);
1491 if (nritems
== BTRFS_NODEPTRS_PER_BLOCK(root
->fs_info
))
1493 if (slot
< nritems
) {
1494 /* shift the items */
1495 memmove_extent_buffer(lower
,
1496 btrfs_node_key_ptr_offset(slot
+ 1),
1497 btrfs_node_key_ptr_offset(slot
),
1498 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
1500 btrfs_set_node_key(lower
, key
, slot
);
1501 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
1502 WARN_ON(trans
->transid
== 0);
1503 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
1504 btrfs_set_header_nritems(lower
, nritems
+ 1);
1505 btrfs_mark_buffer_dirty(lower
);
1510 * split the node at the specified level in path in two.
1511 * The path is corrected to point to the appropriate node after the split
1513 * Before splitting this tries to make some room in the node by pushing
1514 * left and right, if either one works, it returns right away.
1516 * returns 0 on success and < 0 on failure
1518 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
1519 *root
, struct btrfs_path
*path
, int level
)
1521 struct extent_buffer
*c
;
1522 struct extent_buffer
*split
;
1523 struct btrfs_disk_key disk_key
;
1529 c
= path
->nodes
[level
];
1530 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
1531 if (c
== root
->node
) {
1532 /* trying to split the root, lets make a new one */
1533 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
1537 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
1538 c
= path
->nodes
[level
];
1539 if (!ret
&& btrfs_header_nritems(c
) <
1540 BTRFS_NODEPTRS_PER_BLOCK(root
->fs_info
) - 3)
1546 c_nritems
= btrfs_header_nritems(c
);
1547 mid
= (c_nritems
+ 1) / 2;
1548 btrfs_node_key(c
, &disk_key
, mid
);
1550 split
= btrfs_alloc_free_block(trans
, root
, root
->fs_info
->nodesize
,
1551 root
->root_key
.objectid
,
1552 &disk_key
, level
, c
->start
, 0);
1554 return PTR_ERR(split
);
1556 memset_extent_buffer(split
, 0, 0, sizeof(struct btrfs_header
));
1557 btrfs_set_header_level(split
, btrfs_header_level(c
));
1558 btrfs_set_header_bytenr(split
, split
->start
);
1559 btrfs_set_header_generation(split
, trans
->transid
);
1560 btrfs_set_header_backref_rev(split
, BTRFS_MIXED_BACKREF_REV
);
1561 btrfs_set_header_owner(split
, root
->root_key
.objectid
);
1562 write_extent_buffer(split
, root
->fs_info
->fsid
,
1563 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
1564 write_extent_buffer(split
, root
->fs_info
->chunk_tree_uuid
,
1565 btrfs_header_chunk_tree_uuid(split
),
1569 copy_extent_buffer(split
, c
,
1570 btrfs_node_key_ptr_offset(0),
1571 btrfs_node_key_ptr_offset(mid
),
1572 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
1573 btrfs_set_header_nritems(split
, c_nritems
- mid
);
1574 btrfs_set_header_nritems(c
, mid
);
1577 btrfs_mark_buffer_dirty(c
);
1578 btrfs_mark_buffer_dirty(split
);
1580 wret
= insert_ptr(trans
, root
, path
, &disk_key
, split
->start
,
1581 path
->slots
[level
+ 1] + 1,
1586 if (path
->slots
[level
] >= mid
) {
1587 path
->slots
[level
] -= mid
;
1588 free_extent_buffer(c
);
1589 path
->nodes
[level
] = split
;
1590 path
->slots
[level
+ 1] += 1;
1592 free_extent_buffer(split
);
1598 * how many bytes are required to store the items in a leaf. start
1599 * and nr indicate which items in the leaf to check. This totals up the
1600 * space used both by the item structs and the item data
1602 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
1605 int nritems
= btrfs_header_nritems(l
);
1606 int end
= min(nritems
, start
+ nr
) - 1;
1610 data_len
= btrfs_item_end_nr(l
, start
);
1611 data_len
= data_len
- btrfs_item_offset_nr(l
, end
);
1612 data_len
+= sizeof(struct btrfs_item
) * nr
;
1613 WARN_ON(data_len
< 0);
1618 * The space between the end of the leaf items and
1619 * the start of the leaf data. IOW, how much room
1620 * the leaf has left for both items and data
1622 int btrfs_leaf_free_space(struct btrfs_root
*root
, struct extent_buffer
*leaf
)
1624 u32 nodesize
= (root
? BTRFS_LEAF_DATA_SIZE(root
->fs_info
) : leaf
->len
);
1625 int nritems
= btrfs_header_nritems(leaf
);
1627 ret
= nodesize
- leaf_space_used(leaf
, 0, nritems
);
1629 printk("leaf free space ret %d, leaf data size %u, used %d nritems %d\n",
1630 ret
, nodesize
, leaf_space_used(leaf
, 0, nritems
),
1637 * push some data in the path leaf to the right, trying to free up at
1638 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1640 * returns 1 if the push failed because the other node didn't have enough
1641 * room, 0 if everything worked out and < 0 if there were major errors.
