1 /* Calf DSP plugin pack
4 * Copyright (C) 2001-2010 Krzysztof Foltman, Markus Schmidt, Thor Harald Johansen
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General
17 * Public License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
19 * Boston, MA 02110-1301 USA
25 #include <calf/giface.h>
26 #include <calf/modules_tools.h>
27 #include <calf/modules_dev.h>
29 #include <calf/utils.h>
33 using namespace calf_plugins
;
35 #define SET_IF_CONNECTED(name) if (params[AM::param_##name] != NULL) *params[AM::param_##name] = name;
36 #define sinc(x) (!x) ? 1 : sin(M_PI * x)/(M_PI * x);
38 /**********************************************************************
39 * STEREO TOOLS by Markus Schmidt
40 **********************************************************************/
42 stereo_audio_module::stereo_audio_module() {
46 stereo_audio_module::~stereo_audio_module() {
49 void stereo_audio_module::activate() {
53 void stereo_audio_module::deactivate() {
57 void stereo_audio_module::params_changed() {
58 float slev
= 2 * *params
[param_slev
]; // stereo level ( -2 -> 2 )
59 float sbal
= 1 + *params
[param_sbal
]; // stereo balance ( 0 -> 2 )
60 float mlev
= 2 * *params
[param_mlev
]; // mono level ( -2 -> 2 )
61 float mpan
= 1 + *params
[param_mpan
]; // mono pan ( 0 -> 2 )
63 switch((int)*params
[param_mode
])
68 LL
= (mlev
* (2.f
- mpan
) + slev
* (2.f
- sbal
));
69 LR
= (mlev
* mpan
- slev
* sbal
);
70 RL
= (mlev
* (2.f
- mpan
) - slev
* (2.f
- sbal
));
71 RR
= (mlev
* mpan
+ slev
* sbal
);
75 LL
= (2.f
- mpan
) * (2.f
- sbal
);
76 LR
= mpan
* (2.f
- sbal
) * -1;
77 RL
= (2.f
- mpan
) * sbal
;
82 LL
= mlev
* (2.f
- sbal
);
84 RL
= slev
* (2.f
- sbal
);
85 RR
= slev
* sbal
* -1;
98 if(*params
[param_stereo_phase
] != _phase
) {
99 _phase
= *params
[param_stereo_phase
];
100 _phase_cos_coef
= cos(_phase
/ 180 * M_PI
);
101 _phase_sin_coef
= sin(_phase
/ 180 * M_PI
);
103 if(*params
[param_sc_level
] != _sc_level
) {
104 _sc_level
= *params
[param_sc_level
];
105 _inv_atan_shape
= 1.0 / atan(_sc_level
);
109 uint32_t stereo_audio_module::process(uint32_t offset
, uint32_t numsamples
, uint32_t inputs_mask
, uint32_t outputs_mask
) {
110 bool bypassed
= bypass
.update(*params
[param_bypass
] > 0.5f
, numsamples
);
111 uint32_t orig_offset
= offset
;
112 for(uint32_t i
= offset
; i
< offset
+ numsamples
; i
++) {
114 outs
[0][i
] = ins
[0][i
];
115 outs
[1][i
] = ins
[1][i
];
130 L
*= *params
[param_level_in
];
131 R
*= *params
[param_level_in
];
134 L
*= (1.f
- std::max(0.f
, *params
[param_balance_in
]));
135 R
*= (1.f
+ std::min(0.f
, *params
[param_balance_in
]));
137 // copy / flip / mono ...
