1 % Cadabra notebook version 1.1
2 \documentclass[11pt]{article}
3 \usepackage[textwidth=460pt, textheight=660pt]{geometry}
4 \usepackage[usenames]{color}
6 \usepackage[parfill]{parskip}
9 \def\specialcolon{\mathrel{\mathop{:}}\hspace{-.5em}}
10 \renewcommand{\bar}[1]{\overline{#1}}
12 % Begin TeX cell closed
13 {\large\bfseries Proof of the higher-derivative identity in appendix A of {\tt hep-th/0111128}}
15 % Begin TeX cell closed
16 The declaration of the indices, Weyl tensor and covariant derivative:
18 {\color[named]{Blue}\begin{verbatim}
19 {i,j,m,n,k,p,q,l,r,r#}::Indices(vector).
20 C_{m n p q}::WeylTensor.
21 \nabla{#}::Derivative.
22 \nabla_{r}{ C_{m n p q} }::SatisfiesBianchi.
25 Assigning list property Indices to i, j, m, n, k, p, q, l, r, r#.
26 Assigning property WeylTensor to C.
27 Assigning property Derivative to \nabla.
28 Assigning property SatisfiesBianchi to \nabla.
30 % Begin TeX cell closed
31 The identity which we want to prove:
33 {\color[named]{Blue}\begin{verbatim}
34 Eij:=- C_{i m k l} C_{j p k q} C_{l p m q} + 1/4 C_{i m k l} C_{j m p q} C_{k l p q}
35 - 1/2 C_{i k j l} C_{k m p q} C_{l m p q}:
37 E:= C_{j m n k} C_{m p q n} C_{p j k q} + 1/2 C_{j k m n} C_{p q m n} C_{j k p q}:
39 exp:= \nabla_{i}{\nabla_{j}{ @(Eij) }} - 1/6 \nabla_{i}{\nabla_{i}{ @(E) }};
42 % \nabla_{i}{\nabla_{j}{( - C_{i m k l} C_{j p k q} C_{l p m q} + 1/4 C_{i m k l} C_{j m p q} C_{k l p q} - 1/2 C_{i k j l} C_{k m p q} C_{l m p q})}} - 1/6 \nabla_{i}{\nabla_{i}{(C_{j m n k} C_{m p q n} C_{p j k q} + 1/2 C_{j k m n} C_{p q m n} C_{j k p q})}};
44 \begin{dmath*}[compact, spread=2pt]
45 exp\specialcolon{}= \nabla_{i}{\nabla_{j}{( - C_{i m k l} C_{j p k q} C_{l p m q} + \frac{1}{4}\, C_{i m k l} C_{j m p q} C_{k l p q} - \frac{1}{2}\, C_{i k j l} C_{k m p q} C_{l m p q})}} - \frac{1}{6}\, \nabla_{i}{\nabla_{i}{(C_{j m n k} C_{m p q n} C_{p j k q} + \frac{1}{2}\, C_{j k m n} C_{p q m n} C_{j k p q})}};
47 % Begin TeX cell closed
48 First apply the product rule to write out the derivatives,
50 {\color[named]{Blue}\begin{verbatim}
51 @distribute!(%): @prodrule!(%):
52 @distribute!(%): @prodrule!(%):
55 @prodsort!(%): @canonicalise!(%): @rename_dummies!(%):
59 % C_{i j m n} C_{i k m p} \nabla_{q}{\nabla_{j}{C_{n k p q}}} - C_{i j m n} \nabla_{k}{C_{i p m q}} \nabla_{p}{C_{j q n k}} - 2 C_{i j m n} \nabla_{i}{C_{m k p q}} \nabla_{p}{C_{j k n q}} - C_{i j m n} \nabla_{k}{C_{i k m p}} \nabla_{q}{C_{j p n q}} + C_{i j m n} C_{i k m p} \nabla_{j}{\nabla_{q}{C_{n k p q}}} - 2 C_{i j m n} \nabla_{i}{C_{j k m p}} \nabla_{q}{C_{n k p q}} - C_{i j m n} C_{i k p q} \nabla_{m}{\nabla_{p}{C_{j q n k}}} - 1/4 C_{i j m n} C_{i j k p} \nabla_{q}{\nabla_{m}{C_{n q k p}}} + 1/4 C_{i j m n} \nabla_{k}{C_{i j p q}} \nabla_{p}{C_{m n k q}} - 1/2 C_{i j m n} \nabla_{i}{C_{j k p q}} \nabla_{k}{C_{m n p q}} - 1/4 C_{i j m n} \nabla_{k}{C_{i