Update install docs
[carla.git] / data / windows / unzipfx-carla-control / inflate.c
blobf2f6864e18356abbf36148626a98e0b65b68e68d
1 /*
2 Copyright (c) 1990-2008 Info-ZIP. All rights reserved.
4 See the accompanying file LICENSE, version 2007-Mar-04 or later
5 (the contents of which are also included in unzip.h) for terms of use.
6 If, for some reason, all these files are missing, the Info-ZIP license
7 also may be found at: ftp://ftp.info-zip.org/pub/infozip/license.html
8 */
9 /* inflate.c -- by Mark Adler
10 version c17e, 30 Mar 2007 */
13 /* Copyright history:
14 - Starting with UnZip 5.41 of 16-April-2000, this source file
15 is covered by the Info-Zip LICENSE cited above.
16 - Prior versions of this source file, found in UnZip source packages
17 up to UnZip 5.40, were put in the public domain.
18 The original copyright note by Mark Adler was:
19 "You can do whatever you like with this source file,
20 though I would prefer that if you modify it and
21 redistribute it that you include comments to that effect
22 with your name and the date. Thank you."
24 History:
25 vers date who what
26 ---- --------- -------------- ------------------------------------
27 a ~~ Feb 92 M. Adler used full (large, one-step) lookup table
28 b1 21 Mar 92 M. Adler first version with partial lookup tables
29 b2 21 Mar 92 M. Adler fixed bug in fixed-code blocks
30 b3 22 Mar 92 M. Adler sped up match copies, cleaned up some
31 b4 25 Mar 92 M. Adler added prototypes; removed window[] (now
32 is the responsibility of unzip.h--also
33 changed name to slide[]), so needs diffs
34 for unzip.c and unzip.h (this allows
35 compiling in the small model on MSDOS);
36 fixed cast of q in huft_build();
37 b5 26 Mar 92 M. Adler got rid of unintended macro recursion.
38 b6 27 Mar 92 M. Adler got rid of nextbyte() routine. fixed
39 bug in inflate_fixed().
40 c1 30 Mar 92 M. Adler removed lbits, dbits environment variables.
41 changed BMAX to 16 for explode. Removed
42 OUTB usage, and replaced it with flush()--
43 this was a 20% speed improvement! Added
44 an explode.c (to replace unimplod.c) that
45 uses the huft routines here. Removed
46 register union.
47 c2 4 Apr 92 M. Adler fixed bug for file sizes a multiple of 32k.
48 c3 10 Apr 92 M. Adler reduced memory of code tables made by
49 huft_build significantly (factor of two to
50 three).
51 c4 15 Apr 92 M. Adler added NOMEMCPY do kill use of memcpy().
52 worked around a Turbo C optimization bug.
53 c5 21 Apr 92 M. Adler added the WSIZE #define to allow reducing
54 the 32K window size for specialized
55 applications.
56 c6 31 May 92 M. Adler added some typecasts to eliminate warnings
57 c7 27 Jun 92 G. Roelofs added some more typecasts (444: MSC bug).
58 c8 5 Oct 92 J-l. Gailly added ifdef'd code to deal with PKZIP bug.
59 c9 9 Oct 92 M. Adler removed a memory error message (~line 416).
60 c10 17 Oct 92 G. Roelofs changed ULONG/UWORD/byte to ulg/ush/uch,
61 removed old inflate, renamed inflate_entry
62 to inflate, added Mark's fix to a comment.
63 c10.5 14 Dec 92 M. Adler fix up error messages for incomplete trees.
64 c11 2 Jan 93 M. Adler fixed bug in detection of incomplete
65 tables, and removed assumption that EOB is
66 the longest code (bad assumption).
67 c12 3 Jan 93 M. Adler make tables for fixed blocks only once.
68 c13 5 Jan 93 M. Adler allow all zero length codes (pkzip 2.04c
69 outputs one zero length code for an empty
70 distance tree).