1643 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
1644 *root
, struct btrfs_path
*path
, int data_size
,
1647 struct extent_buffer
*left
= path
->nodes
[0];
1648 struct extent_buffer
*right
;
1649 struct extent_buffer
*upper
;
1650 struct btrfs_disk_key disk_key
;
1651 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1657 struct btrfs_item
*item
;
1665 slot
= path
->slots
[1];
1666 if (!path
->nodes
[1]) {
1669 upper
= path
->nodes
[1];
1670 if (slot
>= btrfs_header_nritems(upper
) - 1)
1673 right
= read_node_slot(fs_info
, upper
, slot
+ 1);
1674 if (!extent_buffer_uptodate(right
)) {
1676 return PTR_ERR(right
);
1679 free_space
= btrfs_leaf_free_space(root
, right
);
1680 if (free_space
< data_size
) {
1681 free_extent_buffer(right
);
1685 /* cow and double check */
1686 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
1689 free_extent_buffer(right
);
1692 free_space
= btrfs_leaf_free_space(root
, right
);
1693 if (free_space
< data_size
) {
1694 free_extent_buffer(right
);
1698 left_nritems
= btrfs_header_nritems(left
);
1699 if (left_nritems
== 0) {
1700 free_extent_buffer(right
);
1709 i
= left_nritems
- 1;
1711 item
= btrfs_item_nr(i
);
1713 if (path
->slots
[0] == i
)
1714 push_space
+= data_size
+ sizeof(*item
);
1716 this_item_size
= btrfs_item_size(left
, item
);
1717 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
1720 push_space
+= this_item_size
+ sizeof(*item
);
1726 if (push_items
== 0) {
1727 free_extent_buffer(right
);
1731 if (!empty
&& push_items
== left_nritems
)
1734 /* push left to right */
1735 right_nritems
= btrfs_header_nritems(right
);
1737 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
1738 push_space
-= leaf_data_end(fs_info
, left
);
1740 /* make room in the right data area */
1741 data_end
= leaf_data_end(fs_info
, right
);
1742 memmove_extent_buffer(right
,
1743 btrfs_leaf_data(right
) + data_end
- push_space
,
1744 btrfs_leaf_data(right
) + data_end
,
1745 BTRFS_LEAF_DATA_SIZE(root
->fs_info
) - data_end
);
1747 /* copy from the left data area */
1748 copy_extent_buffer(right
, left
, btrfs_leaf_data(right
) +
1749 BTRFS_LEAF_DATA_SIZE(root
->fs_info
) - push_space
,
1750 btrfs_leaf_data(left
) + leaf_data_end(fs_info
, left
),
1753 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
1754 btrfs_item_nr_offset(0),
1755 right_nritems
* sizeof(struct btrfs_item
));
1757 /* copy the items from left to right */
1758 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
1759 btrfs_item_nr_offset(left_nritems
- push_items
),
1760 push_items
* sizeof(struct btrfs_item
));
1762 /* update the item pointers */
1763 right_nritems
+= push_items
;
1764 btrfs_set_header_nritems(right
, right_nritems
);
1765 push_space
= BTRFS_LEAF_DATA_SIZE(root
->fs_info
);
1766 for (i
= 0; i
< right_nritems
; i
++) {
1767 item
= btrfs_item_nr(i
);
1768 push_space
-= btrfs_item_size(right
, item
);
1769 btrfs_set_item_offset(right
, item
, push_space
);
1772 left_nritems
-= push_items
;
1773 btrfs_set_header_nritems(left
, left_nritems
);
1776 btrfs_mark_buffer_dirty(left
);
1777 btrfs_mark_buffer_dirty(right
);
1779 btrfs_item_key(right
, &disk_key
, 0);
1780 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
1781 btrfs_mark_buffer_dirty(upper
);
1783 /* then fixup the leaf pointer in the path */
1784 if (path
->slots
[0] >= left_nritems
) {
1785 path
->slots
[0] -= left_nritems
;
1786 free_extent_buffer(path
->nodes
[0]);
1787 path
->nodes
[0] = right
;
1788 path
->slots
[1] += 1;
1790 free_extent_buffer(right
);
1795 * push some data in the path leaf to the left, trying to free up at
1796 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1798 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
1799 *root
, struct btrfs_path
*path
, int data_size
,
1802 struct btrfs_disk_key disk_key
;
1803 struct extent_buffer
*right
= path
->nodes
[0];
1804 struct extent_buffer
*left
;
1805 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1811 struct btrfs_item
*item
;
1812 u32 old_left_nritems
;
1817 u32 old_left_item_size
;
1819 slot
= path
->slots
[1];
1822 if (!path
->nodes
[1])
1825 right_nritems
= btrfs_header_nritems(right
);
1826 if (right_nritems
== 0) {
1830 left
= read_node_slot(fs_info
, path
->nodes
[1], slot
- 1);
1831 free_space
= btrfs_leaf_free_space(root
, left
);
1832 if (free_space
< data_size
) {
1833 free_extent_buffer(left
);
1837 /* cow and double check */
1838 ret
= btrfs_cow_block(trans
, root
, left
,
1839 path
->nodes
[1], slot
- 1, &left
);
1841 /* we hit -ENOSPC, but it isn't fatal here */
1842 free_extent_buffer(left
);
1846 free_space
= btrfs_leaf_free_space(root
, left
);
1847 if (free_space
< data_size
) {
1848 free_extent_buffer(left
);
1855 nr
= right_nritems
- 1;
1857 for (i
= 0; i
< nr
; i
++) {
1858 item
= btrfs_item_nr(i
