+ Flanger, Multichorus: use torbenh's drawing optimization
[calf.git] / src / calf / modules.h
blob6a1e26480040445dcd2145cfb4cc3bd8c016ab05
1 /* Calf DSP Library
2 * Example audio modules
4 * Copyright (C) 2001-2007 Krzysztof Foltman
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General
17 * Public License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place, Suite 330,
19 * Boston, MA 02111-1307, USA.
21 #ifndef __CALF_MODULES_H
22 #define __CALF_MODULES_H
24 #include <assert.h>
25 #include <limits.h>
26 #include "biquad.h"
27 #include "inertia.h"
28 #include "audio_fx.h"
29 #include "multichorus.h"
30 #include "giface.h"
31 #include "metadata.h"
32 #include "loudness.h"
33 #include "primitives.h"
35 namespace calf_plugins {
37 using namespace dsp;
39 struct ladspa_plugin_info;
41 #if 0
42 class amp_audio_module: public null_audio_module
44 public:
45 enum { in_count = 2, out_count = 2, param_count = 1, support_midi = false, require_midi = false, rt_capable = true };
46 float *ins[2];
47 float *outs[2];
48 float *params[1];
49 uint32_t srate;
50 static parameter_properties param_props[];
51 uint32_t process(uint32_t offset, uint32_t numsamples, uint32_t inputs_mask, uint32_t outputs_mask) {
52 if (!inputs_mask)
53 return 0;
54 float gain = *params[0];
55 numsamples += offset;
56 for (uint32_t i = offset; i < numsamples; i++) {
57 outs[0][i] = ins[0][i] * gain;
58 outs[1][i] = ins[1][i] * gain;
60 return inputs_mask;
63 #endif
65 class frequency_response_line_graph: public line_graph_iface
67 public:
68 bool get_gridline(int index, int subindex, float &pos, bool &vertical, std::string &legend, cairo_iface *context);
69 virtual int get_changed_offsets(int generation, int &subindex_graph, int &subindex_dot, int &subindex_gridline);
72 class flanger_audio_module: public audio_module<flanger_metadata>, public frequency_response_line_graph
74 public:
75 dsp::simple_flanger<float, 2048> left, right;
76 float *ins[in_count];
77 float *outs[out_count];
78 float *params[param_count];
79 uint32_t srate;
80 bool clear_reset;
81 float last_r_phase;
82 bool is_active;
83 public:
84 flanger_audio_module() {
85 is_active = false;
87 void set_sample_rate(uint32_t sr);
88 void params_changed() {
89 float dry = *params[par_dryamount];
90 float wet = *params[par_amount];
91 float rate = *params[par_rate]; // 0.01*pow(1000.0f,*params[par_rate]);
92 float min_delay = *params[par_delay] / 1000.0;
93 float mod_depth = *params[par_depth] / 1000.0;
94 float fb = *params[par_fb];
95 left.set_dry(dry); right.set_dry(dry);
96 left.set_wet(wet); right.set_wet(wet);
97 left.set_rate(rate); right.set_rate(rate);
98 left.set_min_delay(min_delay); right.set_min_delay(min_delay);
99 left.set_mod_depth(mod_depth); right.set_mod_depth(mod_depth);
100 left.set_fb(fb); right.set_fb(fb);
101 float r_phase = *params[par_stereo] * (1.f / 360.f);
102 clear_reset = false;
103 if (*params[par_reset] >= 0.5) {
104 clear_reset = true;
105 left.reset_phase(0.f);
106 right.reset_phase(r_phase);
107 } else {
108 if (fabs(r_phase - last_r_phase) > 0.0001f) {
109 right.phase = left.phase;
110 right.inc_phase(r_phase);
111 last_r_phase = r_phase;
115 void params_reset()
117 if (clear_reset) {
118 *params[par_reset] = 0.f;
119 clear_reset = false;
122 void activate();
123 void deactivate();
124 uint32_t process(uint32_t offset, uint32_t nsamples, uint32_t inputs_mask, uint32_t outputs_mask) {
125 left.process(outs[0] + offset, ins[0] + offset, nsamples);
126 right.process(outs[1] + offset, ins[1] + offset, nsamples);
127 return outputs_mask; // XXXKF allow some delay after input going blank
129 bool get_graph(int index, int subindex, float *data, int points, cairo_iface *context);
130 float freq_gain(int subindex, float freq, float srate);
133 class phaser_audio_module: public audio_module<phaser_metadata>, public frequency_response_line_graph
135 public:
136 float *ins[in_count];
137 float *outs[out_count];
138 float *params[param_count];
139 uint32_t srate;
140 bool clear_reset;
141 float last_r_phase;
142 dsp::simple_phaser<12> left, right;
143 bool is_active;
144 public:
145 phaser_audio_module() {
146 is_active = false;
148 void params_changed() {
149 float dry = *params[par_dryamount];
150 float wet = *params[par_amount];
151 float rate = *params[par_rate]; // 0.01*pow(1000.0f,*params[par_rate]);
152 float base_frq = *params[par_freq];
153 float mod_depth = *params[par_depth];
154 float fb = *params[par_fb];
155 int stages = (int)*params[par_stages];
156 left.set_dry(dry); right.set_dry(dry);
157 left.set_wet(wet); right.set_wet(wet);
158 left.set_rate(rate); right.set_rate(rate);
159 left.set_base_frq(base_frq); right.set_base_frq(base_frq);
160 left.set_mod_depth(mod_depth); right.set_mod_depth(mod_depth);
161 left.set_fb(fb); right.set_fb(fb);
162 left.set_stages(stages); right.set_stages(stages);
163 float r_phase = *params[par_stereo] * (1.f / 360.f);
164 clear_reset = false;
165 if (*params[par_reset] >= 0.5) {
166 clear_reset = true;
167 left.reset_phase(0.f);
168 right.reset_phase(r_phase);
169 } else {
170 if (fabs(r_phase - last_r_phase) > 0.0001f) {
171 right.phase = left.phase;
172 right.inc_phase(r_phase);
173 last_r_phase = r_phase;
177 void params_reset()
179 if (clear_reset) {
180 *params[par_reset] = 0.f;
181 clear_reset = false;
184 void activate();
185 void set_sample_rate(uint32_t sr);
186 void deactivate();
187 uint32_t process(uint32_t offset, uint32_t nsamples, uint32_t inputs_mask, uint32_t outputs_mask) {
188 left.process(outs[0] + offset, ins[0] + offset, nsamples);
189 right.process(outs[1] + offset, ins[1] + offset, nsamples);
190 return outputs_mask; // XXXKF allow some delay after input going blank
192 bool get_graph(int index, int subindex, float *data, int points, cairo_iface *context);
193 bool get_gridline(int index, int subindex, float &pos, bool &vertical, std::string &legend, cairo_iface *context);
194 float freq_gain(int subindex, float freq, float srate);
197 class reverb_audio_module: public audio_module<reverb_metadata>
199 public:
200 dsp::reverb<float> reverb;
201 dsp::simple_delay<16384, stereo_sample<float> > pre_delay;
202 dsp::onepole<float> left_lo, right_lo, left_hi, right_hi;
203 uint32_t srate;
204 gain_smoothing amount, dryamount;
205 int predelay_amt;
206 float *ins[in_count];
207 float *outs[out_count];
208 float *params[param_count];
210 void params_changed() {
211 //reverb.set_time(0.5*pow(8.0f, *params[par_decay]));
212 //reverb.set_cutoff(2000*pow(10.0f, *params[par_hfdamp]));
213 reverb.set_type_and_diffusion(fastf2i_drm(*params[par_roomsize]), *params[par_diffusion]);
214 reverb.set_time(*params[par_decay]);
215 reverb.set_cutoff(*params[par_hfdamp]);
216 amount.set_inertia(*params[par_amount]);
217 dryamount.set_inertia(*params[par_dry]);
218 left_lo.set_lp(dsp::clip(*params[par_treblecut], 20.f, (float)(srate * 0.49f)), srate);
219 left_hi.set_hp(dsp::clip(*params[par_basscut], 20.f, (float)(srate * 0.49f)), srate);
220 right_lo.copy_coeffs(left_lo);
221 right_hi.copy_coeffs(left_hi);
222 predelay_amt = (int) (srate * (*params[par_predelay]) * (1.0f / 1000.0f) + 1);
224 uint32_t process(uint32_t offset, uint32_t numsamples, uint32_t inputs_mask, uint32_t outputs_mask) {
225 numsamples += offset;
227 for (uint32_t i = offset; i < numsamples; i++) {
228 float dry = dryamount.get();
229 float wet = amount.get();
230 stereo_sample<float> s(ins[0][i], ins[1][i]);
231 stereo_sample<float> s2 = pre_delay.process(s, predelay_amt);
233 float rl = s2.left, rr = s2.right;
234 rl = left_lo.process(left_hi.process(rl));
235 rr = right_lo.process(right_hi.process(rr));
236 reverb.process(rl, rr);
237 outs[0][i] = dry*s.left + wet*rl;
238 outs[1][i] = dry*s.right + wet*rr;
240 reverb.extra_sanitize();
241 left_lo.sanitize();