71 c14 12 Mar 93 M. Adler made inflate.c standalone with the
72 introduction of inflate.h.
73 c14b 16 Jul 93 G. Roelofs added (unsigned) typecast to w at 470.
74 c14c 19 Jul 93 J. Bush changed v[N_MAX], l[288], ll[28x+3x] arrays
75 to static for Amiga.
76 c14d 13 Aug 93 J-l. Gailly de-complicatified Mark's c[*p++]++ thing.
77 c14e 8 Oct 93 G. Roelofs changed memset() to memzero().
78 c14f 22 Oct 93 G. Roelofs renamed quietflg to qflag; made Trace()
79 conditional; added inflate_free().
80 c14g 28 Oct 93 G. Roelofs changed l/(lx+1) macro to pointer (Cray bug)
81 c14h 7 Dec 93 C. Ghisler huft_build() optimizations.
82 c14i 9 Jan 94 A. Verheijen set fixed_t{d,l} to NULL after freeing;
83 G. Roelofs check NEXTBYTE macro for EOF.
84 c14j 23 Jan 94 G. Roelofs removed Ghisler "optimizations"; ifdef'd
85 EOF check.
86 c14k 27 Feb 94 G. Roelofs added some typecasts to avoid warnings.
87 c14l 9 Apr 94 G. Roelofs fixed split comments on preprocessor lines
88 to avoid bug in Encore compiler.
89 c14m 7 Jul 94 P. Kienitz modified to allow assembler version of
90 inflate_codes() (define ASM_INFLATECODES)
91 c14n 22 Jul 94 G. Roelofs changed fprintf to macro for DLL versions
92 c14o 23 Aug 94 C. Spieler added a newline to a debug statement;
93 G. Roelofs added another typecast to avoid MSC warning
94 c14p 4 Oct 94 G. Roelofs added (voidp *) cast to free() argument
95 c14q 30 Oct 94 G. Roelofs changed fprintf macro to MESSAGE()
96 c14r 1 Nov 94 G. Roelofs fixed possible redefinition of CHECK_EOF
97 c14s 7 May 95 S. Maxwell OS/2 DLL globals stuff incorporated;
98 P. Kienitz "fixed" ASM_INFLATECODES macro/prototype
99 c14t 18 Aug 95 G. Roelofs added UZinflate() to use zlib functions;
100 changed voidp to zvoid; moved huft_build()
101 and huft_free() to end of file
102 c14u 1 Oct 95 G. Roelofs moved G into definition of MESSAGE macro
103 c14v 8 Nov 95 P. Kienitz changed ASM_INFLATECODES to use a regular
104 call with __G__ instead of a macro
105 c15 3 Aug 96 M. Adler fixed bomb-bug on random input data (Adobe)
106 c15b 24 Aug 96 M. Adler more fixes for random input data
107 c15c 28 Mar 97 G. Roelofs changed USE_ZLIB fatal exit code from
108 PK_MEM2 to PK_MEM3
109 c16 20 Apr 97 J. Altman added memzero(v[]) in huft_build()
110 c16b 29 Mar 98 C. Spieler modified DLL code for slide redirection
111 c16c 04 Apr 99 C. Spieler fixed memory leaks when processing gets
112 stopped because of input data errors
113 c16d 05 Jul 99 C. Spieler take care of FLUSH() return values and
114 stop processing in case of errors
115 c17 31 Dec 00 C. Spieler added preliminary support for Deflate64
116 c17a 04 Feb 01 C. Spieler complete integration of Deflate64 support
117 c17b 16 Feb 02 C. Spieler changed type of "extra bits" arrays and
118 corresponding huft_build() parameter e from
119 ush into uch, to save space
120 c17c 9 Mar 02 C. Spieler fixed NEEDBITS() "read beyond EOF" problem
121 with CHECK_EOF enabled
122 c17d 23 Jul 05 C. Spieler fixed memory leaks in inflate_dynamic()
123 when processing invalid compressed literal/
124 distance table data
125 c17e 30 Mar 07 C. Spieler in inflate_dynamic(), initialize tl and td
126 to prevent freeing unallocated huft tables
127 when processing invalid compressed data and
128 hitting premature EOF, do not reuse td as
129 temp work ptr during tables decoding
134 Inflate deflated (PKZIP's method 8 compressed) data. The compression
135 method searches for as much of the current string of bytes (up to a
136 length of 258) in the previous 32K bytes. If it doesn't find any
137 matches (of at least length 3), it codes the next byte. Otherwise, it
138 codes the length of the matched string and its distance backwards from
