Changes.
[cairo/gpu.git] / src / cairo-rectangle.c
blobb139624870eac178a9a56ca7a52f68c6c6a34278
1 /* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
2 /* cairo - a vector graphics library with display and print output
4 * Copyright © 2002 University of Southern California
5 * Copyright © 2005 Red Hat, Inc.
6 * Copyright © 2006 Red Hat, Inc.
8 * This library is free software; you can redistribute it and/or
9 * modify it either under the terms of the GNU Lesser General Public
10 * License version 2.1 as published by the Free Software Foundation
11 * (the "LGPL") or, at your option, under the terms of the Mozilla
12 * Public License Version 1.1 (the "MPL"). If you do not alter this
13 * notice, a recipient may use your version of this file under either
14 * the MPL or the LGPL.
16 * You should have received a copy of the LGPL along with this library
17 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * You should have received a copy of the MPL along with this library
20 * in the file COPYING-MPL-1.1
22 * The contents of this file are subject to the Mozilla Public License
23 * Version 1.1 (the "License"); you may not use this file except in
24 * compliance with the License. You may obtain a copy of the License at
25 * http://www.mozilla.org/MPL/
27 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
28 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
29 * the specific language governing rights and limitations.
31 * The Original Code is the cairo graphics library.
33 * The Initial Developer of the Original Code is University of Southern
34 * California.
36 * Contributor(s):
37 * Carl D. Worth <cworth@cworth.org>
40 #include "cairoint.h"
42 cairo_private void
43 _cairo_box_from_doubles (cairo_box_t *box,
44 double *x1, double *y1,
45 double *x2, double *y2)
47 box->p1.x = _cairo_fixed_from_double (*x1);
48 box->p1.y = _cairo_fixed_from_double (*y1);
49 box->p2.x = _cairo_fixed_from_double (*x2);
50 box->p2.y = _cairo_fixed_from_double (*y2);
53 cairo_private void
54 _cairo_box_to_doubles (const cairo_box_t *box,
55 double *x1, double *y1,
56 double *x2, double *y2)
58 *x1 = _cairo_fixed_to_double (box->p1.x);
59 *y1 = _cairo_fixed_to_double (box->p1.y);
60 *x2 = _cairo_fixed_to_double (box->p2.x);
61 *y2 = _cairo_fixed_to_double (box->p2.y);
64 void
65 _cairo_box_from_rectangle (cairo_box_t *box,
66 const cairo_rectangle_int_t *rect)
68 box->p1.x = _cairo_fixed_from_int (rect->x);
69 box->p1.y = _cairo_fixed_from_int (rect->y);
70 box->p2.x = _cairo_fixed_from_int (rect->x + rect->width);
71 box->p2.y = _cairo_fixed_from_int (rect->y + rect->height);
74 /* XXX We currently have a confusing mix of boxes and rectangles as
75 * exemplified by this function. A #cairo_box_t is a rectangular area
76 * represented by the coordinates of the upper left and lower right
77 * corners, expressed in fixed point numbers. A #cairo_rectangle_int_t is
78 * also a rectangular area, but represented by the upper left corner
79 * and the width and the height, as integer numbers.
81 * This function converts a #cairo_box_t to a #cairo_rectangle_int_t by
82 * increasing the area to the nearest integer coordinates. We should
83 * standardize on #cairo_rectangle_fixed_t and #cairo_rectangle_int_t, and
84 * this function could be renamed to the more reasonable
85 * _cairo_rectangle_fixed_round.