);
1860 if (path
->slots
[0] == i
)
1861 push_space
+= data_size
+ sizeof(*item
);
1863 this_item_size
= btrfs_item_size(right
, item
);
1864 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
1868 push_space
+= this_item_size
+ sizeof(*item
);
1871 if (push_items
== 0) {
1872 free_extent_buffer(left
);
1875 if (!empty
&& push_items
== btrfs_header_nritems(right
))
1878 /* push data from right to left */
1879 copy_extent_buffer(left
, right
,
1880 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
1881 btrfs_item_nr_offset(0),
1882 push_items
* sizeof(struct btrfs_item
));
1884 push_space
= BTRFS_LEAF_DATA_SIZE(root
->fs_info
) -
1885 btrfs_item_offset_nr(right
, push_items
-1);
1887 copy_extent_buffer(left
, right
, btrfs_leaf_data(left
) +
1888 leaf_data_end(fs_info
, left
) - push_space
,
1889 btrfs_leaf_data(right
) +
1890 btrfs_item_offset_nr(right
, push_items
- 1),
1892 old_left_nritems
= btrfs_header_nritems(left
);
1893 BUG_ON(old_left_nritems
== 0);
1895 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
1896 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
1899 item
= btrfs_item_nr(i
);
1900 ioff
= btrfs_item_offset(left
, item
);
1901 btrfs_set_item_offset(left
, item
,
1902 ioff
- (BTRFS_LEAF_DATA_SIZE(root
->fs_info
) -
1903 old_left_item_size
));
1905 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
1907 /* fixup right node */
1908 if (push_items
> right_nritems
) {
1909 printk("push items %d nr %u\n", push_items
, right_nritems
);
1913 if (push_items
< right_nritems
) {
1914 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
1915 leaf_data_end(fs_info
, right
);
1916 memmove_extent_buffer(right
, btrfs_leaf_data(right
) +
1917 BTRFS_LEAF_DATA_SIZE(root
->fs_info
) -
1919 btrfs_leaf_data(right
) +
1920 leaf_data_end(fs_info
, right
),
1923 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
1924 btrfs_item_nr_offset(push_items
),
1925 (btrfs_header_nritems(right
) - push_items
) *
1926 sizeof(struct btrfs_item
));
1928 right_nritems
-= push_items
;
1929 btrfs_set_header_nritems(right
, right_nritems
);
1930 push_space
= BTRFS_LEAF_DATA_SIZE(root
->fs_info
);
1931 for (i
= 0; i
< right_nritems
; i
++) {
1932 item
= btrfs_item_nr(i
);
1933 push_space
= push_space
- btrfs_item_size(right
, item
);
1934 btrfs_set_item_offset(right
, item
, push_space
);
1937 btrfs_mark_buffer_dirty(left
);
1939 btrfs_mark_buffer_dirty(right
);
1941 btrfs_item_key(right
, &disk_key
, 0);
1942 btrfs_fixup_low_keys(root
, path
, &disk_key
, 1);
1944 /* then fixup the leaf pointer in the path */
1945 if (path
->slots
[0] < push_items
) {
1946 path
->slots
[0] += old_left_nritems
;
1947 free_extent_buffer(path
->nodes
[0]);
1948 path
->nodes
[0] = left
;
1949 path
->slots
[1] -= 1;
1951 free_extent_buffer(left
);
1952 path
->slots
[0] -= push_items
;
1954 BUG_ON(path
->slots
[0] < 0);
1959 * split the path's leaf in two, making sure there is at least data_size
1960 * available for the resulting leaf level of the path.
1962 * returns 0 if all went well and < 0 on failure.
1964 static noinline
int copy_for_split(struct btrfs_trans_handle
*trans
,
1965 struct btrfs_root
*root
,
1966 struct btrfs_path
*path
,
1967 struct extent_buffer
*l
,
1968 struct extent_buffer
*right
,
1969 int slot
, int mid
, int nritems
)
1976 struct btrfs_disk_key disk_key
;
1978 nritems
= nritems
- mid
;
1979 btrfs_set_header_nritems(right
, nritems
);
1980 data_copy_size
= btrfs_item_end_nr(l
, mid
) -
1981 leaf_data_end(root
->fs_info
, l
);
1983 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
1984 btrfs_item_nr_offset(mid
),
1985 nritems
* sizeof(struct btrfs_item
));
1987 copy_extent_buffer(right
, l
,
1988 btrfs_leaf_data(right
) +
1989 BTRFS_LEAF_DATA_SIZE(root
->fs_info
) -
1990 data_copy_size
, btrfs_leaf_data(l
) +
1991 leaf_data_end(root
->fs_info
, l
), data_copy_size
);
1993 rt_data_off
= BTRFS_LEAF_DATA_SIZE(root
->fs_info
) -
1994 btrfs_item_end_nr(l
, mid
);
1996 for (i
= 0; i
< nritems
; i
++) {
1997 struct btrfs_item
*item
= btrfs_item_nr(i
);
1998 u32 ioff
= btrfs_item_offset(right
, item
);
1999 btrfs_set_item_offset(right
, item
, ioff
+ rt_data_off
);
2002 btrfs_set_header_nritems(l
, mid
);
2004 btrfs_item_key(right
, &disk_key
, 0);
2005 wret
= insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
2006 path
->slots
[1] + 1, 1);
2010 btrfs_mark_buffer_dirty(right
);
2011 btrfs_mark_buffer_dirty(l
);
2012 BUG_ON(path
->slots
[0] != slot
);
2015 free_extent_buffer(path
->nodes
[0]);
2016 path
->nodes
[0] = right
;
2017 path
->slots
[0] -= mid
;
2018 path
->slots
[1] += 1;
2020 free_extent_buffer(right
);
2023 BUG_ON(path
->slots
[0] < 0);
2029 * split the path's leaf in two, making sure there is at least data_size
2030 * available for the resulting leaf level of the path.