139 the current position. There is a single Huffman code that codes both
140 single bytes (called "literals") and match lengths. A second Huffman
141 code codes the distance information, which follows a length code. Each
142 length or distance code actually represents a base value and a number
143 of "extra" (sometimes zero) bits to get to add to the base value. At
144 the end of each deflated block is a special end-of-block (EOB) literal/
145 length code. The decoding process is basically: get a literal/length
146 code; if EOB then done; if a literal, emit the decoded byte; if a
147 length then get the distance and emit the referred-to bytes from the
148 sliding window of previously emitted data.
150 There are (currently) three kinds of inflate blocks: stored, fixed, and
151 dynamic. The compressor outputs a chunk of data at a time and decides
152 which method to use on a chunk-by-chunk basis. A chunk might typically
153 be 32K to 64K, uncompressed. If the chunk is uncompressible, then the
154 "stored" method is used. In this case, the bytes are simply stored as
155 is, eight bits per byte, with none of the above coding. The bytes are
156 preceded by a count, since there is no longer an EOB code.
158 If the data are compressible, then either the fixed or dynamic methods
159 are used. In the dynamic method, the compressed data are preceded by
160 an encoding of the literal/length and distance Huffman codes that are
161 to be used to decode this block. The representation is itself Huffman
162 coded, and so is preceded by a description of that code. These code
163 descriptions take up a little space, and so for small blocks, there is
164 a predefined set of codes, called the fixed codes. The fixed method is
165 used if the block ends up smaller that way (usually for quite small
166 chunks); otherwise the dynamic method is used. In the latter case, the
167 codes are customized to the probabilities in the current block and so
168 can code it much better than the pre-determined fixed codes can.
170 The Huffman codes themselves are decoded using a multi-level table
171 lookup, in order to maximize the speed of decoding plus the speed of
172 building the decoding tables. See the comments below that precede the
173 lbits and dbits tuning parameters.
175 GRR: return values(?)
176 0 OK
177 1 incomplete table
178 2 bad input
179 3 not enough memory
180 the following return codes are passed through from FLUSH() errors
181 50 (PK_DISK) "overflow of output space"
182 80 (IZ_CTRLC) "canceled by user's request"
187 Notes beyond the 1.93a appnote.txt:
189 1. Distance pointers never point before the beginning of the output
190 stream.
191 2. Distance pointers can point back across blocks, up to 32k away.
192 3. There is an implied maximum of 7 bits for the bit length table and
193 15 bits for the actual data.
194 4. If only one code exists, then it is encoded using one bit. (Zero
195 would be more efficient, but perhaps a little confusing.) If two
196 codes exist, they are coded using one bit each (0 and 1).
197 5. There is no way of sending zero distance codes--a dummy must be
198 sent if there are none. (History: a pre 2.0 version of PKZIP would
199 store blocks with no distance codes, but this was discovered to be
200 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
201 zero distance codes, which is sent as one code of zero bits in
202 length.
203 6. There are up to 286 literal/length codes. Code 256 represents the
204 end-of-block. Note however that the static length tree defines
205 288 codes just to fill out the Huffman codes. Codes 286 and 287
206 cannot be used though, since there is no length base or extra bits
207 defined for them. Similarily, there are up to 30 distance codes.