242 left_hi.sanitize();
243 right_lo.sanitize();
244 right_hi.sanitize();
245 return outputs_mask;
247 void activate();
248 void set_sample_rate(uint32_t sr);
249 void deactivate();
252 class vintage_delay_audio_module: public audio_module<vintage_delay_metadata>
254 public:
255 // 1MB of delay memory per channel... uh, RAM is cheap
256 enum { MAX_DELAY = 262144, ADDR_MASK = MAX_DELAY - 1 };
257 float *ins[in_count];
258 float *outs[out_count];
259 float *params[param_count];
260 float buffers[2][MAX_DELAY];
261 int bufptr, deltime_l, deltime_r, mixmode, medium, old_medium;
262 gain_smoothing amt_left, amt_right, fb_left, fb_right;
263 float dry;
265 dsp::biquad_d2<float> biquad_left[2], biquad_right[2];
267 uint32_t srate;
269 vintage_delay_audio_module()
271 old_medium = -1;
274 void params_changed()
276 float unit = 60.0 * srate / (*params[par_bpm] * *params[par_divide]);
277 deltime_l = dsp::fastf2i_drm(unit * *params[par_time_l]);
278 deltime_r = dsp::fastf2i_drm(unit * *params[par_time_r]);
279 amt_left.set_inertia(*params[par_amount]); amt_right.set_inertia(*params[par_amount]);
280 float fb = *params[par_feedback];
281 dry = *params[par_dryamount];
282 mixmode = dsp::fastf2i_drm(*params[par_mixmode]);
283 medium = dsp::fastf2i_drm(*params[par_medium]);
284 if (mixmode == 0)
286 fb_left.set_inertia(fb);
287 fb_right.set_inertia(pow(fb, *params[par_time_r] / *params[par_time_l]));
288 } else {
289 fb_left.set_inertia(fb);
290 fb_right.set_inertia(fb);
292 if (medium != old_medium)
293 calc_filters();
295 void activate() {
296 bufptr = 0;
298 void deactivate() {
300 void set_sample_rate(uint32_t sr) {
301 srate = sr;
302 old_medium = -1;
303 amt_left.set_sample_rate(sr); amt_right.set_sample_rate(sr);
304 fb_left.set_sample_rate(sr); fb_right.set_sample_rate(sr);
305 params_changed();
307 void calc_filters()
309 // parameters are heavily influenced by gordonjcp and his tape delay unit
310 // although, don't blame him if it sounds bad - I've messed with them too :)
311 biquad_left[0].set_lp_rbj(6000, 0.707, srate);
312 biquad_left[1].set_bp_rbj(4500, 0.250, srate);
313 biquad_right[0].copy_coeffs(biquad_left[0]);
314 biquad_right[1].copy_coeffs(biquad_left[1]);
316 uint32_t process(uint32_t offset, uint32_t numsamples, uint32_t inputs_mask, uint32_t outputs_mask) {
317 uint32_t ostate = 3; // XXXKF optimize!
318 uint32_t end = offset + numsamples;
319 int v = mixmode ? 1 : 0;
320 int orig_bufptr = bufptr;
321 for(uint32_t i = offset; i < end; i++)
323 float in_left = buffers[v][(bufptr - deltime_l) & ADDR_MASK], in_right = buffers[1 - v][(bufptr - deltime_r) & ADDR_MASK], out_left, out_right, del_left, del_right;
324 dsp::sanitize(in_left), dsp::sanitize(in_right);
326 out_left = dry * ins[0][i] + in_left * amt_left.get();
327 out_right = dry * ins[1][i] + in_right * amt_right.get();
328 del_left = ins[0][i] + in_left * fb_left.get();
329 del_right = ins[1][i] + in_right * fb_right.get();
331 outs[0][i] = out_left; outs[1][i] = out_right; buffers[0][bufptr] = del_left; buffers[1][bufptr] = del_right;
332 bufptr = (bufptr + 1) & (MAX_DELAY - 1);
334 if (medium > 0) {
335 bufptr = orig_bufptr;
336 if (medium == 2)
338 for(uint32_t i = offset; i < end; i++)
340 buffers[0][bufptr] = biquad_left[0].process_lp(biquad_left[1].process(buffers[0][bufptr]));
341 buffers[1][bufptr] = biquad_right[0].process_lp(biquad_right[1].process(buffers[1][bufptr]));
342 bufptr = (bufptr + 1) & (MAX_DELAY - 1);
344 biquad_left[0].sanitize();biquad_right[0].sanitize();
345 } else {
346 for(uint32_t i = offset; i < end; i++)
348 buffers[0][bufptr] = biquad_left[1].process(buffers[0][bufptr]);
349 buffers[1][bufptr] = biquad_right[1].process(buffers[1][bufptr]);
350 bufptr = (bufptr + 1) & (MAX_DELAY - 1);
353 biquad_left[1].sanitize();biquad_right[1].sanitize();
356 return ostate;
360 class rotary_speaker_audio_module: public audio_module<rotary_speaker_metadata>