2032 * returns 0 if all went well and < 0 on failure.
2034 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
2035 struct btrfs_root
*root
,
2036 struct btrfs_key
*ins_key
,
2037 struct btrfs_path
*path
, int data_size
,
2040 struct btrfs_disk_key disk_key
;
2041 struct extent_buffer
*l
;
2045 struct extent_buffer
*right
;
2049 int num_doubles
= 0;
2052 slot
= path
->slots
[0];
2053 if (extend
&& data_size
+ btrfs_item_size_nr(l
, slot
) +
2054 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(root
->fs_info
))
2057 /* first try to make some room by pushing left and right */
2058 if (data_size
&& ins_key
->type
!= BTRFS_DIR_ITEM_KEY
) {
2059 wret
= push_leaf_right(trans
, root
, path
, data_size
, 0);
2063 wret
= push_leaf_left(trans
, root
, path
, data_size
, 0);
2069 /* did the pushes work? */
2070 if (btrfs_leaf_free_space(root
, l
) >= data_size
)
2074 if (!path
->nodes
[1]) {
2075 ret
= insert_new_root(trans
, root
, path
, 1);
2082 slot
= path
->slots
[0];
2083 nritems
= btrfs_header_nritems(l
);
2084 mid
= (nritems
+ 1) / 2;
2088 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
2089 BTRFS_LEAF_DATA_SIZE(root
->fs_info
)) {
2090 if (slot
>= nritems
) {
2094 if (mid
!= nritems
&&
2095 leaf_space_used(l
, mid
, nritems
- mid
) +
2097 BTRFS_LEAF_DATA_SIZE(root
->fs_info
)) {
2103 if (leaf_space_used(l
, 0, mid
) + data_size
>
2104 BTRFS_LEAF_DATA_SIZE(root
->fs_info
)) {
2105 if (!extend
&& data_size
&& slot
== 0) {
2107 } else if ((extend
|| !data_size
) && slot
== 0) {
2111 if (mid
!= nritems
&&
2112 leaf_space_used(l
, mid
, nritems
- mid
) +
2114 BTRFS_LEAF_DATA_SIZE(root
->fs_info
)) {
2122 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
2124 btrfs_item_key(l
, &disk_key
, mid
);
2126 right
= btrfs_alloc_free_block(trans
, root
, root
->fs_info
->nodesize
,
2127 root
->root_key
.objectid
,
2128 &disk_key
, 0, l
->start
, 0);
2129 if (IS_ERR(right
)) {
2131 return PTR_ERR(right
);
2134 memset_extent_buffer(right
, 0, 0, sizeof(struct btrfs_header
));
2135 btrfs_set_header_bytenr(right
, right
->start
);
2136 btrfs_set_header_generation(right
, trans
->transid
);
2137 btrfs_set_header_backref_rev(right
, BTRFS_MIXED_BACKREF_REV
);
2138 btrfs_set_header_owner(right
, root
->root_key
.objectid
);
2139 btrfs_set_header_level(right
, 0);
2140 write_extent_buffer(right
, root
->fs_info
->fsid
,
2141 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
2143 write_extent_buffer(right
, root
->fs_info
->chunk_tree_uuid
,
2144 btrfs_header_chunk_tree_uuid(right
),
2149 btrfs_set_header_nritems(right
, 0);
2150 wret
= insert_ptr(trans
, root
, path
,
2151 &disk_key
, right
->start
,
2152 path
->slots
[1] + 1, 1);
2156 free_extent_buffer(path
->nodes
[0]);
2157 path
->nodes
[0] = right
;
2159 path
->slots
[1] += 1;
2161 btrfs_set_header_nritems(right
, 0);
2162 wret
= insert_ptr(trans
, root
, path
,
2168 free_extent_buffer(path
->nodes
[0]);
2169 path
->nodes
[0] = right
;
2171 if (path
->slots
[1] == 0) {
2172 btrfs_fixup_low_keys(root
, path
,
2176 btrfs_mark_buffer_dirty(right
);
2180 ret
= copy_for_split(trans
, root
, path
, l
, right
, slot
, mid
, nritems
);
2184 BUG_ON(num_doubles
!= 0);
2193 * This function splits a single item into two items,
2194 * giving 'new_key' to the new item and splitting the
2195 * old one at split_offset (from the start of the item).
