1 /* Calf DSP plugin pack
4 * Copyright (C) 2001-2010 Krzysztof Foltman, Markus Schmidt, Thor Harald Johansen
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General
17 * Public License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
19 * Boston, MA 02110-1301 USA
24 #include <calf/giface.h>
25 #include <calf/modules_tools.h>
26 #include <calf/modules_dev.h>
28 #include <calf/utils.h>
32 using namespace calf_plugins
;
34 #define SET_IF_CONNECTED(name) if (params[AM::param_##name] != NULL) *params[AM::param_##name] = name;
35 #define sinc(x) (!x) ? 1 : sin(M_PI * x)/(M_PI * x);
37 /**********************************************************************
38 * STEREO TOOLS by Markus Schmidt
39 **********************************************************************/
41 stereo_audio_module::stereo_audio_module() {
45 stereo_audio_module::~stereo_audio_module() {
48 void stereo_audio_module::activate() {
52 void stereo_audio_module::deactivate() {
56 void stereo_audio_module::params_changed() {
57 float slev
= 2 * *params
[param_slev
]; // stereo level ( -2 -> 2 )
58 float sbal
= 1 + *params
[param_sbal
]; // stereo balance ( 0 -> 2 )
59 float mlev
= 2 * *params
[param_mlev
]; // mono level ( -2 -> 2 )
60 float mpan
= 1 + *params
[param_mpan
]; // mono pan ( 0 -> 2 )
62 switch((int)*params
[param_mode
])
67 LL
= (mlev
* (2.f
- mpan
) + slev
* (2.f
- sbal
));
68 LR
= (mlev
* mpan
- slev
* sbal
);
69 RL
= (mlev
* (2.f
- mpan
) - slev
* (2.f
- sbal
));
70 RR
= (mlev
* mpan
+ slev
* sbal
);
74 LL
= (2.f
- mpan
) * (2.f
- sbal
);
75 LR
= mpan
* (2.f
- sbal
) * -1;
76 RL
= (2.f
- mpan
) * sbal
;
81 LL
= mlev
* (2.f
- sbal
);
83 RL
= slev
* (2.f
- sbal
);
84 RR
= slev
* sbal
* -1;
97 if(*params
[param_stereo_phase
] != _phase
) {
98 _phase
= *params
[param_stereo_phase
];
99 _phase_cos_coef
= cos(_phase
/ 180 * M_PI
);
100 _phase_sin_coef
= sin(_phase
/ 180 * M_PI
);
102 if(*params
[param_sc_level
] != _sc_level
) {
103 _sc_level
= *params
[param_sc_level
];
104 _inv_atan_shape
= 1.0 / atan(_sc_level
);
108 uint32_t stereo_audio_module::process(uint32_t offset
, uint32_t numsamples
, uint32_t inputs_mask
, uint32_t outputs_mask
) {
109 bool bypassed
= bypass
.update(*params
[param_bypass
] > 0.5f
, numsamples
);
110 uint32_t orig_offset
= offset
;
111 for(uint32_t i
= offset
; i
< offset
+ numsamples
; i
++) {
113 outs
[0][i
] = ins
[0][i
];
114 outs
[1][i
] = ins
[1][i
];
129 L
*= *params
[param_level_in
];
130 R
*= *params
[param_level_in
];
133 L
*= (1.f
- std::max(0.f
, *params
[param_balance_in
]));
134 R
*= (1.f
+ std::min(0.f
, *params
[param_balance_in
]));
136 // copy / flip / mono ...
