validate dependabot configuration
[cabal.git] / Cabal-tests / tests / Test / Laws.hs
blob351cee7f0c6013953ba4a46ce0a141f7770962b2
1 {-# OPTIONS_GHC -fno-warn-missing-signatures #-}
2 module Test.Laws where
4 import Prelude hiding (Num((+), (*)))
5 import Data.Monoid (Monoid(..), Endo(..))
6 import qualified Data.Foldable as Foldable
8 idempotent_unary f x = f fx == fx where fx = f x
10 -- Basic laws on binary operators
12 idempotent_binary (+) x = x + x == x
14 commutative (+) x y = x + y == y + x
16 associative (+) x y z = (x + y) + z == x + (y + z)
18 distributive_left (*) (+) x y z = x * (y + z) == (x * y) + (x * z)
20 distributive_right (*) (+) x y z = (y + z) * x == (y * x) + (z * x)
23 -- | The first 'fmap' law
25 -- > fmap id == id
27 fmap_1 :: (Eq (f a), Functor f) => f a -> Bool
28 fmap_1 x = fmap id x == x
30 -- | The second 'fmap' law
32 -- > fmap (f . g) == fmap f . fmap g
34 fmap_2 :: (Eq (f c), Functor f) => (b -> c) -> (a -> b) -> f a -> Bool
35 fmap_2 f g x = fmap (f . g) x == (fmap f . fmap g) x
38 -- | The monoid identity law, 'mempty' is a left and right identity of
39 -- 'mappend':
41 -- > mempty `mappend` x = x
42 -- > x `mappend` mempty = x
44 monoid_1 :: (Eq a, Data.Monoid.Monoid a) => a -> Bool
45 monoid_1 x = mempty `mappend` x == x
46 && x `mappend` mempty == x
48 -- | The monoid associativity law, 'mappend' must be associative.
50 -- > (x `mappend` y) `mappend` z = x `mappend` (y `mappend` z)
52 monoid_2 :: (Eq a, Data.Monoid.Monoid a) => a -> a -> a -> Bool
53 monoid_2 x y z = (x `mappend` y) `mappend` z
54 == x `mappend` (y `mappend` z)
56 -- | The 'mconcat' definition. It can be overridden for the sake of efficiency
57 -- but it must still satisfy the property given by the default definition:
59 -- > mconcat = foldr mappend mempty
61 monoid_3 :: (Eq a, Data.Monoid.Monoid a) => [a] -> Bool
62 monoid_3 xs = mconcat xs == foldr mappend mempty xs
65 -- | First 'Foldable' law
67 -- > Foldable.fold = Foldable.foldr mappend mempty
69 foldable_1 :: (Foldable.Foldable t, Monoid m, Eq m) => t m -> Bool
70 foldable_1 x = Foldable.fold x == Foldable.foldr mappend mempty x
72 -- | Second 'Foldable' law
74 -- > foldr f z t = appEndo (foldMap (Endo . f) t) z
76 foldable_2 :: (Foldable.Foldable t, Eq b)
77 => (a -> b -> b) -> b -> t a -> Bool
78 foldable_2 f z t = Foldable.foldr f z t
79 == appEndo (Foldable.foldMap (Endo . f) t) z