362 public:
363 float *ins[in_count];
364 float *outs[out_count];
365 float *params[param_count];
366 /// Current phases and phase deltas for bass and treble rotors
367 uint32_t phase_l, dphase_l, phase_h, dphase_h;
368 dsp::simple_delay<1024, float> delay;
369 dsp::biquad_d2<float> crossover1l, crossover1r, crossover2l, crossover2r;
370 dsp::simple_delay<8, float> phaseshift;
371 uint32_t srate;
372 int vibrato_mode;
373 /// Current CC1 (Modulation) value, normalized to [0, 1]
374 float mwhl_value;
375 /// Current CC64 (Hold) value, normalized to [0, 1]
376 float hold_value;
377 /// Current rotation speed for bass rotor - automatic mode
378 float aspeed_l;
379 /// Current rotation speed for treble rotor - automatic mode
380 float aspeed_h;
381 /// Desired speed (0=slow, 1=fast) - automatic mode
382 float dspeed;
383 /// Current rotation speed for bass rotor - manual mode
384 float maspeed_l;
385 /// Current rotation speed for treble rotor - manual mode
386 float maspeed_h;
388 rotary_speaker_audio_module();
389 void set_sample_rate(uint32_t sr);
390 void setup();
391 void activate();
392 void deactivate();
394 void params_changed() {
395 set_vibrato();
397 void set_vibrato()
399 vibrato_mode = fastf2i_drm(*params[par_speed]);
400 // manual vibrato - do not recalculate speeds as they're not used anyway
401 if (vibrato_mode == 5)
402 return;
403 if (!vibrato_mode)
404 dspeed = -1;
405 else {
406 float speed = vibrato_mode - 1;
407 if (vibrato_mode == 3)
408 speed = hold_value;
409 if (vibrato_mode == 4)
410 speed = mwhl_value;
411 dspeed = (speed < 0.5f) ? 0 : 1;
413 update_speed();
415 /// Convert RPM speed to delta-phase
416 inline uint32_t rpm2dphase(float rpm)
418 return (uint32_t)((rpm / (60.0 * srate)) * (1 << 30)) << 2;
420 /// Set delta-phase variables based on current calculated (and interpolated) RPM speed
421 void update_speed()
423 float speed_h = aspeed_h >= 0 ? (48 + (400-48) * aspeed_h) : (48 * (1 + aspeed_h));
424 float speed_l = aspeed_l >= 0 ? 40 + (342-40) * aspeed_l : (40 * (1 + aspeed_l));
425 dphase_h = rpm2dphase(speed_h);
426 dphase_l = rpm2dphase(speed_l);
428 void update_speed_manual(float delta)
430 float ts = *params[par_treblespeed];
431 float bs = *params[par_bassspeed];
432 incr_towards(maspeed_h, ts, delta * 200, delta * 200);
433 incr_towards(maspeed_l, bs, delta * 200, delta * 200);
434 dphase_h = rpm2dphase(maspeed_h);
435 dphase_l = rpm2dphase(maspeed_l);
437 /// map a ramp [int] to a sinusoid-like function [0, 65536]
438 static inline int pseudo_sine_scl(int counter)
440 // premature optimization is a root of all evil; it can be done with integers only - but later :)
441 double v = counter * (1.0 / (65536.0 * 32768.0));
442 return (int) (32768 + 32768 * (v - v*v*v) * (1.0 / 0.3849));
444 /// Increase or decrease aspeed towards raspeed, with required negative and positive rate
445 inline bool incr_towards(float &aspeed, float raspeed, float delta_decc, float delta_acc)
447 if (aspeed < raspeed) {
448 aspeed = std::min(raspeed, aspeed + delta_acc);
449 return true;
451 else if (aspeed > raspeed)
453 aspeed = std::max(raspeed, aspeed - delta_decc);
454 return true;
456 return false;
458 uint32_t process(uint32_t offset, uint32_t nsamples, uint32_t inputs_mask, uint32_t outputs_mask)
460 int shift = (int)(300000 * (*params[par_shift])), pdelta = (int)(300000 * (*params[par_spacing]));
461 int md = (int)(100 * (*params[par_moddepth]));
462 float mix = 0.5 * (1.0 - *params[par_micdistance]);
463 float mix2 = *params[par_reflection];
464 float mix3 = mix2 * mix2;
465 for (unsigned int i = 0; i < nsamples; i++) {
466 float in_l = ins[0][i + offset], in_r = ins[1][i + offset];
467 float in_mono = 0.5f * (in_l + in_r);
469 int xl = pseudo_sine_scl(phase_l), yl = pseudo_sine_scl(phase_l + 0x40000000);
470 int xh = pseudo_sine_scl(phase_h), yh = pseudo_sine_scl(phase_h + 0x40000000);