208 However, static trees define 32 codes (all 5 bits) to fill out the
209 Huffman codes, but the last two had better not show up in the data.
210 7. Unzip can check dynamic Huffman blocks for complete code sets.
211 The exception is that a single code would not be complete (see #4).
212 8. The five bits following the block type is really the number of
213 literal codes sent minus 257.
214 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
215 (1+6+6). Therefore, to output three times the length, you output
216 three codes (1+1+1), whereas to output four times the same length,
217 you only need two codes (1+3). Hmm.
218 10. In the tree reconstruction algorithm, Code = Code + Increment
219 only if BitLength(i) is not zero. (Pretty obvious.)
220 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
221 12. Note: length code 284 can represent 227-258, but length code 285
222 really is 258. The last length deserves its own, short code
223 since it gets used a lot in very redundant files. The length
224 258 is special since 258 - 3 (the min match length) is 255.
225 13. The literal/length and distance code bit lengths are read as a
226 single stream of lengths. It is possible (and advantageous) for
227 a repeat code (16, 17, or 18) to go across the boundary between
228 the two sets of lengths.
229 14. The Deflate64 (PKZIP method 9) variant of the compression algorithm
230 differs from "classic" deflate in the following 3 aspect:
231 a) The size of the sliding history window is expanded to 64 kByte.
232 b) The previously unused distance codes #30 and #31 code distances
233 from 32769 to 49152 and 49153 to 65536. Both codes take 14 bits
234 of extra data to determine the exact position in their 16 kByte
235 range.
236 c) The last lit/length code #285 gets a different meaning. Instead
237 of coding a fixed maximum match length of 258, it is used as a
238 "generic" match length code, capable of coding any length from
239 3 (min match length + 0) to 65538 (min match length + 65535).
240 This means that the length code #285 takes 16 bits (!) of uncoded
241 extra data, added to a fixed min length of 3.
242 Changes a) and b) would have been transparent for valid deflated
243 data, but change c) requires to switch decoder configurations between
244 Deflate and Deflate64 modes.
248 #define PKZIP_BUG_WORKAROUND /* PKZIP 1.93a problem--live with it */
251 inflate.h must supply the uch slide[WSIZE] array, the zvoid typedef
252 (void if (void *) is accepted, else char) and the NEXTBYTE,
253 FLUSH() and memzero macros. If the window size is not 32K, it
254 should also define WSIZE. If INFMOD is defined, it can include
255 compiled functions to support the NEXTBYTE and/or FLUSH() macros.
256 There are defaults for NEXTBYTE and FLUSH() below for use as
257 examples of what those functions need to do. Normally, you would
258 also want FLUSH() to compute a crc on the data. inflate.h also
259 needs to provide these typedefs:
261 typedef unsigned char uch;
262 typedef unsigned short ush;
263 typedef unsigned long ulg;
265 This module uses the external functions malloc() and free() (and
266 probably memset() or bzero() in the memzero() macro). Their
267 prototypes are normally found in <string.h> and <stdlib.h>.