138 switch((int)*params
[param_mode
])
172 if(*params
[param_softclip
]) {
175 // L = L > 0.63 ? ph * (0.63 + 0.36 * (1 - pow(MATH_E, (1.f / 3) * (0.63 + L * ph)))) : L;
177 // R = R > 0.63 ? ph * (0.63 + 0.36 * (1 - pow(MATH_E, (1.f / 3) * (0.63 + R * ph)))) : R;
178 R
= _inv_atan_shape
* atan(R
* _sc_level
);
179 L
= _inv_atan_shape
* atan(L
* _sc_level
);
187 L
*= (1 - floor(*params
[param_mute_l
] + 0.5));
188 R
*= (1 - floor(*params
[param_mute_r
] + 0.5));
191 L
*= (2 * (1 - floor(*params
[param_phase_l
] + 0.5))) - 1;
192 R
*= (2 * (1 - floor(*params
[param_phase_r
] + 0.5))) - 1;
202 int nbuf
= srate
* (fabs(*params
[param_delay
]) / 1000.f
);
204 if(*params
[param_delay
] > 0.f
) {
205 R
= buffer
[(pos
- (int)nbuf
+ 1 + buffer_size
) % buffer_size
];
206 } else if (*params
[param_delay
] < 0.f
) {
207 L
= buffer
[(pos
- (int)nbuf
+ buffer_size
) % buffer_size
];
211 float _sb
= *params
[param_stereo_base
];
212 if(_sb
< 0) _sb
*= 0.5;
214 float __l
= L
+_sb
* L
- _sb
* R
;
215 float __r
= R
+ _sb
* R
- _sb
* L
;
221 __l
= L
* _phase_cos_coef
- R
* _phase_sin_coef
;
222 __r
= L
* _phase_sin_coef
+ R
* _phase_cos_coef
;
227 pos
= (pos
+ 2) % buffer_size
;
230 L
*= (1.f
- std::max(0.f
, *params
[param_balance_out
]));
231 R
*= (1.f
+ std::min(0.f
, *params
[param_balance_out
]));
234 L
*= *params
[param_level_out
];
235 R
*= *params
[param_level_out
];
245 if(fabs(L
) > 0.001 and fabs(R
) > 0.001) {
246 meter_phase
= fabs(fabs(L
+R
) > 0.000000001 ? sin(fabs((L
-R
)/(L
+R
))) : 0.f
);
251 float values
[] = {meter_inL
, meter_inR
, meter_outL
, meter_outR
};
252 meters
.process(values
);
255 bypass
.crossfade(ins
, outs
, 2, orig_offset
, numsamples
);
256 meters
.fall(numsamples
);
260 void stereo_audio_module::set_sample_rate(uint32_t sr
)
264 buffer_size
= (int)(srate
* 0.05 * 2.f
); // buffer size attack rate multiplied by 2 channels
265 buffer
= (float*) calloc(buffer_size
, sizeof(float));
267 int meter
[] = {param_meter_inL
, param_meter_inR
, param_meter_outL
, param_meter_outR
};
268 int clip
[] = {param_clip_inL
, param_clip_inR
, param_clip_outL
, param_clip_outR
};
269 meters
.init(params
, meter
, clip
, 4, sr
);
272 /**********************************************************************
273 * MONO INPUT by Markus Schmidt
274 **********************************************************************/
276 mono_audio_module::mono_audio_module() {
283 mono_audio_module::~mono_audio_module() {
286 void mono_audio_module::activate() {
290 void mono_audio_module::deactivate() {
294 void mono_audio_module::params_changed() {
295 if(*params
[param_sc_level
] != _sc_level
) {
296 _sc_level
= *params
[param_sc_level
];
297 _inv_atan_shape
= 1.0 / atan(_sc_level
);
299 if(*params
[param_stereo_phase
] != _phase
) {
300 _phase
= *params
[param_stereo_phase
];
301 _phase_cos_coef
= cos(_phase
/ 180 * M_PI
);
302 _phase_sin_coef
= sin(_phase
/ 180 * M_PI
);
306 uint32_t mono_audio_module::process(uint32_t offset
, uint32_t numsamples
, uint32_t inputs_mask
, uint32_t outputs_mask
) {
307 bool bypassed
= bypass
.update(*params
[param_bypass
] > 0.5f
, numsamples
);
308 uint32_t orig_offset
= offset
;
309 for(uint32_t i
= offset
; i
< offset
+ numsamples
; i
++) {
311 outs
[0][i
] = ins
[0][i
];
312 outs
[1][i
] = ins
[0][i
];
324 L
*= *params
[param_level_in
];
327 if(*params
[param_softclip
]) {
328 //int ph = L / fabs(L);
329 //L = L > 0.63 ? ph * (0.63 + 0.36 * (1 - pow(MATH_E, (1.f / 3) * (0.63 + L * ph)))) : L;
330 L
= _inv_atan_shape
* atan(L
* _sc_level
);
339 L
*= (1 - floor(*params