2197 * The path may be released by this operation. After
2198 * the split, the path is pointing to the old item. The
2199 * new item is going to be in the same node as the old one.
2201 * Note, the item being split must be smaller enough to live alone on
2202 * a tree block with room for one extra struct btrfs_item
2204 * This allows us to split the item in place, keeping a lock on the
2205 * leaf the entire time.
2207 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
2208 struct btrfs_root
*root
,
2209 struct btrfs_path
*path
,
2210 struct btrfs_key
*new_key
,
2211 unsigned long split_offset
)
2214 struct extent_buffer
*leaf
;
2215 struct btrfs_key orig_key
;
2216 struct btrfs_item
*item
;
2217 struct btrfs_item
*new_item
;
2222 struct btrfs_disk_key disk_key
;
2225 leaf
= path
->nodes
[0];
2226 btrfs_item_key_to_cpu(leaf
, &orig_key
, path
->slots
[0]);
2227 if (btrfs_leaf_free_space(root
, leaf
) >= sizeof(struct btrfs_item
))
2230 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2231 btrfs_release_path(path
);
2233 path
->search_for_split
= 1;
2235 ret
= btrfs_search_slot(trans
, root
, &orig_key
, path
, 0, 1);
2236 path
->search_for_split
= 0;
2238 /* if our item isn't there or got smaller, return now */
2239 if (ret
!= 0 || item_size
!= btrfs_item_size_nr(path
->nodes
[0],
2244 ret
= split_leaf(trans
, root
, &orig_key
, path
, 0, 0);
2247 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < sizeof(struct btrfs_item
));
2248 leaf
= path
->nodes
[0];
2251 item
= btrfs_item_nr(path
->slots
[0]);
2252 orig_offset
= btrfs_item_offset(leaf
, item
);
2253 item_size
= btrfs_item_size(leaf
, item
);
2256 buf
= kmalloc(item_size
, GFP_NOFS
);
2258 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
2259 path
->slots
[0]), item_size
);
2260 slot
= path
->slots
[0] + 1;
2261 leaf
= path
->nodes
[0];
2263 nritems
= btrfs_header_nritems(leaf
);
2265 if (slot
< nritems
) {
2266 /* shift the items */
2267 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
2268 btrfs_item_nr_offset(slot
),
2269 (nritems
- slot
) * sizeof(struct btrfs_item
));
2273 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
2274 btrfs_set_item_key(leaf
, &disk_key
, slot
);
2276 new_item
= btrfs_item_nr(slot
);
2278 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
2279 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
2281 btrfs_set_item_offset(leaf
, item
,
2282 orig_offset
+ item_size
- split_offset
);
2283 btrfs_set_item_size(leaf
, item
, split_offset
);
2285 btrfs_set_header_nritems(leaf
, nritems
+ 1);
2287 /* write the data for the start of the original item */
2288 write_extent_buffer(leaf
, buf
,
2289 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
2292 /* write the data for the new item */
2293 write_extent_buffer(leaf
, buf
+ split_offset
,
2294 btrfs_item_ptr_offset(leaf
, slot
),
2295 item_size
- split_offset
);
2296 btrfs_mark_buffer_dirty(leaf
);
2299 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
2300 btrfs_print_leaf(root
, leaf
);
2307 int btrfs_truncate_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
2308 u32 new_size
, int from_end
)
2312 struct extent_buffer
*leaf
;
2313 struct btrfs_item
*item
;
2315 unsigned int data_end
;
2316 unsigned int old_data_start
;
2317 unsigned int old_size
;
2318 unsigned int size_diff
;
2321 leaf
= path
->nodes
[0];
2322 slot
= path
->slots
[0];
2324 old_size
= btrfs_item_size_nr(leaf
, slot
);
2325 if (old_size
== new_size
)
2328 nritems
= btrfs_header_nritems(leaf
);
2329 data_end
= leaf_data_end(root
->fs_info
, leaf
);
2331 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
2333 size_diff
= old_size
- new_size
;
2336 BUG_ON(slot
>= nritems
);
2339 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2341 /* first correct the data pointers */
2342 for (i
= slot
; i
< nritems
; i
++) {
2344 item
= btrfs_item_nr(i
);
2345 ioff
= btrfs_item_offset(leaf
, item
);
2346 btrfs_set_item_offset(leaf
, item
, ioff
+ size_diff
);
2349 /* shift the data */
2351 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
2352 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
2353 data_end
, old_data_start
+ new_size
- data_end
);
2355 struct btrfs_disk_key disk_key
;
2358 btrfs_item_key(leaf
, &disk_key
, slot
);
2360 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
2362 struct btrfs_file_extent_item
*fi
;
2364 fi
= btrfs_item_ptr(leaf
, slot
,
2365 struct btrfs_file_extent_item
);
2366 fi
= (struct btrfs_file_extent_item
*)(
2367 (unsigned long)fi
- size_diff
);
2369 if (btrfs_file_extent_type(leaf
, fi
) ==
2370 BTRFS_FILE_EXTENT_INLINE
) {
2371 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
2372 memmove_extent_buffer(leaf
, ptr
,
2374 offsetof(struct btrfs_file_extent_item
,
2379 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