270 #define __INFLATE_C /* identifies this source module */
272 /* #define DEBUG */
273 #define INFMOD /* tell inflate.h to include code to be compiled */
274 #include "inflate.h"
277 /* marker for "unused" huft code, and corresponding check macro */
278 #define INVALID_CODE 99
279 #define IS_INVALID_CODE(c) ((c) == INVALID_CODE)
281 #ifndef WSIZE /* default is 32K resp. 64K */
282 # ifdef USE_DEFLATE64
283 # define WSIZE 65536L /* window size--must be a power of two, and */
284 # else /* at least 64K for PKZip's deflate64 method */
285 # define WSIZE 0x8000 /* window size--must be a power of two, and */
286 # endif /* at least 32K for zip's deflate method */
287 #endif
289 /* some buffer counters must be capable of holding 64k for Deflate64 */
290 #if (defined(USE_DEFLATE64) && defined(INT_16BIT))
291 # define UINT_D64 ulg
292 #else
293 # define UINT_D64 unsigned
294 #endif
296 #if (defined(DLL) && !defined(NO_SLIDE_REDIR))
297 # define wsize G._wsize /* wsize is a variable */
298 #else
299 # define wsize WSIZE /* wsize is a constant */
300 #endif
303 #ifndef NEXTBYTE /* default is to simply get a byte from stdin */
304 # define NEXTBYTE getchar()
305 #endif
307 #ifndef MESSAGE /* only used twice, for fixed strings--NOT general-purpose */
308 # define MESSAGE(str,len,flag) fprintf(stderr,(char *)(str))
309 #endif
311 #ifndef FLUSH /* default is to simply write the buffer to stdout */
312 # define FLUSH(n) \
313 (((extent)fwrite(redirSlide, 1, (extent)(n), stdout) == (extent)(n)) ? \
314 0 : PKDISK)
315 #endif
316 /* Warning: the fwrite above might not work on 16-bit compilers, since
317 0x8000 might be interpreted as -32,768 by the library function. When
318 support for Deflate64 is enabled, the window size is 64K and the
319 simple fwrite statement is definitely broken for 16-bit compilers. */
321 #ifndef Trace
322 # ifdef DEBUG
323 # define Trace(x) fprintf x
324 # else
325 # define Trace(x)
326 # endif
327 #endif
330 /*---------------------------------------------------------------------------*/
331 #ifdef USE_ZLIB
333 /* Beginning with zlib version 1.2.0, a new inflate callback interface is
334 provided that allows tighter integration of the zlib inflate service
335 into unzip's extraction framework.
336 The advantages are:
337 - uses the windows buffer supplied by the unzip code; this saves one
338 copy process between zlib's internal decompression buffer and unzip's
339 post-decompression output buffer and improves performance.
340 - does not pull in unused checksum code (adler32).
341 The preprocessor flag NO_ZLIBCALLBCK can be set to force usage of the
342 old zlib 1.1.x interface, for testing purpose.
344 #ifdef USE_ZLIB_INFLATCB
345 # undef USE_ZLIB_INFLATCB
346 #endif
347 #if (defined(ZLIB_VERNUM) && ZLIB_VERNUM >= 0x1200 && !defined(NO_ZLIBCALLBCK))
348 # define USE_ZLIB_INFLATCB 1
349 #else
350 # define USE_ZLIB_INFLATCB 0
351 #endif
353 /* Check for incompatible combinations of zlib and Deflate64 support. */
354 #if defined(USE_DEFLATE64)
355 # if !USE_ZLIB_INFLATCB
356 #error Deflate64 is incompatible with traditional (pre-1.2.x) zlib interface!
357 # else
358 /* The Deflate64 callback function in the framework of zlib 1.2.x requires
359 the inclusion of the unsupported infback9 header file:
361 # include "infback9.h"
362 # endif
363 #endif /* USE_DEFLATE64 */
366 #if USE_ZLIB_INFLATCB
368 static unsigned zlib_inCB OF((void FAR *pG, unsigned char FAR * FAR * pInbuf));
369 static int zlib_outCB OF((void FAR *pG, unsigned char FAR *outbuf,
370 unsigned outcnt));
372 static unsigned zlib_inCB(pG, pInbuf)
373 void FAR *pG;
374 unsigned char FAR * FAR * pInbuf;
376 *pInbuf = G.inbuf;
377 return fillinbuf(__G);
380 static int zlib_outCB(pG, outbuf, outcnt)
381 void FAR *pG;
382 unsigned char FAR *outbuf;
383 unsigned outcnt;
385 #ifdef FUNZIP
386 return flush(__G__ (ulg)(outcnt));
387 #else
388 return ((G.mem_mode) ? memflush(__G__ outbuf, (ulg)(outcnt))
389 : flush(__G__ outbuf, (ulg)(outcnt), 0));
390 #endif
392 #endif /* USE_ZLIB_INFLATCB */
396 GRR: return values for both original inflate() and UZinflate()
397 0 OK
398 1 incomplete table(?)