[param_mute_l
] + 0.5));
340 R
*= (1 - floor(*params
[param_mute_r
] + 0.5));
343 L
*= (2 * (1 - floor(*params
[param_phase_l
] + 0.5))) - 1;
344 R
*= (2 * (1 - floor(*params
[param_phase_r
] + 0.5))) - 1;
350 int nbuf
= srate
* (fabs(*params
[param_delay
]) / 1000.f
);
352 if(*params
[param_delay
] > 0.f
) {
353 R
= buffer
[(pos
- (int)nbuf
+ 1 + buffer_size
) % buffer_size
];
354 } else if (*params
[param_delay
] < 0.f
) {
355 L
= buffer
[(pos
- (int)nbuf
+ buffer_size
) % buffer_size
];
359 float _sb
= *params
[param_stereo_base
];
360 if(_sb
< 0) _sb
*= 0.5;
362 float __l
= L
+_sb
* L
- _sb
* R
;
363 float __r
= R
+ _sb
* R
- _sb
* L
;
369 __l
= L
* _phase_cos_coef
- R
* _phase_sin_coef
;
370 __r
= L
* _phase_sin_coef
+ R
* _phase_cos_coef
;
375 pos
= (pos
+ 2) % buffer_size
;
378 L
*= (1.f
- std::max(0.f
, *params
[param_balance_out
]));
379 R
*= (1.f
+ std::min(0.f
, *params
[param_balance_out
]));
382 L
*= *params
[param_level_out
];
383 R
*= *params
[param_level_out
];
392 float values
[] = {meter_in
, meter_outL
, meter_outR
};
393 meters
.process(values
);
396 bypass
.crossfade(ins
, outs
, 2, orig_offset
, numsamples
);
397 meters
.fall(numsamples
);
401 void mono_audio_module::set_sample_rate(uint32_t sr
)
405 buffer_size
= (int)srate
* 0.05 * 2; // delay buffer size multiplied by 2 channels
406 buffer
= (float*) calloc(buffer_size
, sizeof(float));
408 int meter
[] = {param_meter_in
, param_meter_outL
, param_meter_outR
};
409 int clip
[] = {param_clip_in
, param_clip_outL
, param_clip_outR
};
410 meters
.init(params
, meter
, clip
, 3, sr
);
413 /**********************************************************************
414 * ANALYZER by Markus Schmidt and Christian Holschuh
415 **********************************************************************/
417 analyzer_audio_module::analyzer_audio_module() {
427 phase_buffer
= (float*) calloc(max_phase_buffer_size
, sizeof(float));
429 analyzer_audio_module::~analyzer_audio_module() {
432 void analyzer_audio_module::activate() {
436 void analyzer_audio_module::deactivate() {
440 void analyzer_audio_module::params_changed() {
441 float resolution
, offset
;
442 switch((int)*params
[param_analyzer_mode
]) {
449 resolution
= pow(64, *params
[param_analyzer_level
]);
453 // we want to draw Stereo Image
454 resolution
= pow(64, *params
[param_analyzer_level
] * 1.75);
458 // We want to draw Stereo Difference
459 offset
= *params
[param_analyzer_level
] > 1
460 ? 1 + (*params
[param_analyzer_level
] - 1) / 4
461 : *params
[param_analyzer_level
];
462 resolution
= pow(64, 2 * offset
);
466 _analyzer
.set_params(
469 *params
[param_analyzer_accuracy
],
470 *params
[param_analyzer_hold
],
471 *params
[param_analyzer_smoothing
],
472 *params
[param_analyzer_mode
],
473 *params
[param_analyzer_scale
],
474 *params
[param_analyzer_post
],
475 *params
[param_analyzer_speed
],
476 *params
[param_analyzer_windowing
],
477 *params
[param_analyzer_view
],
478 *params
[param_analyzer_freeze
]
482 uint32_t analyzer_audio_module::process(uint32_t offset
, uint32_t numsamples
, uint32_t inputs_mask
, uint32_t outputs_mask
) {
483 for(uint32_t i
= offset
; i
< offset
+ numsamples
; i
++) {
484 // let meters fall a bit
485 clip_L
-= std::min(clip_L
, numsamples
);
486 clip_R
-= std::min(clip_R
, numsamples
);
494 if(L
> 1.f
) clip_L
= srate
>> 3;
495 if(R
> 1.f
) clip_R
= srate
>> 3;
498 //the goniometer tries to show the signal in maximum
499 //size. therefor an envelope with fast attack and slow
500 //release is calculated with the max value of left and right.