471 // printf("%d %d %d\n", shift, pdelta, shift + pdelta + 20 * xl);
473 // float out_hi_l = in_mono - delay.get_interp_1616(shift + md * xh) + delay.get_interp_1616(shift + md * 65536 + pdelta - md * yh) - delay.get_interp_1616(shift + md * 65536 + pdelta + pdelta - md * xh);
474 // float out_hi_r = in_mono + delay.get_interp_1616(shift + md * 65536 - md * yh) - delay.get_interp_1616(shift + pdelta + md * xh) + delay.get_interp_1616(shift + pdelta + pdelta + md * yh);
475 float out_hi_l = in_mono + delay.get_interp_1616(shift + md * xh) - mix2 * delay.get_interp_1616(shift + md * 65536 + pdelta - md * yh) + mix3 * delay.get_interp_1616(shift + md * 65536 + pdelta + pdelta - md * xh);
476 float out_hi_r = in_mono + delay.get_interp_1616(shift + md * 65536 - md * yh) - mix2 * delay.get_interp_1616(shift + pdelta + md * xh) + mix3 * delay.get_interp_1616(shift + pdelta + pdelta + md * yh);
478 float out_lo_l = in_mono + delay.get_interp_1616(shift + md * xl); // + delay.get_interp_1616(shift + md * 65536 + pdelta - md * yl);
479 float out_lo_r = in_mono + delay.get_interp_1616(shift + md * yl); // - delay.get_interp_1616(shift + pdelta + md * yl);
481 out_hi_l = crossover2l.process(out_hi_l); // sanitize(out_hi_l);
482 out_hi_r = crossover2r.process(out_hi_r); // sanitize(out_hi_r);
483 out_lo_l = crossover1l.process(out_lo_l); // sanitize(out_lo_l);
484 out_lo_r = crossover1r.process(out_lo_r); // sanitize(out_lo_r);
486 float out_l = out_hi_l + out_lo_l;
487 float out_r = out_hi_r + out_lo_r;
489 float mic_l = out_l + mix * (out_r - out_l);
490 float mic_r = out_r + mix * (out_l - out_r);
492 outs[0][i + offset] = mic_l * 0.5f;
493 outs[1][i + offset] = mic_r * 0.5f;
494 delay.put(in_mono);
495 phase_l += dphase_l;
496 phase_h += dphase_h;
498 crossover1l.sanitize();
499 crossover1r.sanitize();
500 crossover2l.sanitize();
501 crossover2r.sanitize();
502 float delta = nsamples * 1.0 / srate;
503 if (vibrato_mode == 5)
504 update_speed_manual(delta);
505 else
507 bool u1 = incr_towards(aspeed_l, dspeed, delta * 0.2, delta * 0.14);
508 bool u2 = incr_towards(aspeed_h, dspeed, delta, delta * 0.5);
509 if (u1 || u2)
510 set_vibrato();
512 return outputs_mask;
514 virtual void control_change(int ctl, int val);
517 /// Compose two filters in series
518 template<class F1, class F2>
519 class filter_compose {
520 public:
521 typedef std::complex<float> cfloat;
522 F1 f1;
523 F2 f2;
524 public:
525 float process(float value) {
526 return f2.process(f1.process(value));
529 cfloat h_z(const cfloat &z) {
530 return f1.h_z(z) * f2.h_z(z);
533 /// Return the filter's gain at frequency freq
534 /// @param freq Frequency to look up
535 /// @param sr Filter sample rate (used to convert frequency to angular frequency)
536 float freq_gain(float freq, float sr)
538 typedef std::complex<double> cfloat;
539 freq *= 2.0 * M_PI / sr;
540 cfloat z = 1.0 / exp(cfloat(0.0, freq));
542 return std::abs(h_z(z));
545 void sanitize() {
546 f1.sanitize();
547 f2.sanitize();
551 /// Compose two filters in parallel
552 template<class F1, class F2>
553 class filter_sum {
554 public:
555 typedef std::complex<double> cfloat;
556 F1 f1;
557 F2 f2;
558 public:
559 float process(float value) {
560 return f2.process(value) + f1.process(value);
563 inline cfloat h_z(const cfloat &z) {
564 return f1.h_z(z) + f2.h_z(z);
567 /// Return the filter's gain at frequency freq
568 /// @param freq Frequency to look up
569 /// @param sr Filter sample rate (used to convert frequency to angular frequency)
570 float freq_gain(float freq, float sr)
572 typedef std::complex<double> cfloat;
573 freq *= 2.0 * M_PI / sr;
574 cfloat z = 1.0 / exp(cfloat(0.0, freq));
576 return std::abs(h_z(z));
579 void sanitize() {
580 f1.sanitize();
581 f2.sanitize();
585 template<typename FilterClass, typename Metadata>
586 class filter_module_with_inertia: public FilterClass
588 public:
589 typedef filter_module_with_inertia inertia_filter_module;
591 float *ins[Metadata::in_count];
592 float *outs[Metadata::out_count];
593 float *params[Metadata::param_count];
595 inertia<exponential_ramp> inertia_cutoff, inertia_resonance, inertia_gain;
596 once_per_n timer;
597 bool is_active;
599 filter_module_with_inertia()
600 : inertia_cutoff(exponential_ramp(128), 20)
601 , inertia_resonance(exponential_ramp(128), 20)
602 , inertia_gain(exponential_ramp(128), 1.0)
603 , timer(128)
605 is_active = false;
608 void calculate_filter()
610 float freq = inertia_cutoff.get_last();
611 // printf("freq=%g inr.cnt=%d timer.left=%d\n", freq, inertia_cutoff.count, timer.left);
612 // XXXKF this is resonance of a single stage, obviously for three stages, resonant gain will be different
613 float q = inertia_resonance.get_last();
614 int mode = dsp::fastf2i_drm(*params[Metadata::par_mode]);
615 // printf("freq = %f q = %f mode = %d\n", freq, q, mode);
617 int inertia = dsp::fastf2i_drm(*params[Metadata::par_inertia]);
618 if (inertia != inertia_cutoff.ramp.length()) {
619 inertia_cutoff.ramp.set_length(inertia);
620 inertia_resonance.ramp.set_length(inertia);
621 inertia_gain.ramp.set_length(inertia);
624 FilterClass::calculate_filter(freq, q, mode, inertia_gain.get_last());
627 virtual void params_changed()
629 calculate_filter();
632 void on_timer()
634 inertia_cutoff.step();
635 inertia_resonance.step();
636 inertia_gain.step();
637 calculate_filter();
640 void activate()
642 params_changed();
643 FilterClass::filter_activate();
644 timer = once_per_n(FilterClass::srate / 1000);
645 timer.start();
646 is_active = true;
649 void set_sample_rate(uint32_t sr)
651 FilterClass::srate = sr;
655 void deactivate()
657 is_active = false;
660 uint32_t process(uint32_t offset, uint32_t numsamples, uint32_t inputs_mask, uint32_t outputs_mask) {
661 // printf("sr=%d cutoff=%f res=%f mode=%f\n", FilterClass::srate, *params[Metadata::par_cutoff], *params[Metadata::par_resonance], *params[Metadata::par_mode]);
662 uint32_t ostate = 0;
663 numsamples += offset;
664 while(offset < numsamples) {
665 uint32_t numnow = numsamples - offset;
666 // if inertia's inactive, we can calculate the whole buffer at once
667 if (inertia_cutoff.active() || inertia_resonance.active() || inertia_gain.active())
668 numnow = timer.get(numnow);
670 if (outputs_mask & 1) {
671 ostate |= FilterClass::process_channel(0, ins[0] + offset, outs[0] + offset, numnow, inputs_mask & 1);
673 if (outputs_mask & 2) {
674 ostate |= FilterClass::process_channel(1, ins[1] + offset, outs[1] + offset, numnow, inputs_mask & 2);
677 if (timer.elapsed()) {
678 on_timer();
680 offset += numnow;
682 return ostate;
686 /// biquad filter module
687 class filter_audio_module:
688 public audio_module<filter_metadata>,
689 public filter_module_with_inertia<biquad_filter_module, filter_metadata>,
690 public frequency_response_line_graph
692 int last_generation;
693 float old_cutoff, old_resonance, old_mode;
694 public:
695 filter_audio_module()
697 last_generation = 0;
699 void params_changed()
701 inertia_cutoff.set_inertia(*params[par_cutoff]);
702 inertia_resonance.set_inertia(*params[par_resonance]);
703 inertia_filter_module::params_changed();
706 void activate()
708 inertia_filter_module::activate();
711 void set_sample_rate(uint32_t sr)
713 inertia_filter_module::set_sample_rate(sr);
717 void deactivate()
719 inertia_filter_module::deactivate();
722 bool get_graph(int index, int subindex, float *data, int points, cairo_iface *context);
723 int get_changed_offsets(int generation, int &subindex_graph, int &subindex_dot, int &subindex_gridline);
726 /// A multitap stereo chorus thing - processing
727 class multichorus_audio_module: public audio_module<multichorus_metadata>, public frequency_response_line_graph
729 public:
730 float *ins[in_count];
731 float *outs[out_count];
732 float *params[param_count];