137 switch((int)*params
[param_mode
])
171 if(*params
[param_softclip
]) {
174 // L = L > 0.63 ? ph * (0.63 + 0.36 * (1 - pow(MATH_E, (1.f / 3) * (0.63 + L * ph)))) : L;
176 // R = R > 0.63 ? ph * (0.63 + 0.36 * (1 - pow(MATH_E, (1.f / 3) * (0.63 + R * ph)))) : R;
177 R
= _inv_atan_shape
* atan(R
* _sc_level
);
178 L
= _inv_atan_shape
* atan(L
* _sc_level
);
186 L
*= (1 - floor(*params
[param_mute_l
] + 0.5));
187 R
*= (1 - floor(*params
[param_mute_r
] + 0.5));
190 L
*= (2 * (1 - floor(*params
[param_phase_l
] + 0.5))) - 1;
191 R
*= (2 * (1 - floor(*params
[param_phase_r
] + 0.5))) - 1;
201 int nbuf
= srate
* (fabs(*params
[param_delay
]) / 1000.f
);
203 if(*params
[param_delay
] > 0.f
) {
204 R
= buffer
[(pos
- (int)nbuf
+ 1 + buffer_size
) % buffer_size
];
205 } else if (*params
[param_delay
] < 0.f
) {
206 L
= buffer
[(pos
- (int)nbuf
+ buffer_size
) % buffer_size
];
210 float _sb
= *params
[param_stereo_base
];
211 if(_sb
< 0) _sb
*= 0.5;
213 float __l
= L
+ _sb
* L
- _sb
* R
;
214 float __r
= R
+ _sb
* R
- _sb
* L
;
220 __l
= L
* _phase_cos_coef
- R
* _phase_sin_coef
;
221 __r
= L
* _phase_sin_coef
+ R
* _phase_cos_coef
;
226 pos
= (pos
+ 2) % buffer_size
;
229 L
*= (1.f
- std::max(0.f
, *params
[param_balance_out
]));
230 R
*= (1.f
+ std::min(0.f
, *params
[param_balance_out
]));
233 L
*= *params
[param_level_out
];
234 R
*= *params
[param_level_out
];
244 if(fabs(L
) > 0.001 and fabs(R
) > 0.001) {
245 meter_phase
= fabs(fabs(L
+R
) > 0.000000001 ? sin(fabs((L
-R
)/(L
+R
))) : 0.f
);
250 float values
[] = {meter_inL
, meter_inR
, meter_outL
, meter_outR
};
251 meters
.process(values
);
254 bypass
.crossfade(ins
, outs
, 2, orig_offset
, numsamples
);
255 meters
.fall(numsamples
);
259 void stereo_audio_module::set_sample_rate(uint32_t sr
)
263 buffer_size
= (int)(srate
* 0.05 * 2.f
); // buffer size attack rate multiplied by 2 channels
264 buffer
= (float*) calloc(buffer_size
, sizeof(float));
266 int meter
[] = {param_meter_inL
, param_meter_inR
, param_meter_outL
, param_meter_outR
};
267 int clip
[] = {param_clip_inL
, param_clip_inR
, param_clip_outL
, param_clip_outR
};
268 meters
.init(params
, meter
, clip
, 4, sr
);
271 /**********************************************************************
272 * MONO INPUT by Markus Schmidt
273 **********************************************************************/
275 mono_audio_module::mono_audio_module() {
282 mono_audio_module::~mono_audio_module() {
285 void mono_audio_module::activate() {
289 void mono_audio_module::deactivate() {
293 void mono_audio_module::params_changed() {
294 if(*params
[param_sc_level
] != _sc_level
) {
295 _sc_level
= *params
[param_sc_level
];
296 _inv_atan_shape
= 1.0 / atan(_sc_level
);
298 if(*params
[param_stereo_phase
] != _phase
) {
299 _phase
= *params
[param_stereo_phase
];
300 _phase_cos_coef
= cos(_phase
/ 180 * M_PI
);
301 _phase_sin_coef
= sin(_phase
/ 180 * M_PI
);
305 uint32_t mono_audio_module::process(uint32_t offset
, uint32_t numsamples
, uint32_t inputs_mask
, uint32_t outputs_mask
) {
306 bool bypassed
= bypass
.update(*params
[param_bypass
] > 0.5f
, numsamples
);
307 uint32_t orig_offset
= offset
;
308 for(uint32_t i
= offset
; i
< offset
+ numsamples
; i
++) {
310 outs
[0][i
] = ins
[0][i
];
311 outs
[1][i
] = ins
[0][i
];
323 L
*= *params
[param_level_in
];
326 if(*params
[param_softclip
]) {
327 //int ph = L / fabs(L);
328 //L = L > 0.63 ? ph * (0.63 + 0.36 * (1 - pow(MATH_E, (1.f / 3) * (0.63 + L * ph)))) : L;
329 L
= _inv_atan_shape
* atan(L
* _sc_level
);
338 L
*= (1 - floor(*params
