Stereotools: lr->ms->lr fixed
[calf.git] / src / modules_tools.cpp
blobf1f9e551d552898d9a6eefc9667b85c2f38bd49c
1 /* Calf DSP plugin pack
2 * Assorted plugins
4 * Copyright (C) 2001-2010 Krzysztof Foltman, Markus Schmidt, Thor Harald Johansen
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General
17 * Public License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
19 * Boston, MA 02110-1301 USA
21 #include <limits.h>
22 #include <memory.h>
23 #include <math.h>
24 #include <calf/giface.h>
25 #include <calf/modules_tools.h>
26 #include <calf/modules_dev.h>
27 #include <sys/time.h>
28 #include <calf/utils.h>
31 using namespace dsp;
32 using namespace calf_plugins;
34 #define SET_IF_CONNECTED(name) if (params[AM::param_##name] != NULL) *params[AM::param_##name] = name;
35 #define sinc(x) (!x) ? 1 : sin(M_PI * x)/(M_PI * x);
37 /**********************************************************************
38 * STEREO TOOLS by Markus Schmidt
39 **********************************************************************/
41 stereo_audio_module::stereo_audio_module() {
42 active = false;
43 _phase = -1;
45 stereo_audio_module::~stereo_audio_module() {
46 free(buffer);
48 void stereo_audio_module::activate() {
49 active = true;
52 void stereo_audio_module::deactivate() {
53 active = false;
56 void stereo_audio_module::params_changed() {
57 if(*params[param_stereo_phase] != _phase) {
58 _phase = *params[param_stereo_phase];
59 _phase_cos_coef = cos(_phase / 180 * M_PI);
60 _phase_sin_coef = sin(_phase / 180 * M_PI);
62 if(*params[param_sc_level] != _sc_level) {
63 _sc_level = *params[param_sc_level];
64 _inv_atan_shape = 1.0 / atan(_sc_level);
68 uint32_t stereo_audio_module::process(uint32_t offset, uint32_t numsamples, uint32_t inputs_mask, uint32_t outputs_mask) {
69 bool bypassed = bypass.update(*params[param_bypass] > 0.5f, numsamples);
70 uint32_t orig_offset = offset;
71 for(uint32_t i = offset; i < offset + numsamples; i++) {
72 if(bypassed) {
73 outs[0][i] = ins[0][i];
74 outs[1][i] = ins[1][i];
75 meter_inL = 0.f;
76 meter_inR = 0.f;
77 meter_outL = 0.f;
78 meter_outR = 0.f;
79 } else {
80 meter_inL = 0.f;
81 meter_inR = 0.f;
82 meter_outL = 0.f;
83 meter_outR = 0.f;
85 float L = ins[0][i];
86 float R = ins[1][i];
88 // levels in
89 L *= *params[param_level_in];
90 R *= *params[param_level_in];
92 // balance in
93 L *= (1.f - std::max(0.f, *params[param_balance_in]));
94 R *= (1.f + std::min(0.f, *params[param_balance_in]));
96 // softclip
97 if(*params[param_softclip]) {
98 R = _inv_atan_shape * atan(R * _sc_level);
99 L = _inv_atan_shape * atan(L * _sc_level);
102 // GUI stuff
103 meter_inL = L;
104 meter_inR = R;
106 // modes
107 float slev = *params[param_slev]; // slev - stereo level ( -2 -> 2 )
108 float sbal = 1 + *params[param_sbal]; // sbal - stereo balance ( 0 -> 2 )
109 float mlev = *params[param_mlev]; // mlev - mono level ( 0 -> 2 )
110 float mpan = (1 + *params[param_mpan]); // mpan - mono pan ( 0 -> 1 )
112 float l, r, m, s;
114 switch((int)*params[param_mode])
116 case 0:
117 // LR > LR
118 m = (L + R) * 0.5;
119 s = (L - R) * 0.5;
120 l = m * mlev * std::min(1.f, 2.f - mpan) + s * slev * std::min(1.f, 2.f - sbal);