733 uint32_t srate;
734 dsp::multichorus<float, sine_multi_lfo<float, 8>, filter_sum<dsp::biquad_d2<>, dsp::biquad_d2<> >, 4096> left, right;
735 float last_r_phase;
736 float cutoff;
737 bool is_active;
739 public:
740 multichorus_audio_module()
742 is_active = false;
745 void params_changed()
747 // delicious copy-pasta from flanger module - it'd be better to keep it common or something
748 float dry = *params[par_dryamount];
749 float wet = *params[par_amount];
750 float rate = *params[par_rate];
751 float min_delay = *params[par_delay] / 1000.0;
752 float mod_depth = *params[par_depth] / 1000.0;
753 left.set_dry(dry); right.set_dry(dry);
754 left.set_wet(wet); right.set_wet(wet);
755 left.set_rate(rate); right.set_rate(rate);
756 left.set_min_delay(min_delay); right.set_min_delay(min_delay);
757 left.set_mod_depth(mod_depth); right.set_mod_depth(mod_depth);
758 int voices = (int)*params[par_voices];
759 left.lfo.set_voices(voices); right.lfo.set_voices(voices);
760 float vphase = *params[par_vphase] * (1.f / 360.f);
761 left.lfo.vphase = right.lfo.vphase = vphase * (4096 / std::max(voices - 1, 1));
762 float r_phase = *params[par_stereo] * (1.f / 360.f);
763 if (fabs(r_phase - last_r_phase) > 0.0001f) {
764 right.lfo.phase = left.lfo.phase;
765 right.lfo.phase += chorus_phase(r_phase * 4096);
766 last_r_phase = r_phase;
768 left.post.f1.set_bp_rbj(*params[par_freq], *params[par_q], srate);
769 left.post.f2.set_bp_rbj(*params[par_freq2], *params[par_q], srate);
770 right.post.f1.copy_coeffs(left.post.f1);
771 right.post.f2.copy_coeffs(left.post.f2);
773 uint32_t process(uint32_t offset, uint32_t numsamples, uint32_t inputs_mask, uint32_t outputs_mask) {
774 left.process(outs[0] + offset, ins[0] + offset, numsamples);
775 right.process(outs[1] + offset, ins[1] + offset, numsamples);
776 return outputs_mask; // XXXKF allow some delay after input going blank
778 void activate();
779 void deactivate();
780 void set_sample_rate(uint32_t sr);
781 bool get_graph(int index, int subindex, float *data, int points, cairo_iface *context);
782 float freq_gain(int subindex, float freq, float srate);
783 bool get_dot(int index, int subindex, float &x, float &y, int &size, cairo_iface *context);
784 bool get_gridline(int index, int subindex, float &pos, bool &vertical, std::string &legend, cairo_iface *context);
787 class compressor_audio_module: public audio_module<compressor_metadata>, public line_graph_iface {
788 private:
789 float linSlope, peak, detected, kneeSqrt, kneeStart, linKneeStart, kneeStop, threshold, ratio, knee, makeup, compressedKneeStop, adjKneeStart;
790 float old_threshold, old_ratio, old_knee, old_makeup;
791 int last_generation;
792 uint32_t clip;
793 aweighter awL, awR;
794 public:
795 float *ins[in_count];
796 float *outs[out_count];
797 float *params[param_count];
798 uint32_t srate;
799 bool is_active;
800 compressor_audio_module();
801 void activate();
802 void deactivate();
803 uint32_t process(uint32_t offset, uint32_t numsamples, uint32_t inputs_mask, uint32_t outputs_mask);
805 inline float output_level(float slope) {
806 return slope * output_gain(slope, false) * makeup;
809 inline float output_gain(float linSlope, bool rms) {
810 if(linSlope > (rms ? adjKneeStart : linKneeStart)) {
811 float slope = log(linSlope);
812 if(rms) slope *= 0.5f;
814 float gain = 0.f;
815 float delta = 0.f;
816 if(IS_FAKE_INFINITY(ratio)) {
817 gain = threshold;
818 delta = 0.f;
819 } else {
820 gain = (slope - threshold) / ratio + threshold;
821 delta = 1.f / ratio;
824 if(knee > 1.f && slope < kneeStop) {
825 gain = hermite_interpolation(slope, kneeStart, kneeStop, kneeStart, compressedKneeStop, 1.f, delta);
828 return exp(gain - slope);
831 return 1.f;
834 void set_sample_rate(uint32_t sr);
836 virtual bool get_graph(int index, int subindex, float *data, int points, cairo_iface *context);