2380 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
2381 data_end
, old_data_start
- data_end
);
2383 offset
= btrfs_disk_key_offset(&disk_key
);
2384 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
2385 btrfs_set_item_key(leaf
, &disk_key
, slot
);
2387 btrfs_fixup_low_keys(root
, path
, &disk_key
, 1);
2390 item
= btrfs_item_nr(slot
);
2391 btrfs_set_item_size(leaf
, item
, new_size
);
2392 btrfs_mark_buffer_dirty(leaf
);
2395 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
2396 btrfs_print_leaf(root
, leaf
);
2402 int btrfs_extend_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
2407 struct extent_buffer
*leaf
;
2408 struct btrfs_item
*item
;
2410 unsigned int data_end
;
2411 unsigned int old_data
;
2412 unsigned int old_size
;
2415 leaf
= path
->nodes
[0];
2417 nritems
= btrfs_header_nritems(leaf
);
2418 data_end
= leaf_data_end(root
->fs_info
, leaf
);
2420 if (btrfs_leaf_free_space(root
, leaf
) < data_size
) {
2421 btrfs_print_leaf(root
, leaf
);
2424 slot
= path
->slots
[0];
2425 old_data
= btrfs_item_end_nr(leaf
, slot
);
2428 if (slot
>= nritems
) {
2429 btrfs_print_leaf(root
, leaf
);
2430 printk("slot %d too large, nritems %d\n", slot
, nritems
);
2435 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2437 /* first correct the data pointers */
2438 for (i
= slot
; i
< nritems
; i
++) {
2440 item
= btrfs_item_nr(i
);
2441 ioff
= btrfs_item_offset(leaf
, item
);
2442 btrfs_set_item_offset(leaf
, item
, ioff
- data_size
);
2445 /* shift the data */
2446 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
2447 data_end
- data_size
, btrfs_leaf_data(leaf
) +
2448 data_end
, old_data
- data_end
);
2450 data_end
= old_data
;
2451 old_size
= btrfs_item_size_nr(leaf
, slot
);
2452 item
= btrfs_item_nr(slot
);
2453 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
2454 btrfs_mark_buffer_dirty(leaf
);
2457 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
2458 btrfs_print_leaf(root
, leaf
);
2465 * Given a key and some data, insert an item into the tree.
2466 * This does all the path init required, making room in the tree if needed.
2468 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
2469 struct btrfs_root
*root
,
2470 struct btrfs_path
*path
,
2471 struct btrfs_key
*cpu_key
, u32
*data_size
,
2474 struct extent_buffer
*leaf
;
2475 struct btrfs_item
*item
;
2482 unsigned int data_end
;
2483 struct btrfs_disk_key disk_key
;
2485 for (i
= 0; i
< nr
; i
++) {
2486 total_data
+= data_size
[i
];
2489 /* create a root if there isn't one */
2493 total_size
= total_data
+ nr
* sizeof(struct btrfs_item
);
2494 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
2501 leaf
= path
->nodes
[0];
2503 nritems
= btrfs_header_nritems(leaf
);
2504 data_end
= leaf_data_end(root
->fs_info
, leaf
);
2506 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
2507 btrfs_print_leaf(root
, leaf
);
2508 printk("not enough freespace need %u have %d\n",
2509 total_size
, btrfs_leaf_free_space(root
, leaf
));
2513 slot
= path
->slots
[0];
2516 if (slot
< nritems
) {
2517 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
2519 if (old_data
< data_end
) {
2520 btrfs_print_leaf(root
, leaf
);
2521 printk("slot %d old_data %d data_end %d\n",
2522 slot
, old_data
, data_end
);
2526 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2528 /* first correct the data pointers */
2529 for (i
= slot
; i
< nritems
; i
++) {
2532 item
= btrfs_item_nr(i
);
2533 ioff
= btrfs_item_offset(leaf
, item
);
2534 btrfs_set_item_offset(leaf
, item
, ioff
- total_data
);
2537 /* shift the items */
2538 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
2539 btrfs_item_nr_offset(slot
),
2540 (nritems
- slot
) * sizeof(struct btrfs_item
));
2542 /* shift the data */
2543 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
2544 data_end
- total_data
, btrfs_leaf_data(leaf
) +
2545 data_end
, old_data
- data_end
);
2546 data_end
= old_data
;
2549 /* setup the item for the new data */
2550 for (i
= 0; i
< nr
; i
++) {
2551 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
2552 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
2553 item
= btrfs_item_nr(slot
+ i
);
2554 btrfs_set_item_offset(leaf
, item
, data_end
- data_size
[i
]);
2555 data_end
-= data_size
[i
];
2556 btrfs_set_item_size(leaf
, item
, data_size
[i
]);
2558 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
2559 btrfs_mark_buffer_dirty(leaf
);
2563 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
2564 btrfs_fixup_low_keys(root
, path
, &disk_key
, 1);
2567 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
2568 btrfs_print_leaf(root
, leaf
);
2577 * Given a key and some data, insert an item into the tree.
2578 * This does all the path init required, making room in the tree if needed.