501 float lemax
= fabs(L
) > fabs(R
) ? fabs(L
) : fabs(R
);
502 attack_coef
= exp(log(0.01)/(0.01 * srate
* 0.001));
503 release_coef
= exp(log(0.01)/(2000 * srate
* 0.001));
504 if( lemax
> envelope
)
505 envelope
= lemax
; //attack_coef * (envelope - lemax) + lemax;
507 envelope
= release_coef
* (envelope
- lemax
) + lemax
;
509 //use the envelope to bring biggest signal to 1. the biggest
510 //enlargement of the signal is 4.
512 phase_buffer
[ppos
] = L
/ std::max(0.25f
, (envelope
));
513 phase_buffer
[ppos
+ 1] = R
/ std::max(0.25f
, (envelope
));
516 plength
= std::min(phase_buffer_size
, plength
+ 2);
518 ppos
%= (phase_buffer_size
- 2);
521 _analyzer
.process(L
, R
);
532 SET_IF_CONNECTED(clip_L
);
533 SET_IF_CONNECTED(clip_R
);
534 SET_IF_CONNECTED(meter_L
);
535 SET_IF_CONNECTED(meter_R
);
539 void analyzer_audio_module::set_sample_rate(uint32_t sr
)
542 phase_buffer_size
= srate
/ 30 * 2;
543 phase_buffer_size
-= phase_buffer_size
% 2;
544 phase_buffer_size
= std::min(phase_buffer_size
, (int)max_phase_buffer_size
);
545 _analyzer
.set_sample_rate(sr
);
548 bool analyzer_audio_module::get_phase_graph(float ** _buffer
, int *_length
, int * _mode
, bool * _use_fade
, float * _fade
, int * _accuracy
, bool * _display
) const {
549 *_buffer
= &phase_buffer
[0];
551 *_use_fade
= *params
[param_gonio_use_fade
];
553 *_mode
= *params
[param_gonio_mode
];
554 *_accuracy
= *params
[param_gonio_accuracy
];
555 *_display
= *params
[param_gonio_display
];
559 bool analyzer_audio_module::get_graph(int index
, int subindex
, int phase
, float *data
, int points
, cairo_iface
*context
, int *mode
) const
561 if (*params
[param_analyzer_display
])
562 return _analyzer
.get_graph(subindex
, phase
, data
, points
, context
, mode
);
565 bool analyzer_audio_module::get_moving(int index
, int subindex
, int &direction
, float *data
, int x
, int y
, int &offset
, uint32_t &color
) const
567 if (*params
[param_analyzer_display
])
568 return _analyzer
.get_moving(subindex
, direction
, data
, x
, y
, offset
, color
);
571 bool analyzer_audio_module::get_gridline(int index
, int subindex
, int phase
, float &pos
, bool &vertical
, std::string
&legend
, cairo_iface
*context
) const
573 return _analyzer
.get_gridline(subindex
, phase
, pos
, vertical
, legend
, context
);
575 bool analyzer_audio_module::get_layers(int index
, int generation
, unsigned int &layers
) const
577 return _analyzer
.get_layers(generation
, layers
);