Add stubs for Direct3D9 backend.
[cairo/gpu.git] / src / cairo-arc.c
blob2b368099ecdad69589280af6db26c1fd01a7a4b3
1 /* cairo - a vector graphics library with display and print output
3 * Copyright © 2002 University of Southern California
5 * This library is free software; you can redistribute it and/or
6 * modify it either under the terms of the GNU Lesser General Public
7 * License version 2.1 as published by the Free Software Foundation
8 * (the "LGPL") or, at your option, under the terms of the Mozilla
9 * Public License Version 1.1 (the "MPL"). If you do not alter this
10 * notice, a recipient may use your version of this file under either
11 * the MPL or the LGPL.
13 * You should have received a copy of the LGPL along with this library
14 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 * You should have received a copy of the MPL along with this library
17 * in the file COPYING-MPL-1.1
19 * The contents of this file are subject to the Mozilla Public License
20 * Version 1.1 (the "License"); you may not use this file except in
21 * compliance with the License. You may obtain a copy of the License at
22 * http://www.mozilla.org/MPL/
24 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
25 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
26 * the specific language governing rights and limitations.
28 * The Original Code is the cairo graphics library.
30 * The Initial Developer of the Original Code is University of Southern
31 * California.
33 * Contributor(s):
34 * Carl D. Worth <cworth@cworth.org>
37 #include "cairoint.h"
39 #include "cairo-arc-private.h"
41 /* Spline deviation from the circle in radius would be given by:
43 error = sqrt (x**2 + y**2) - 1
45 A simpler error function to work with is:
47 e = x**2 + y**2 - 1
49 From "Good approximation of circles by curvature-continuous Bezier
50 curves", Tor Dokken and Morten Daehlen, Computer Aided Geometric
51 Design 8 (1990) 22-41, we learn:
53 abs (max(e)) = 4/27 * sin**6(angle/4) / cos**2(angle/4)
55 and
56 abs (error) =~ 1/2 * e
58 Of course, this error value applies only for the particular spline
59 approximation that is used in _cairo_gstate_arc_segment.
61 static double
62 _arc_error_normalized (double angle)
64 return 2.0/27.0 * pow (sin (angle / 4), 6) / pow (cos (angle / 4), 2);
67 static double
68 _arc_max_angle_for_tolerance_normalized (double tolerance)
70 double angle, error;
71 int i;
73 /* Use table lookup to reduce search time in most cases. */
74 struct {
75 double angle;
76 double error;
77 } table[] = {
78 { M_PI / 1.0, 0.0185185185185185036127 },
79 { M_PI / 2.0, 0.000272567143730179811158 },
80 { M_PI / 3.0, 2.38647043651461047433e-05 },
81 { M_PI / 4.0, 4.2455377443222443279e-06 },
82 { M_PI / 5.0, 1.11281001494389081528e-06 },
83 { M_PI / 6.0, 3.72662000942734705475e-07 },
84 { M_PI / 7.0, 1.47783685574284411325e-07 },
85 { M_PI / 8.0, 6.63240432022601149057e-08 },
86 { M_PI / 9.0, 3.2715520137536980553e-08 },
87 { M_PI / 10.0, 1.73863223499021216974e-08 },
88 { M_PI / 11.0, 9.81410988043554039085e-09 },
90 int table_size = ARRAY_LENGTH (table);
92 for (i = 0; i < table_size; i++)
93 if (table[i].error < tolerance)
94 return table[i].angle;
96 ++i;
97 do {
98 angle = M_PI / i++;
99 error = _arc_error_normalized (angle);
100 } while (error > tolerance);
102 return angle;
105 static int
106 _arc_segments_needed (double angle,
107 double radius,
108 cairo_matrix_t *ctm,
109 double tolerance)
111 double major_axis, max_angle;
113 /* the error is amplified by at most the length of the
114 * major axis of the circle; see cairo-pen.c for a more detailed analysis
115 * of this. */
116 major_axis = _cairo_matrix_transformed_circle_major_axis (ctm, radius);
117 max_angle = _arc_max_angle_for_tolerance_normalized (tolerance / major_axis);
119 return (int) ceil (angle / max_angle);
122 /* We want to draw a single spline approximating a circular arc radius
123 R from angle A to angle B. Since we want a symmetric spline that
124 matches the endpoints of the arc in position and slope, we know
125 that the spline control points must be:
127 (R * cos(A), R * sin(A))
128 (R * cos(A) - h * sin(A), R * sin(A) + h * cos (A))
129 (R * cos(B) + h * sin(B), R * sin(B) - h * cos (B))
130 (R * cos(B), R * sin(B))
132 for some value of h.
134 "Approximation of circular arcs by cubic poynomials", Michael
135 Goldapp, Computer Aided Geometric Design 8 (1991) 227-238, provides
136 various values of h along with error analysis for each.