2580 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
2581 *root
, struct btrfs_key
*cpu_key
, void *data
, u32
2585 struct btrfs_path
*path
;
2586 struct extent_buffer
*leaf
;
2589 path
= btrfs_alloc_path();
2593 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
2595 leaf
= path
->nodes
[0];
2596 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
2597 write_extent_buffer(leaf
, data
, ptr
, data_size
);
2598 btrfs_mark_buffer_dirty(leaf
);
2600 btrfs_free_path(path
);
2605 * delete the pointer from a given node.
2607 * If the delete empties a node, the node is removed from the tree,
2608 * continuing all the way the root if required. The root is converted into
2609 * a leaf if all the nodes are emptied.
2611 int btrfs_del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
2612 int level
, int slot
)
2614 struct extent_buffer
*parent
= path
->nodes
[level
];
2618 nritems
= btrfs_header_nritems(parent
);
2619 if (slot
< nritems
- 1) {
2620 /* shift the items */
2621 memmove_extent_buffer(parent
,
2622 btrfs_node_key_ptr_offset(slot
),
2623 btrfs_node_key_ptr_offset(slot
+ 1),
2624 sizeof(struct btrfs_key_ptr
) *
2625 (nritems
- slot
- 1));
2628 btrfs_set_header_nritems(parent
, nritems
);
2629 if (nritems
== 0 && parent
== root
->node
) {
2630 BUG_ON(btrfs_header_level(root
->node
) != 1);
2631 /* just turn the root into a leaf and break */
2632 btrfs_set_header_level(root
->node
, 0);
2633 } else if (slot
== 0) {
2634 struct btrfs_disk_key disk_key
;
2636 btrfs_node_key(parent
, &disk_key
, 0);
2637 btrfs_fixup_low_keys(root
, path
, &disk_key
, level
+ 1);
2639 btrfs_mark_buffer_dirty(parent
);
2644 * a helper function to delete the leaf pointed to by path->slots[1] and
2647 * This deletes the pointer in path->nodes[1] and frees the leaf
2648 * block extent. zero is returned if it all worked out, < 0 otherwise.
2650 * The path must have already been setup for deleting the leaf, including
2651 * all the proper balancing. path->nodes[1] must be locked.
2653 static noinline
int btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
2654 struct btrfs_root
*root
,
2655 struct btrfs_path
*path
,
2656 struct extent_buffer
*leaf
)
2660 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
2661 ret
= btrfs_del_ptr(root
, path
, 1, path
->slots
[1]);
2665 ret
= btrfs_free_extent(trans
, root
, leaf
->start
, leaf
->len
,
2666 0, root
->root_key
.objectid
, 0, 0);
2671 * delete the item at the leaf level in path. If that empties
2672 * the leaf, remove it from the tree
2674 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2675 struct btrfs_path
*path
, int slot
, int nr
)
2677 struct extent_buffer
*leaf
;
2678 struct btrfs_item
*item
;
2686 leaf
= path
->nodes
[0];
2687 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
2689 for (i
= 0; i
< nr
; i
++)
2690 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
2692 nritems
= btrfs_header_nritems(leaf
);
2694 if (slot
+ nr
!= nritems
) {
2695 int data_end
= leaf_data_end(root
->fs_info
, leaf
);
2697 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
2699 btrfs_leaf_data(leaf
) + data_end
,
2700 last_off
- data_end
);
2702 for (i
= slot
+ nr
; i
< nritems
; i
++) {
2705 item
= btrfs_item_nr(i
);
2706 ioff
= btrfs_item_offset(leaf
, item
);
2707 btrfs_set_item_offset(leaf
, item
, ioff
+ dsize
);
2710 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
2711 btrfs_item_nr_offset(slot
+ nr
),
2712 sizeof(struct btrfs_item
) *
2713 (nritems
- slot
- nr
));
2715 btrfs_set_header_nritems(leaf
, nritems
- nr
);
2718 /* delete the leaf if we've emptied it */
2720 if (leaf
== root
->node
) {
2721 btrfs_set_header_level(leaf
, 0);
2723 clean_tree_block(trans
, root
, leaf
);
2724 wret
= btrfs_del_leaf(trans
, root
, path
, leaf
);
2730 int used
= leaf_space_used(leaf
, 0, nritems
);
2732 struct btrfs_disk_key disk_key
;
2734 btrfs_item_key(leaf
, &disk_key
, 0);
2735 btrfs_fixup_low_keys(root
, path
, &disk_key
, 1);
2738 /* delete the leaf if it is mostly empty */
2739 if (used
< BTRFS_LEAF_DATA_SIZE(root
->fs_info
) / 4) {
2740 /* push_leaf_left fixes the path.