399 2 bad input
400 3 not enough memory
403 /**************************/
404 /* Function UZinflate() */
405 /**************************/
407 int UZinflate(__G__ is_defl64)
408 __GDEF
409 int is_defl64;
410 /* decompress an inflated entry using the zlib routines */
412 int retval = 0; /* return code: 0 = "no error" */
413 int err=Z_OK;
414 #if USE_ZLIB_INFLATCB
416 #if (defined(DLL) && !defined(NO_SLIDE_REDIR))
417 if (G.redirect_slide)
418 wsize = G.redirect_size, redirSlide = G.redirect_buffer;
419 else
420 wsize = WSIZE, redirSlide = slide;
421 #endif
423 if (!G.inflInit) {
424 /* local buffer for efficiency */
425 ZCONST char *zlib_RtVersion = zlibVersion();
427 /* only need to test this stuff once */
428 if ((zlib_RtVersion[0] != ZLIB_VERSION[0]) ||
429 (zlib_RtVersion[2] != ZLIB_VERSION[2])) {
430 Info(slide, 0x21, ((char *)slide,
431 "error: incompatible zlib version (expected %s, found %s)\n",
432 ZLIB_VERSION, zlib_RtVersion));
433 return 3;
434 } else if (strcmp(zlib_RtVersion, ZLIB_VERSION) != 0)
435 Info(slide, 0x21, ((char *)slide,
436 "warning: different zlib version (expected %s, using %s)\n",
437 ZLIB_VERSION, zlib_RtVersion));
439 G.dstrm.zalloc = (alloc_func)Z_NULL;
440 G.dstrm.zfree = (free_func)Z_NULL;
442 G.inflInit = 1;
445 #ifdef USE_DEFLATE64
446 if (is_defl64)
448 Trace((stderr, "initializing inflate9()\n"));
449 err = inflateBack9Init(&G.dstrm, redirSlide);
451 if (err == Z_MEM_ERROR)
452 return 3;
453 else if (err != Z_OK) {
454 Trace((stderr, "oops! (inflateBack9Init() err = %d)\n", err));
455 return 2;
458 G.dstrm.next_in = G.inptr;
459 G.dstrm.avail_in = G.incnt;
461 err = inflateBack9(&G.dstrm, zlib_inCB, &G, zlib_outCB, &G);
462 if (err != Z_STREAM_END) {
463 if (err == Z_DATA_ERROR || err == Z_STREAM_ERROR) {
464 Trace((stderr, "oops! (inflateBack9() err = %d)\n", err));
465 retval = 2;
466 } else if (err == Z_MEM_ERROR) {
467 retval = 3;
468 } else if (err == Z_BUF_ERROR) {
469 Trace((stderr, "oops! (inflateBack9() err = %d)\n", err));
470 if (G.dstrm.next_in == Z_NULL) {
471 /* input failure */
472 Trace((stderr, " inflateBack9() input failure\n"));
473 retval = 2;
474 } else {
475 /* output write failure */
476 retval = (G.disk_full != 0 ? PK_DISK : IZ_CTRLC);
478 } else {
479 Trace((stderr, "oops! (inflateBack9() err = %d)\n", err));
480 retval = 2;
483 if (G.dstrm.next_in != NULL) {
484 G.inptr = (uch *)G.dstrm.next_in;
485 G.incnt = G.dstrm.avail_in;
488 err = inflateBack9End(&G.dstrm);
489 if (err != Z_OK) {
490 Trace((stderr, "oops! (inflateBack9End() err = %d)\n", err));
491 if (retval == 0)
492 retval = 2;
495 else
496 #endif /* USE_DEFLATE64 */
498 /* For the callback interface, inflate initialization has to
499 be called before each decompression call.