[param_mute_l
] + 0.5));
339 R
*= (1 - floor(*params
[param_mute_r
] + 0.5));
342 L
*= (2 * (1 - floor(*params
[param_phase_l
] + 0.5))) - 1;
343 R
*= (2 * (1 - floor(*params
[param_phase_r
] + 0.5))) - 1;
349 int nbuf
= srate
* (fabs(*params
[param_delay
]) / 1000.f
);
351 if(*params
[param_delay
] > 0.f
) {
352 R
= buffer
[(pos
- (int)nbuf
+ 1 + buffer_size
) % buffer_size
];
353 } else if (*params
[param_delay
] < 0.f
) {
354 L
= buffer
[(pos
- (int)nbuf
+ buffer_size
) % buffer_size
];
358 float _sb
= *params
[param_stereo_base
];
359 if(_sb
< 0) _sb
*= 0.5;
361 float __l
= L
+_sb
* L
- _sb
* R
;
362 float __r
= R
+ _sb
* R
- _sb
* L
;
368 __l
= L
* _phase_cos_coef
- R
* _phase_sin_coef
;
369 __r
= L
* _phase_sin_coef
+ R
* _phase_cos_coef
;
374 pos
= (pos
+ 2) % buffer_size
;
377 L
*= (1.f
- std::max(0.f
, *params
[param_balance_out
]));
378 R
*= (1.f
+ std::min(0.f
, *params
[param_balance_out
]));
381 L
*= *params
[param_level_out
];
382 R
*= *params
[param_level_out
];
391 float values
[] = {meter_in
, meter_outL
, meter_outR
};
392 meters
.process(values
);
395 bypass
.crossfade(ins
, outs
, 2, orig_offset
, numsamples
);
396 meters
.fall(numsamples
);
400 void mono_audio_module::set_sample_rate(uint32_t sr
)
404 buffer_size
= (int)srate
* 0.05 * 2; // delay buffer size multiplied by 2 channels
405 buffer
= (float*) calloc(buffer_size
, sizeof(float));
407 int meter
[] = {param_meter_in
, param_meter_outL
, param_meter_outR
};
408 int clip
[] = {param_clip_in
, param_clip_outL
, param_clip_outR
};
409 meters
.init(params
, meter
, clip
, 3, sr
);
412 /**********************************************************************
413 * ANALYZER by Markus Schmidt and Christian Holschuh
414 **********************************************************************/
416 analyzer_audio_module::analyzer_audio_module() {
426 phase_buffer
= (float*) calloc(max_phase_buffer_size
, sizeof(float));
428 analyzer_audio_module::~analyzer_audio_module() {
431 void analyzer_audio_module::activate() {
435 void analyzer_audio_module::deactivate() {
439 void analyzer_audio_module::params_changed() {
440 float resolution
, offset
;
441 switch((int)*params
[param_analyzer_mode
]) {
448 resolution
= pow(64, *params
[param_analyzer_level
]);
452 // we want to draw Stereo Image
453 resolution
= pow(64, *params
[param_analyzer_level
] * 1.75);
457 // We want to draw Stereo Difference
458 offset
= *params
[param_analyzer_level
] > 1
459 ? 1 + (*params
[param_analyzer_level
] - 1) / 4
460 : *params
[param_analyzer_level
];
461 resolution
= pow(64, 2 * offset
);
465 _analyzer
.set_params(
468 *params
[param_analyzer_accuracy
],
469 *params
[param_analyzer_hold
],
470 *params
[param_analyzer_smoothing
],
471 *params
[param_analyzer_mode
],
472 *params
[param_analyzer_scale
],
473 *params
[param_analyzer_post
],
474 *params
[param_analyzer_speed
],
475 *params
[param_analyzer_windowing
],
476 *params
[param_analyzer_view
],
477 *params
[param_analyzer_freeze
]
481 uint32_t analyzer_audio_module::process(uint32_t offset
, uint32_t numsamples
, uint32_t inputs_mask
, uint32_t outputs_mask
) {
482 for(uint32_t i
= offset
; i
< offset
+ numsamples
; i
++) {
483 // let meters fall a bit
484 clip_L
-= std::min(clip_L
, numsamples
);
485 clip_R
-= std::min(clip_R
, numsamples
);
493 if(L
> 1.f
) clip_L
= srate
>> 3;
494 if(R
> 1.f
) clip_R
= srate
>> 3;
497 //the goniometer tries to show the signal in maximum
498 //size. therefor an envelope with fast attack and slow
499 //release is calculated with the max value of left and right.