2741 * make sure the path still points to our leaf
2742 * for possible call to del_ptr below
2744 slot
= path
->slots
[1];
2745 extent_buffer_get(leaf
);
2747 wret
= push_leaf_left(trans
, root
, path
, 1, 1);
2748 if (wret
< 0 && wret
!= -ENOSPC
)
2751 if (path
->nodes
[0] == leaf
&&
2752 btrfs_header_nritems(leaf
)) {
2753 wret
= push_leaf_right(trans
, root
, path
, 1, 1);
2754 if (wret
< 0 && wret
!= -ENOSPC
)
2758 if (btrfs_header_nritems(leaf
) == 0) {
2759 clean_tree_block(trans
, root
, leaf
);
2760 path
->slots
[1] = slot
;
2761 ret
= btrfs_del_leaf(trans
, root
, path
, leaf
);
2763 free_extent_buffer(leaf
);
2766 btrfs_mark_buffer_dirty(leaf
);
2767 free_extent_buffer(leaf
);
2770 btrfs_mark_buffer_dirty(leaf
);
2777 * walk up the tree as far as required to find the previous leaf.
2778 * returns 0 if it found something or 1 if there are no lesser leaves.
2779 * returns < 0 on io errors.
2781 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
2785 struct extent_buffer
*c
;
2786 struct extent_buffer
*next
= NULL
;
2787 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2789 while(level
< BTRFS_MAX_LEVEL
) {
2790 if (!path
->nodes
[level
])
2793 slot
= path
->slots
[level
];
2794 c
= path
->nodes
[level
];
2797 if (level
== BTRFS_MAX_LEVEL
)
2803 next
= read_node_slot(fs_info
, c
, slot
);
2804 if (!extent_buffer_uptodate(next
)) {
2806 return PTR_ERR(next
);
2811 path
->slots
[level
] = slot
;
2814 c
= path
->nodes
[level
];
2815 free_extent_buffer(c
);
2816 slot
= btrfs_header_nritems(next
);
2819 path
->nodes
[level
] = next
;
2820 path
->slots
[level
] = slot
;
2823 next
= read_node_slot(fs_info
, next
, slot
);
2824 if (!extent_buffer_uptodate(next
)) {
2826 return PTR_ERR(next
);
2834 * walk up the tree as far as required to find the next leaf.
2835 * returns 0 if it found something or 1 if there are no greater leaves.
2836 * returns < 0 on io errors.
2838 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
2842 struct extent_buffer
*c
;
2843 struct extent_buffer
*next
= NULL
;
2844 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2846 while(level
< BTRFS_MAX_LEVEL
) {
2847 if (!path
->nodes
[level
])
2850 slot
= path
->slots
[level
] + 1;
2851 c
= path
->nodes
[level
];
2852 if (slot
>= btrfs_header_nritems(c
)) {
2854 if (level
== BTRFS_MAX_LEVEL
)
2860 reada_for_search(root
, path
, level
, slot
, 0);
2862 next
= read_node_slot(fs_info
, c
, slot
);
2863 if (!extent_buffer_uptodate(next
))
2867 path
->slots
[level
] = slot
;
2870 c
= path
->nodes
[level
];
2871 free_extent_buffer(c
);
2872 path
->nodes
[level
] = next
;
2873 path
->slots
[level
] = 0;
2877 reada_for_search(root
, path
, level
, 0, 0);
2878 next
= read_node_slot(fs_info
, next
, 0);
2879 if (!extent_buffer_uptodate(next
))
2885 int btrfs_previous_item(struct btrfs_root
*root
,
2886 struct btrfs_path
*path
, u64 min_objectid
,
2889 struct btrfs_key found_key
;
2890 struct extent_buffer
*leaf
;
2895 if (path
->slots
[0] == 0) {
2896 ret
= btrfs_prev_leaf(root
, path
);
2902 leaf
= path
->nodes
[0];
2903 nritems
= btrfs_header_nritems(leaf
);
2906 if (path
->slots
[0] == nritems
)
2909 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2910 if (found_key
.objectid
< min_objectid
)
2912 if (found_key
.type
== type
)
2914 if (found_key
.objectid
== min_objectid
&&
2915 found_key
.type
< type
)
2922 * search in extent tree to find a previous Metadata/Data extent item with
2925 * returns 0 if something is found, 1 if nothing was found and < 0 on error
2927 int btrfs_previous_extent_item(struct btrfs_root
*root
,
2928 struct btrfs_path
*path
, u64 min_objectid
)
2930 struct btrfs_key found_key
;
2931 struct extent_buffer
*leaf
;
2936 if (path
->slots
[0] == 0) {
2937 ret
= btrfs_prev_leaf(root
, path
);
2943 leaf
= path
->nodes
[0];
2944 nritems
= btrfs_header_nritems(leaf
);
2947 if (path
->slots
[0] == nritems
)
2950 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2951 if (found_key
.objectid
< min_objectid
)
2953 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
||
2954 found_key
.type
== BTRFS_METADATA_ITEM_KEY
)
2956 if (found_key
.objectid
== min_objectid
&&
2957 found_key
.type
< BTRFS_EXTENT_ITEM_KEY
)
2964 * Search in extent tree to found next meta/data extent
2965 * Caller needs to check for no-hole or skinny metadata features.
2967 int btrfs_next_extent_item(struct btrfs_root
*root
,
2968 struct btrfs_path
*path
, u64 max_objectid
)
2970 struct btrfs_key found_key
;
2974 ret
= btrfs_next_item(root
, path
);
2977 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2979 if (found_key
.objectid
> max_objectid
)
2981 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
||
2982 found_key
.type
== BTRFS_METADATA_ITEM_KEY
)