121 r = m * mlev * std::min(1.f, mpan) - s * slev * std::min(1.f, sbal);
122 L = l;
123 R = r;
124 break;
125 case 1:
126 // LR > MS
127 l = L * std::min(1.f, 2.f - sbal);
128 r = R * std::min(1.f, sbal);
129 L = 0.5 * (l + r) * mlev;
130 R = 0.5 * (l - r) * slev;
131 break;
132 case 2:
133 // MS > LR
134 l = L * mlev * std::min(1.f, 2.f - mpan) + R * slev * std::min(1.f, 2.f - sbal);
135 r = L * mlev * std::min(1.f, mpan) - R * slev * std::min(1.f, sbal);
136 L = l;
137 R = r;
138 break;
139 case 3:
140 // LR > LL
141 R = L;
142 break;
143 case 4:
144 // LR > RR
145 L = R;
146 break;
147 case 5:
148 // LR > L+R
149 L = (L + R) / 2;
150 R = L;
151 break;
152 case 6:
153 // LR > RL
154 l = L;
155 L = R;
156 R = l;
157 break;
160 // mute
161 L *= (1 - floor(*params[param_mute_l] + 0.5));
162 R *= (1 - floor(*params[param_mute_r] + 0.5));
164 // phase
165 L *= (2 * (1 - floor(*params[param_phase_l] + 0.5))) - 1;
166 R *= (2 * (1 - floor(*params[param_phase_r] + 0.5))) - 1;
168 // delay
169 buffer[pos] = L;
170 buffer[pos + 1] = R;
172 int nbuf = srate * (fabs(*params[param_delay]) / 1000.f);
173 nbuf -= nbuf % 2;
174 if(*params[param_delay] > 0.f) {
175 R = buffer[(pos - (int)nbuf + 1 + buffer_size) % buffer_size];
176 } else if (*params[param_delay] < 0.f) {
177 L = buffer[(pos - (int)nbuf + buffer_size) % buffer_size];
180 // stereo base
181 float _sb = *params[param_stereo_base];
182 if(_sb < 0) _sb *= 0.5;
184 float __l = L + _sb * L - _sb * R;
185 float __r = R + _sb * R - _sb * L;
187 L = __l;
188 R = __r;
190 // stereo phase
191 __l = L * _phase_cos_coef - R * _phase_sin_coef;
192 __r = L * _phase_sin_coef + R * _phase_cos_coef;
194 L = __l;
195 R = __r;
197 pos = (pos + 2) % buffer_size;
199 // balance out
200 L *= (1.f - std::max(0.f, *params[param_balance_out]));
201 R *= (1.f + std::min(0.f, *params[param_balance_out]));
203 // level
204 L *= *params[param_level_out];
205 R *= *params[param_level_out];
207 //output
208 outs[0][i] = L;
209 outs[1][i] = R;
211 meter_outL = L;
212 meter_outR = R;
214 // phase meter
215 if(fabs(L) > 0.001 and fabs(R) > 0.001) {
216 meter_phase = fabs(fabs(L+R) > 0.000000001 ? sin(fabs((L-R)/(L+R))) : 0.f);
217 } else {
218 meter_phase = 0.f;
221 float values[] = {meter_inL, meter_inR, meter_outL, meter_outR};
222 meters.process(values);
224 if (!bypassed)
225 bypass.crossfade(ins, outs, 2, orig_offset, numsamples);
226 meters.fall(numsamples);
227 return outputs_mask;
230 void stereo_audio_module::set_sample_rate(uint32_t sr)
232 srate = sr;
233 // rebuild buffer
234 buffer_size = (int)(srate * 0.05 * 2.f); // buffer size attack rate multiplied by 2 channels
235 buffer = (float*) calloc(buffer_size, sizeof(float));
236 pos = 0;
237 int meter[] = {param_meter_inL, param_meter_inR, param_meter_outL, param_meter_outR};
238 int clip[] = {param_clip_inL, param_clip_inR, param_clip_outL, param_clip_outR};
239 meters.init(params, meter, clip, 4, sr);
242 /**********************************************************************
243 * MONO INPUT by Markus Schmidt
244 **********************************************************************/
246 mono_audio_module::mono_audio_module() {