j k p}} \nabla_{q}{C_{m n p q}} - 1/4 C_{i j m n} C_{i j k p} \nabla_{m}{\nabla_{q}{C_{n q k p}}} - 1/2 C_{i j m n} \nabla_{i}{C_{m n k p}} \nabla_{q}{C_{j q k p}} + 1/4 C_{i j m n} C_{i k p q} \nabla_{j}{\nabla_{k}{C_{m n p q}}} - 1/2 C_{i j m n} C_{i j m k} \nabla_{p}{\nabla_{q}{C_{n p k q}}} + C_{i j m n} \nabla_{k}{C_{i j m p}} \nabla_{q}{C_{n q k p}} - C_{i j m n} \nabla_{k}{C_{i j m p}} \nabla_{q}{C_{n k p q}} + 1/2 C_{i j m n} C_{i k p q} \nabla_{m}{\nabla_{j}{C_{n k p q}}} + 1/2 C_{i j m n} \nabla_{i}{C_{m k p q}} \nabla_{n}{C_{j k p q}} - 1/2 C_{i j m n} \nabla_{i}{C_{j k p q}} \nabla_{m}{C_{n k p q}} + 1/2 C_{i j m n} C_{i k p q} \nabla_{j}{\nabla_{m}{C_{n k p q}}} + 1/2 C_{i j m n} C_{i k m p} \nabla_{q}{\nabla_{q}{C_{j k n p}}} + C_{i j m n} \nabla_{k}{C_{i p m q}} \nabla_{k}{C_{j p n q}} - 1/4 C_{i j m n} C_{i j k p} \nabla_{q}{\nabla_{q}{C_{m n k p}}} - 1/2 C_{i j m n} \nabla_{k}{C_{i j p q}} \nabla_{k}{C_{m n p q}};
61 \begin{dmath*}[compact, spread=2pt]
62 exp\specialcolon{}= C_{i j m n} C_{i k m p} \nabla_{q}{\nabla_{j}{C_{n k p q}}} - C_{i j m n} \nabla_{k}{C_{i p m q}} \nabla_{p}{C_{j q n k}} - 2\, C_{i j m n} \nabla_{i}{C_{m k p q}} \nabla_{p}{C_{j k n q}} - C_{i j m n} \nabla_{k}{C_{i k m p}} \nabla_{q}{C_{j p n q}} + C_{i j m n} C_{i k m p} \nabla_{j}{\nabla_{q}{C_{n k p q}}} - 2\, C_{i j m n} \nabla_{i}{C_{j k m p}} \nabla_{q}{C_{n k p q}} - C_{i j m n} C_{i k p q} \nabla_{m}{\nabla_{p}{C_{j q n k}}} - \frac{1}{4}\, C_{i j m n} C_{i j k p} \nabla_{q}{\nabla_{m}{C_{n q k p}}} + \frac{1}{4}\, C_{i j m n} \nabla_{k}{C_{i j p q}} \nabla_{p}{C_{m n k q}} - \frac{1}{2}\, C_{i j m n} \nabla_{i}{C_{j k p q}} \nabla_{k}{C_{m n p q}} - \frac{1}{4}\, C_{i j m n} \nabla_{k}{C_{i j k p}} \nabla_{q}{C_{m n p q}} - \frac{1}{4}\, C_{i j m n} C_{i j k p} \nabla_{m}{\nabla_{q}{C_{n q k p}}} - \frac{1}{2}\, C_{i j m n} \nabla_{i}{C_{m n k p}} \nabla_{q}{C_{j q k p}} + \frac{1}{4}\, C_{i j m n} C_{i k p q} \nabla_{j}{\nabla_{k}{C_{m n p q}}} - \frac{1}{2}\, C_{i j m n} C_{i j m k} \nabla_{p}{\nabla_{q}{C_{n p k q}}} + C_{i j m n} \nabla_{k}{C_{i j m p}} \nabla_{q}{C_{n q k p}} - C_{i j m n} \nabla_{k}{C_{i j m p}} \nabla_{q}{C_{n k p q}} + \frac{1}{2}\, C_{i j m n} C_{i k p q} \nabla_{m}{\nabla_{j}{C_{n k p q}}} + \frac{1}{2}\, C_{i j m n} \nabla_{i}{C_{m k p q}} \nabla_{n}{C_{j k p q}}%
63 - \frac{1}{2}\, C_{i j m n} \nabla_{i}{C_{j k p q}} \nabla_{m}{C_{n k p q}} + \frac{1}{2}\, C_{i j m n} C_{i k p q} \nabla_{j}{\nabla_{m}{C_{n k p q}}} + \frac{1}{2}\, C_{i j m n} C_{i k m p} \nabla_{q}{\nabla_{q}{C_{j k n p}}} + C_{i j m n} \nabla_{k}{C_{i p m q}} \nabla_{k}{C_{j p n q}} - \frac{1}{4}\, C_{i j m n} C_{i j k p} \nabla_{q}{\nabla_{q}{C_{m n k p}}} - \frac{1}{2}\, C_{i j m n} \nabla_{k}{C_{i j p q}} \nabla_{k}{C_{m n p q}};
65 % Begin TeX cell closed
66 Because the identity which we intend to prove is only supposed to hold