88 void
89 _cairo_box_round_to_rectangle (const cairo_box_t *box,
90 cairo_rectangle_int_t *rectangle)
92 rectangle->x = _cairo_fixed_integer_floor (box->p1.x);
93 rectangle->y = _cairo_fixed_integer_floor (box->p1.y);
94 rectangle->width = _cairo_fixed_integer_ceil (box->p2.x) - rectangle->x;
95 rectangle->height = _cairo_fixed_integer_ceil (box->p2.y) - rectangle->y;
98 cairo_bool_t
99 _cairo_rectangle_intersect (cairo_rectangle_int_t *dst,
100 const cairo_rectangle_int_t *src)
102 int x1, y1, x2, y2;
104 x1 = MAX (dst->x, src->x);
105 y1 = MAX (dst->y, src->y);
106 /* Beware the unsigned promotion, fortunately we have bits to spare
107 * as (CAIRO_RECT_INT_MAX - CAIRO_RECT_INT_MIN) < UINT_MAX
109 x2 = MIN (dst->x + (int) dst->width, src->x + (int) src->width);
110 y2 = MIN (dst->y + (int) dst->height, src->y + (int) src->height);
112 if (x1 >= x2 || y1 >= y2) {
113 dst->x = 0;
114 dst->y = 0;
115 dst->width = 0;
116 dst->height = 0;
118 return FALSE;
119 } else {
120 dst->x = x1;
121 dst->y = y1;
122 dst->width = x2 - x1;
123 dst->height = y2 - y1;
125 return TRUE;
129 #define P1x (line->p1.x)
130 #define P1y (line->p1.y)
131 #define P2x (line->p2.x)
132 #define P2y (line->p2.y)
133 #define B1x (box->p1.x)
134 #define B1y (box->p1.y)
135 #define B2x (box->p2.x)
136 #define B2y (box->p2.y)
139 * Check whether any part of line intersects box. This function essentially
140 * computes whether the ray starting at line->p1 in the direction of line->p2
141 * intersects the box before it reaches p2. Normally, this is done
142 * by dividing by the lengths of the line projected onto each axis. Because
143 * we're in fixed point, this function does a bit more work to avoid having to
144 * do the division -- we don't care about the actual intersection point, so
145 * it's of no interest to us.
148 cairo_bool_t
149 _cairo_box_intersects_line_segment (cairo_box_t *box, cairo_line_t *line)
151 cairo_fixed_t t1=0, t2=0, t3=0, t4=0;
152 cairo_int64_t t1y, t2y, t3x, t4x;
154 cairo_fixed_t xlen, ylen;
156 if (_cairo_box_contains_point (box, &line->p1) ||
157 _cairo_box_contains_point (box, &line->p2))
158 return TRUE;
160 xlen = P2x - P1x;
161 ylen = P2y - P1y;
163 if (xlen) {
164 if (xlen > 0) {
165 t1 = B1x - P1x;
166 t2 = B2x - P1x;
167 } else {
168 t1 = P1x - B2x;
169 t2 = P1x - B1x;
170 xlen = - xlen;
173 if ((t1 < 0 || t1 > xlen) &&
174 (t2 < 0 || t2 > xlen))
175 return FALSE;
176 } else {
177 /* Fully vertical line -- check that X is in bounds */
178 if (P1x < B1x || P1x > B2x)
179 return FALSE;
182 if (ylen) {
183 if (ylen > 0) {
184 t3 = B1y - P1y;
185 t4 = B2y - P1y;
186 } else {
187 t3 = P1y - B2y;
188 t4 = P1y - B1y;
189 ylen = - ylen;
192 if ((t3 < 0 || t3 > ylen) &&
193 (t4 < 0 || t4 > ylen))
194 return FALSE;
195 } else {
196 /* Fully horizontal line -- check Y */
197 if (P1y < B1y || P1y > B2y)
198 return FALSE;
201 /* If we had a horizontal or vertical line, then it's already been checked */
202 if (P1x == P2x || P1y == P2y)
203 return TRUE;
205 /* Check overlap. Note that t1 < t2 and t3 < t4 here. */
206 t1y = _cairo_int32x32_64_mul (t1, ylen);
207 t2y = _cairo_int32x32_64_mul (t2, ylen);
208 t3x = _cairo_int32x32_64_mul (t3, xlen);
209 t4x = _cairo_int32x32_64_mul (t4, xlen);
211 if (_cairo_int64_lt(t1y, t4x) &&
212 _cairo_int64_lt(t3x, t2y))
213 return TRUE;
215 return FALSE;
218 cairo_bool_t
219 _cairo_box_contains_point (cairo_box_t *box, const cairo_point_t *point)
221 if (point->x < box->p1.x || point->x > box->p2.x ||
222 point->y < box->p1.y || point->y > box->p2.y)
223 return FALSE;
224 return TRUE;
227 void
228 _cairo_composite_rectangles_init(
229 cairo_composite_rectangles_t *rects,
230 int all_x,
231 int all_y,
232 int width,
233 int height)
235 rects->src.x = all_x;
236 rects->src.y = all_y;
237 rects->mask.x = all_x;
238 rects->mask.y = all_y;
239 rects->clip.x = all_x;
240 rects->clip.y = all_y;
241 rects->dst.x = all_x;
242 rects->dst.y = all_y;
244 rects->width = width;
245 rects->height = height;