247 active = false;
248 meter_in = 0.f;
249 meter_outL = 0.f;
250 meter_outR = 0.f;
251 _phase = -1.f;
253 mono_audio_module::~mono_audio_module() {
254 free(buffer);
256 void mono_audio_module::activate() {
257 active = true;
260 void mono_audio_module::deactivate() {
261 active = false;
264 void mono_audio_module::params_changed() {
265 if(*params[param_sc_level] != _sc_level) {
266 _sc_level = *params[param_sc_level];
267 _inv_atan_shape = 1.0 / atan(_sc_level);
269 if(*params[param_stereo_phase] != _phase) {
270 _phase = *params[param_stereo_phase];
271 _phase_cos_coef = cos(_phase / 180 * M_PI);
272 _phase_sin_coef = sin(_phase / 180 * M_PI);
276 uint32_t mono_audio_module::process(uint32_t offset, uint32_t numsamples, uint32_t inputs_mask, uint32_t outputs_mask) {
277 bool bypassed = bypass.update(*params[param_bypass] > 0.5f, numsamples);
278 uint32_t orig_offset = offset;
279 for(uint32_t i = offset; i < offset + numsamples; i++) {
280 if(bypassed) {
281 outs[0][i] = ins[0][i];
282 outs[1][i] = ins[0][i];
283 meter_in = 0.f;
284 meter_outL = 0.f;
285 meter_outR = 0.f;
286 } else {
287 meter_in = 0.f;
288 meter_outL = 0.f;
289 meter_outR = 0.f;
291 float L = ins[0][i];
293 // levels in
294 L *= *params[param_level_in];
296 // softclip
297 if(*params[param_softclip]) {
298 //int ph = L / fabs(L);
299 //L = L > 0.63 ? ph * (0.63 + 0.36 * (1 - pow(MATH_E, (1.f / 3) * (0.63 + L * ph)))) : L;
300 L = _inv_atan_shape * atan(L * _sc_level);
303 // GUI stuff
304 meter_in = L;
306 float R = L;
308 // mute
309 L *= (1 - floor(*params[param_mute_l] + 0.5));
310 R *= (1 - floor(*params[param_mute_r] + 0.5));
312 // phase
313 L *= (2 * (1 - floor(*params[param_phase_l] + 0.5))) - 1;
314 R *= (2 * (1 - floor(*params[param_phase_r] + 0.5))) - 1;
316 // delay
317 buffer[pos] = L;
318 buffer[pos + 1] = R;
320 int nbuf = srate * (fabs(*params[param_delay]) / 1000.f);
321 nbuf -= nbuf % 2;
322 if(*params[param_delay] > 0.f) {
323 R = buffer[(pos - (int)nbuf + 1 + buffer_size) % buffer_size];
324 } else if (*params[param_delay] < 0.f) {
325 L = buffer[(pos - (int)nbuf + buffer_size) % buffer_size];
328 // stereo base
329 float _sb = *params[param_stereo_base];
330 if(_sb < 0) _sb *= 0.5;
332 float __l = L +_sb * L - _sb * R;
333 float __r = R + _sb * R - _sb * L;
335 L = __l;
336 R = __r;
338 // stereo phase
339 __l = L * _phase_cos_coef - R * _phase_sin_coef;
340 __r = L * _phase_sin_coef + R * _phase_cos_coef;
342 L = __l;
343 R = __r;
345 pos = (pos + 2) % buffer_size;
347 // balance out
348 L *= (1.f - std::max(0.f, *params[param_balance_out]));
349 R *= (1.f + std::min(0.f, *params[param_balance_out]));
351 // level
352 L *= *params[param_level_out];
353 R *= *params[param_level_out];
355 //output
356 outs[0][i] = L;
357 outs[1][i] = R;
359 meter_outL = L;
360 meter_outR = R;
362 float values[] = {meter_in, meter_outL, meter_outR};
363 meters.process(values);
365 if (!bypassed)
366 bypass.crossfade(ins, outs, 2, orig_offset, numsamples);
367 meters.fall(numsamples);
368 return outputs_mask;
371 void mono_audio_module::set_sample_rate(uint32_t sr)
373 srate = sr;
374 // rebuild buffer
375 buffer_size = (int)srate * 0.05 * 2; // delay buffer size multiplied by 2 channels