67 on Einstein spaces, we set the divergence of the Weyl tensor to zero,
69 {\color[named]{Blue}\begin{verbatim}
70 @substitute!(%)( \nabla_{i}{C_{k i l m}} -> 0, \nabla_{i}{C_{k m l i}} -> 0 );
73 % C_{i j m n} C_{i k m p} \nabla_{q}{\nabla_{j}{C_{n k p q}}} - C_{i j m n} \nabla_{k}{C_{i p m q}} \nabla_{p}{C_{j q n k}} - 2 C_{i j m n} \nabla_{i}{C_{m k p q}} \nabla_{p}{C_{j k n q}} - C_{i j m n} C_{i k p q} \nabla_{m}{\nabla_{p}{C_{j q n k}}} - 1/4 C_{i j m n} C_{i j k p} \nabla_{q}{\nabla_{m}{C_{n q k p}}} + 1/4 C_{i j m n} \nabla_{k}{C_{i j p q}} \nabla_{p}{C_{m n k q}} - 1/2 C_{i j m n} \nabla_{i}{C_{j k p q}} \nabla_{k}{C_{m n p q}} + 1/4 C_{i j m n} C_{i k p q} \nabla_{j}{\nabla_{k}{C_{m n p q}}} + 1/2 C_{i j m n} C_{i k p q} \nabla_{m}{\nabla_{j}{C_{n k p q}}} + 1/2 C_{i j m n} \nabla_{i}{C_{m k p q}} \nabla_{n}{C_{j k p q}} - 1/2 C_{i j m n} \nabla_{i}{C_{j k p q}} \nabla_{m}{C_{n k p q}} + 1/2 C_{i j m n} C_{i k p q} \nabla_{j}{\nabla_{m}{C_{n k p q}}} + 1/2 C_{i j m n} C_{i k m p} \nabla_{q}{\nabla_{q}{C_{j k n p}}} + C_{i j m n} \nabla_{k}{C_{i p m q}} \nabla_{k}{C_{j p n q}} - 1/4 C_{i j m n} C_{i j k p} \nabla_{q}{\nabla_{q}{C_{m n k p}}} - 1/2 C_{i j m n} \nabla_{k}{C_{i j p q}} \nabla_{k}{C_{m n p q}};
75 \begin{dmath*}[compact, spread=2pt]
76 exp\specialcolon{}= C_{i j m n} C_{i k m p} \nabla_{q}{\nabla_{j}{C_{n k p q}}} - C_{i j m n} \nabla_{k}{C_{i p m q}} \nabla_{p}{C_{j q n k}} - 2\, C_{i j m n} \nabla_{i}{C_{m k p q}} \nabla_{p}{C_{j k n q}} - C_{i j m n} C_{i k p q} \nabla_{m}{\nabla_{p}{C_{j q n k}}} - \frac{1}{4}\, C_{i j m n} C_{i j k p} \nabla_{q}{\nabla_{m}{C_{n q k p}}} + \frac{1}{4}\, C_{i j m n} \nabla_{k}{C_{i j p q}} \nabla_{p}{C_{m n k q}} - \frac{1}{2}\, C_{i j m n} \nabla_{i}{C_{j k p q}} \nabla_{k}{C_{m n p q}} + \frac{1}{4}\, C_{i j m n} C_{i k p q} \nabla_{j}{\nabla_{k}{C_{m n p q}}} + \frac{1}{2}\, C_{i j m n} C_{i k p q} \nabla_{m}{\nabla_{j}{C_{n k p q}}} + \frac{1}{2}\, C_{i j m n} \nabla_{i}{C_{m k p q}} \nabla_{n}{C_{j k p q}} - \frac{1}{2}\, C_{i j m n} \nabla_{i}{C_{j k p q}} \nabla_{m}{C_{n k p q}} + \frac{1}{2}\, C_{i j m n} C_{i k p q} \nabla_{j}{\nabla_{m}{C_{n k p q}}} + \frac{1}{2}\, C_{i j m n} C_{i k m p} \nabla_{q}{\nabla_{q}{C_{j k n p}}} + C_{i j m n} \nabla_{k}{C_{i p m q}} \nabla_{k}{C_{j p n q}} - \frac{1}{4}\, C_{i j m n} C_{i j k p} \nabla_{q}{\nabla_{q}{C_{m n k p}}} - \frac{1}{2}\, C_{i j m n} \nabla_{k}{C_{i j p q}} \nabla_{k}{C_{m n p q}};
78 % Begin TeX cell closed
79 This expression should vanish upon use of the Bianchi identity. By
80 expanding all tensors using their Young projectors, this becomes manifest,
82 {\color[named]{Blue}\begin{verbatim}
83 @young_project_tensor!3(%){ModuloMonoterm}:
93 \begin{dmath*}[compact, spread=2pt]
94 exp\specialcolon{}= 0;
96 % Begin TeX cell closed
97 This proves the identity.