502 unsigned i;
503 int windowBits;
504 /* windowBits = log2(wsize) */
505 for (i = (unsigned)wsize, windowBits = 0;
506 !(i & 1); i >>= 1, ++windowBits);
507 if ((unsigned)windowBits > (unsigned)15)
508 windowBits = 15;
509 else if (windowBits < 8)
510 windowBits = 8;
512 Trace((stderr, "initializing inflate()\n"));
513 err = inflateBackInit(&G.dstrm, windowBits, redirSlide);
515 if (err == Z_MEM_ERROR)
516 return 3;
517 else if (err != Z_OK) {
518 Trace((stderr, "oops! (inflateBackInit() err = %d)\n", err));
519 return 2;
523 G.dstrm.next_in = G.inptr;
524 G.dstrm.avail_in = G.incnt;
526 err = inflateBack(&G.dstrm, zlib_inCB, &G, zlib_outCB, &G);
527 if (err != Z_STREAM_END) {
528 if (err == Z_DATA_ERROR || err == Z_STREAM_ERROR) {
529 Trace((stderr, "oops! (inflateBack() err = %d)\n", err));
530 retval = 2;
531 } else if (err == Z_MEM_ERROR) {
532 retval = 3;
533 } else if (err == Z_BUF_ERROR) {
534 Trace((stderr, "oops! (inflateBack() err = %d)\n", err));
535 if (G.dstrm.next_in == Z_NULL) {
536 /* input failure */
537 Trace((stderr, " inflateBack() input failure\n"));
538 retval = 2;
539 } else {
540 /* output write failure */
541 retval = (G.disk_full != 0 ? PK_DISK : IZ_CTRLC);
543 } else {
544 Trace((stderr, "oops! (inflateBack() err = %d)\n", err));
545 retval = 2;
548 if (G.dstrm.next_in != NULL) {
549 G.inptr = (uch *)G.dstrm.next_in;
550 G.incnt = G.dstrm.avail_in;
553 err = inflateBackEnd(&G.dstrm);
554 if (err != Z_OK) {
555 Trace((stderr, "oops! (inflateBackEnd() err = %d)\n", err));
556 if (retval == 0)
557 retval = 2;
561 #else /* !USE_ZLIB_INFLATCB */
562 int repeated_buf_err;
564 #if (defined(DLL) && !defined(NO_SLIDE_REDIR))
565 if (G.redirect_slide)
566 wsize = G.redirect_size, redirSlide = G.redirect_buffer;
567 else
568 wsize = WSIZE, redirSlide = slide;
569 #endif
571 G.dstrm.next_out = redirSlide;
572 G.dstrm.avail_out = wsize;
574 G.dstrm.next_in = G.inptr;
575 G.dstrm.avail_in = G.incnt;
577 if (!G.inflInit) {
578 unsigned i;
579 int windowBits;
580 /* local buffer for efficiency */
581 ZCONST char *zlib_RtVersion = zlibVersion();
583 /* only need to test this stuff once */
584 if (zlib_RtVersion[0] != ZLIB_VERSION[0]) {
585 Info(slide, 0x21, ((char *)slide,
586 "error: incompatible zlib version (expected %s, found %s)\n",
587 ZLIB_VERSION, zlib_RtVersion));
588 return 3;
589 } else if (strcmp(zlib_RtVersion, ZLIB_VERSION) != 0)
590 Info(slide, 0x21, ((char *)slide,
591 "warning: different zlib version (expected %s, using %s)\n",
592 ZLIB_VERSION, zlib_RtVersion));
594 /* windowBits = log2(wsize) */
595 for (i = (unsigned)wsize, windowBits = 0;
596 !(i & 1); i >>= 1, ++windowBits);
597 if ((unsigned)windowBits > (unsigned)15)
598 windowBits = 15;
599 else if (windowBits < 8)
600 windowBits = 8;
602 G.dstrm.zalloc = (alloc_func)Z_NULL;