376 buffer = (float*) calloc(buffer_size, sizeof(float));
377 pos = 0;
378 int meter[] = {param_meter_in, param_meter_outL, param_meter_outR};
379 int clip[] = {param_clip_in, param_clip_outL, param_clip_outR};
380 meters.init(params, meter, clip, 3, sr);
383 /**********************************************************************
384 * ANALYZER by Markus Schmidt and Christian Holschuh
385 **********************************************************************/
387 analyzer_audio_module::analyzer_audio_module() {
389 active = false;
390 clip_L = 0.f;
391 clip_R = 0.f;
392 meter_L = 0.f;
393 meter_R = 0.f;
394 envelope = 0.f;
395 ppos = 0;
396 plength = 0;
397 phase_buffer = (float*) calloc(max_phase_buffer_size, sizeof(float));
399 analyzer_audio_module::~analyzer_audio_module() {
400 free(phase_buffer);
402 void analyzer_audio_module::activate() {
403 active = true;
406 void analyzer_audio_module::deactivate() {
407 active = false;
410 void analyzer_audio_module::params_changed() {
411 float resolution, offset;
412 switch((int)*params[param_analyzer_mode]) {
413 case 0:
414 case 1:
415 case 2:
416 case 3:
417 default:
418 // analyzer
419 resolution = pow(64, *params[param_analyzer_level]);
420 offset = 0.75;
421 break;
422 case 4:
423 // we want to draw Stereo Image
424 resolution = pow(64, *params[param_analyzer_level] * 1.75);
425 offset = 1.f;
426 break;
427 case 5:
428 // We want to draw Stereo Difference
429 offset = *params[param_analyzer_level] > 1
430 ? 1 + (*params[param_analyzer_level] - 1) / 4
431 : *params[param_analyzer_level];
432 resolution = pow(64, 2 * offset);
433 break;
436 _analyzer.set_params(
437 resolution,
438 offset,
439 *params[param_analyzer_accuracy],
440 *params[param_analyzer_hold],
441 *params[param_analyzer_smoothing],
442 *params[param_analyzer_mode],
443 *params[param_analyzer_scale],
444 *params[param_analyzer_post],
445 *params[param_analyzer_speed],
446 *params[param_analyzer_windowing],
447 *params[param_analyzer_view],
448 *params[param_analyzer_freeze]
452 uint32_t analyzer_audio_module::process(uint32_t offset, uint32_t numsamples, uint32_t inputs_mask, uint32_t outputs_mask) {
453 for(uint32_t i = offset; i < offset + numsamples; i++) {
454 // let meters fall a bit
455 clip_L -= std::min(clip_L, numsamples);
456 clip_R -= std::min(clip_R, numsamples);
457 meter_L = 0.f;
458 meter_R = 0.f;
460 float L = ins[0][i];
461 float R = ins[1][i];
463 // GUI stuff
464 if(L > 1.f) clip_L = srate >> 3;
465 if(R > 1.f) clip_R = srate >> 3;
467 // goniometer
468 //the goniometer tries to show the signal in maximum
469 //size. therefor an envelope with fast attack and slow
470 //release is calculated with the max value of left and right.
471 float lemax = fabs(L) > fabs(R) ? fabs(L) : fabs(R);
472 attack_coef = exp(log(0.01)/(0.01 * srate * 0.001));
473 release_coef = exp(log(0.01)/(2000 * srate * 0.001));
474 if( lemax > envelope)
475 envelope = lemax; //attack_coef * (envelope - lemax) + lemax;
476 else
477 envelope = release_coef * (envelope - lemax) + lemax;
479 //use the envelope to bring biggest signal to 1. the biggest
480 //enlargement of the signal is 4.