837 virtual bool get_dot(int index, int subindex, float &x, float &y, int &size, cairo_iface *context);
838 virtual bool get_gridline(int index, int subindex, float &pos, bool &vertical, std::string &legend, cairo_iface *context);
840 virtual int get_changed_offsets(int generation, int &subindex_graph, int &subindex_dot, int &subindex_gridline)
842 subindex_graph = 0;
843 subindex_dot = 0;
844 subindex_gridline = generation ? INT_MAX : 0;
846 if (fabs(threshold-old_threshold) + fabs(ratio - old_ratio) + fabs(knee - old_knee) + fabs( makeup - old_makeup) > 0.1f)
848 old_threshold = threshold;
849 old_ratio = ratio;
850 old_knee = knee;
851 old_makeup = makeup;
852 last_generation++;
855 if (generation == last_generation)
856 subindex_graph = 2;
857 return last_generation;
861 /// Filterclavier --- MIDI controlled filter by Hans Baier
862 class filterclavier_audio_module:
863 public audio_module<filterclavier_metadata>,
864 public filter_module_with_inertia<biquad_filter_module, filterclavier_metadata>,
865 public frequency_response_line_graph
867 const float min_gain;
868 const float max_gain;
870 int last_note;
871 int last_velocity;
873 public:
874 filterclavier_audio_module()
876 min_gain(1.0),
877 max_gain(32.0),
878 last_note(-1),
879 last_velocity(-1) {}
881 void params_changed()
883 inertia_filter_module::inertia_cutoff.set_inertia(
884 note_to_hz(last_note + *params[par_transpose], *params[par_detune]));
886 float min_resonance = param_props[par_max_resonance].min;
887 inertia_filter_module::inertia_resonance.set_inertia(
888 (float(last_velocity) / 127.0)
889 // 0.001: see below
890 * (*params[par_max_resonance] - min_resonance + 0.001)
891 + min_resonance);
893 adjust_gain_according_to_filter_mode(last_velocity);
895 inertia_filter_module::calculate_filter();
898 void activate()
900 inertia_filter_module::activate();
903 void set_sample_rate(uint32_t sr)
905 inertia_filter_module::set_sample_rate(sr);
909 void deactivate()
911 inertia_filter_module::deactivate();
914 /// MIDI control
915 virtual void note_on(int note, int vel)
917 last_note = note;
918 last_velocity = vel;
919 inertia_filter_module::inertia_cutoff.set_inertia(
920 note_to_hz(note + *params[par_transpose], *params[par_detune]));
922 float min_resonance = param_props[par_max_resonance].min;
923 inertia_filter_module::inertia_resonance.set_inertia(
924 (float(vel) / 127.0)
925 // 0.001: if the difference is equal to zero (which happens
926 // when the max_resonance knom is at minimum position
927 // then the filter gain doesnt seem to snap to zero on most note offs
928 * (*params[par_max_resonance] - min_resonance + 0.001)
929 + min_resonance);
931 adjust_gain_according_to_filter_mode(vel);
933 inertia_filter_module::calculate_filter();
936 virtual void note_off(int note, int vel)
938 if (note == last_note) {
939 inertia_filter_module::inertia_resonance.set_inertia(param_props[par_max_resonance].min);
940 inertia_filter_module::inertia_gain.set_inertia(min_gain);
941 inertia_filter_module::calculate_filter();
942 last_velocity = 0;
946 bool get_graph(int index, int subindex, float *data, int points, cairo_iface *context);
948 private:
949 void adjust_gain_according_to_filter_mode(int velocity) {
950 int mode = dsp::fastf2i_drm(*params[par_mode]);
952 // for bandpasses: boost gain for velocities > 0
953 if ( (mode_6db_bp <= mode) && (mode <= mode_18db_bp) ) {
954 // gain for velocity 0: 1.0
955 // gain for velocity 127: 32.0
956 float mode_max_gain = max_gain;
957 // max_gain is right for mode_6db_bp
958 if (mode == mode_12db_bp)
959 mode_max_gain /= 6.0;
960 if (mode == mode_18db_bp)
961 mode_max_gain /= 10.5;
963 inertia_filter_module::inertia_gain.set_now(
964 (float(velocity) / 127.0) * (mode_max_gain - min_gain) + min_gain);
965 } else {
966 inertia_filter_module::inertia_gain.set_now(min_gain);
971 extern std::string get_builtin_modules_rdf();
975 #include "modules_synths.h"
977 #endif