500 float lemax
= fabs(L
) > fabs(R
) ? fabs(L
) : fabs(R
);
501 attack_coef
= exp(log(0.01)/(0.01 * srate
* 0.001));
502 release_coef
= exp(log(0.01)/(2000 * srate
* 0.001));
503 if( lemax
> envelope
)
504 envelope
= lemax
; //attack_coef * (envelope - lemax) + lemax;
506 envelope
= release_coef
* (envelope
- lemax
) + lemax
;
508 //use the envelope to bring biggest signal to 1. the biggest
509 //enlargement of the signal is 4.
511 phase_buffer
[ppos
] = L
/ std::max(0.25f
, (envelope
));
512 phase_buffer
[ppos
+ 1] = R
/ std::max(0.25f
, (envelope
));
515 plength
= std::min(phase_buffer_size
, plength
+ 2);
517 ppos
%= (phase_buffer_size
- 2);
520 _analyzer
.process(L
, R
);
531 SET_IF_CONNECTED(clip_L
);
532 SET_IF_CONNECTED(clip_R
);
533 SET_IF_CONNECTED(meter_L
);
534 SET_IF_CONNECTED(meter_R
);
538 void analyzer_audio_module::set_sample_rate(uint32_t sr
)
541 phase_buffer_size
= srate
/ 30 * 2;
542 phase_buffer_size
-= phase_buffer_size
% 2;
543 phase_buffer_size
= std::min(phase_buffer_size
, (int)max_phase_buffer_size
);
544 _analyzer
.set_sample_rate(sr
);
547 bool analyzer_audio_module::get_phase_graph(float ** _buffer
, int *_length
, int * _mode
, bool * _use_fade
, float * _fade
, int * _accuracy
, bool * _display
) const {
548 *_buffer
= &phase_buffer
[0];
550 *_use_fade
= *params
[param_gonio_use_fade
];
552 *_mode
= *params
[param_gonio_mode
];
553 *_accuracy
= *params
[param_gonio_accuracy
];
554 *_display
= *params
[param_gonio_display
];
558 bool analyzer_audio_module::get_graph(int index
, int subindex
, int phase
, float *data
, int points
, cairo_iface
*context
, int *mode
) const
560 if (*params
[param_analyzer_display
])
561 return _analyzer
.get_graph(subindex
, phase
, data
, points
, context
, mode
);
564 bool analyzer_audio_module::get_moving(int index
, int subindex
, int &direction
, float *data
, int x
, int y
, int &offset
, uint32_t &color
) const
566 if (*params
[param_analyzer_display
])
567 return _analyzer
.get_moving(subindex
, direction
, data
, x
, y
, offset
, color
);
570 bool analyzer_audio_module::get_gridline(int index
, int subindex
, int phase
, float &pos
, bool &vertical
, std::string
&legend
, cairo_iface
*context
) const
572 return _analyzer
.get_gridline(subindex
, phase
, pos
, vertical
, legend
, context
);
574 bool analyzer_audio_module::get_layers(int index
, int generation
, unsigned int &layers
) const
576 return _analyzer
.get_layers(generation
, layers
);