482 phase_buffer[ppos] = L / std::max(0.25f , (envelope));
483 phase_buffer[ppos + 1] = R / std::max(0.25f , (envelope));
486 plength = std::min(phase_buffer_size, plength + 2);
487 ppos += 2;
488 ppos %= (phase_buffer_size - 2);
490 // analyzer
491 _analyzer.process(L, R);
493 // meter
494 meter_L = L;
495 meter_R = R;
497 //output
498 outs[0][i] = L;
499 outs[1][i] = R;
501 // draw meters
502 SET_IF_CONNECTED(clip_L);
503 SET_IF_CONNECTED(clip_R);
504 SET_IF_CONNECTED(meter_L);
505 SET_IF_CONNECTED(meter_R);
506 return outputs_mask;
509 void analyzer_audio_module::set_sample_rate(uint32_t sr)
511 srate = sr;
512 phase_buffer_size = srate / 30 * 2;
513 phase_buffer_size -= phase_buffer_size % 2;
514 phase_buffer_size = std::min(phase_buffer_size, (int)max_phase_buffer_size);
515 _analyzer.set_sample_rate(sr);
518 bool analyzer_audio_module::get_phase_graph(float ** _buffer, int *_length, int * _mode, bool * _use_fade, float * _fade, int * _accuracy, bool * _display) const {
519 *_buffer = &phase_buffer[0];
520 *_length = plength;
521 *_use_fade = *params[param_gonio_use_fade];
522 *_fade = 0.6;
523 *_mode = *params[param_gonio_mode];
524 *_accuracy = *params[param_gonio_accuracy];
525 *_display = *params[param_gonio_display];
526 return false;
529 bool analyzer_audio_module::get_graph(int index, int subindex, int phase, float *data, int points, cairo_iface *context, int *mode) const
531 if (*params[param_analyzer_display])
532 return _analyzer.get_graph(subindex, phase, data, points, context, mode);
533 return false;
535 bool analyzer_audio_module::get_moving(int index, int subindex, int &direction, float *data, int x, int y, int &offset, uint32_t &color) const
537 if (*params[param_analyzer_display])
538 return _analyzer.get_moving(subindex, direction, data, x, y, offset, color);
539 return false;
541 bool analyzer_audio_module::get_gridline(int index, int subindex, int phase, float &pos, bool &vertical, std::string &legend, cairo_iface *context) const
543 return _analyzer.get_gridline(subindex, phase, pos, vertical, legend, context);
545 bool analyzer_audio_module::get_layers(int index, int generation, unsigned int &layers) const
547 return _analyzer.get_layers(generation, layers);
552 /**********************************************************************
553 * WIDGETS TEST
554 **********************************************************************/
556 widgets_audio_module::widgets_audio_module() {
558 widgets_audio_module::~widgets_audio_module() {
561 void widgets_audio_module::params_changed() {
565 uint32_t widgets_audio_module::process(uint32_t offset, uint32_t numsamples, uint32_t inputs_mask, uint32_t outputs_mask) {
566 float meter_1, meter_2, meter_3, meter_4;
567 for(uint32_t i = offset; i < offset + numsamples; i++) {
568 meter_1 = 0.f;
569 meter_2 = 0.f;
570 meter_3 = 0.f;
571 meter_4 = 0.f;
573 //float L = ins[0][i];
574 //float R = ins[1][i];
575 float values[] = {meter_1, meter_2, meter_3, meter_4};
576 meters.process(values);
578 meters.fall(numsamples);
579 return outputs_mask;
582 void widgets_audio_module::set_sample_rate(uint32_t sr)
584 srate = sr;
585 int meter[] = {param_meter1, param_meter2, param_meter3, param_meter4};
586 int clip[] = {0, 0, 0, 0};
587 meters.init(params, meter, clip, 4, sr);