138 From that paper, a very practical value of h is:
140 h = 4/3 * tan(angle/4)
142 This value does not give the spline with minimal error, but it does
143 provide a very good approximation, (6th-order convergence), and the
144 error expression is quite simple, (see the comment for
145 _arc_error_normalized).
147 static void
148 _cairo_arc_segment (cairo_t *cr,
149 double xc,
150 double yc,
151 double radius,
152 double angle_A,
153 double angle_B)
155 double r_sin_A, r_cos_A;
156 double r_sin_B, r_cos_B;
157 double h;
159 r_sin_A = radius * sin (angle_A);
160 r_cos_A = radius * cos (angle_A);
161 r_sin_B = radius * sin (angle_B);
162 r_cos_B = radius * cos (angle_B);
164 h = 4.0/3.0 * tan ((angle_B - angle_A) / 4.0);
166 cairo_curve_to (cr,
167 xc + r_cos_A - h * r_sin_A,
168 yc + r_sin_A + h * r_cos_A,
169 xc + r_cos_B + h * r_sin_B,
170 yc + r_sin_B - h * r_cos_B,
171 xc + r_cos_B,
172 yc + r_sin_B);
175 static void
176 _cairo_arc_in_direction (cairo_t *cr,
177 double xc,
178 double yc,
179 double radius,
180 double angle_min,
181 double angle_max,
182 cairo_direction_t dir)
184 if (cairo_status (cr))
185 return;
187 while (angle_max - angle_min > 4 * M_PI)
188 angle_max -= 2 * M_PI;
190 /* Recurse if drawing arc larger than pi */
191 if (angle_max - angle_min > M_PI) {
192 double angle_mid = angle_min + (angle_max - angle_min) / 2.0;
193 if (dir == CAIRO_DIRECTION_FORWARD) {
194 _cairo_arc_in_direction (cr, xc, yc, radius,
195 angle_min, angle_mid,
196 dir);
198 _cairo_arc_in_direction (cr, xc, yc, radius,
199 angle_mid, angle_max,
200 dir);
201 } else {
202 _cairo_arc_in_direction (cr, xc, yc, radius,
203 angle_mid, angle_max,
204 dir);
206 _cairo_arc_in_direction (cr, xc, yc, radius,
207 angle_min, angle_mid,
208 dir);
210 } else if (angle_max != angle_min) {
211 cairo_matrix_t ctm;
212 int i, segments;
213 double angle, angle_step;
215 cairo_get_matrix (cr, &ctm);
216 segments = _arc_segments_needed (angle_max - angle_min,
217 radius, &ctm,
218 cairo_get_tolerance (cr));
219 angle_step = (angle_max - angle_min) / (double) segments;
221 if (dir == CAIRO_DIRECTION_FORWARD) {
222 angle = angle_min;
223 } else {
224 angle = angle_max;
225 angle_step = - angle_step;
228 for (i = 0; i < segments; i++, angle += angle_step) {
229 _cairo_arc_segment (cr, xc, yc,
230 radius,
231 angle,
232 angle + angle_step);
238 * _cairo_arc_path
239 * @cr: a cairo context
240 * @xc: X position of the center of the arc
241 * @yc: Y position of the center of the arc
242 * @radius: the radius of the arc
243 * @angle1: the start angle, in radians
244 * @angle2: the end angle, in radians
246 * Compute a path for the given arc and append it onto the current
247 * path within @cr. The arc will be accurate within the current
248 * tolerance and given the current transformation.
250 void
251 _cairo_arc_path (cairo_t *cr,
252 double xc,
253 double yc,
254 double radius,
255 double angle1,
256 double angle2)
258 _cairo_arc_in_direction (cr, xc, yc,
259 radius,
260 angle1, angle2,
261 CAIRO_DIRECTION_FORWARD);
265 * _cairo_arc_path_negative:
266 * @xc: X position of the center of the arc
267 * @yc: Y position of the center of the arc
268 * @radius: the radius of the arc
269 * @angle1: the start angle, in radians
270 * @angle2: the end angle, in radians
271 * @ctm: the current transformation matrix
272 * @tolerance: the current tolerance value
273 * @path: the path onto which the arc will be appended
275 * Compute a path for the given arc (defined in the negative
276 * direction) and append it onto the current path within @cr. The arc
277 * will be accurate within the current tolerance and given the current
278 * transformation.
280 void
281 _cairo_arc_path_negative (cairo_t *cr,
282 double xc,
283 double yc,
284 double radius,
285 double angle1,
286 double angle2)
288 _cairo_arc_in_direction (cr, xc, yc,
289 radius,
290 angle2, angle1,
291 CAIRO_DIRECTION_REVERSE);