603 G.dstrm.zfree = (free_func)Z_NULL;
605 Trace((stderr, "initializing inflate()\n"));
606 err = inflateInit2(&G.dstrm, -windowBits);
608 if (err == Z_MEM_ERROR)
609 return 3;
610 else if (err != Z_OK)
611 Trace((stderr, "oops! (inflateInit2() err = %d)\n", err));
612 G.inflInit = 1;
615 #ifdef FUNZIP
616 while (err != Z_STREAM_END) {
617 #else /* !FUNZIP */
618 while (G.csize > 0) {
619 Trace((stderr, "first loop: G.csize = %ld\n", G.csize));
620 #endif /* ?FUNZIP */
621 while (G.dstrm.avail_out > 0) {
622 err = inflate(&G.dstrm, Z_PARTIAL_FLUSH);
624 if (err == Z_DATA_ERROR) {
625 retval = 2; goto uzinflate_cleanup_exit;
626 } else if (err == Z_MEM_ERROR) {
627 retval = 3; goto uzinflate_cleanup_exit;
628 } else if (err != Z_OK && err != Z_STREAM_END)
629 Trace((stderr, "oops! (inflate(first loop) err = %d)\n", err));
631 #ifdef FUNZIP
632 if (err == Z_STREAM_END) /* "END-of-entry-condition" ? */
633 #else /* !FUNZIP */
634 if (G.csize <= 0L) /* "END-of-entry-condition" ? */
635 #endif /* ?FUNZIP */
636 break;
638 if (G.dstrm.avail_in == 0) {
639 if (fillinbuf(__G) == 0) {
640 /* no "END-condition" yet, but no more data */
641 retval = 2; goto uzinflate_cleanup_exit;
644 G.dstrm.next_in = G.inptr;
645 G.dstrm.avail_in = G.incnt;
647 Trace((stderr, " avail_in = %u\n", G.dstrm.avail_in));
649 /* flush slide[] */
650 if ((retval = FLUSH(wsize - G.dstrm.avail_out)) != 0)
651 goto uzinflate_cleanup_exit;
652 Trace((stderr, "inside loop: flushing %ld bytes (ptr diff = %ld)\n",
653 (long)(wsize - G.dstrm.avail_out),
654 (long)(G.dstrm.next_out-(Bytef *)redirSlide)));
655 G.dstrm.next_out = redirSlide;
656 G.dstrm.avail_out = wsize;
659 /* no more input, so loop until we have all output */
660 Trace((stderr, "beginning final loop: err = %d\n", err));
661 repeated_buf_err = FALSE;
662 while (err != Z_STREAM_END) {
663 err = inflate(&G.dstrm, Z_PARTIAL_FLUSH);
664 if (err == Z_DATA_ERROR) {
665 retval = 2; goto uzinflate_cleanup_exit;
666 } else if (err == Z_MEM_ERROR) {
667 retval = 3; goto uzinflate_cleanup_exit;
668 } else if (err == Z_BUF_ERROR) { /* DEBUG */
669 #ifdef FUNZIP
670 Trace((stderr,
671 "zlib inflate() did not detect stream end\n"));
672 #else
673 Trace((stderr,
674 "zlib inflate() did not detect stream end (%s, %s)\n",
675 G.zipfn, G.filename));
676 #endif
677 if ((!repeated_buf_err) && (G.dstrm.avail_in == 0)) {
678 /* when detecting this problem for the first time,
679 try to provide one fake byte beyond "EOF"... */
680 G.dstrm.next_in = "";
681 G.dstrm.avail_in = 1;
682 repeated_buf_err = TRUE;
683 } else
684 break;
685 } else if (err != Z_OK && err != Z_STREAM_END) {
686 Trace((stderr, "oops! (inflate(final loop) err = %d)\n", err));
687 DESTROYGLOBALS();
688 EXIT(PK_MEM3);
690 /* final flush of slide[] */
691 if ((retval = FLUSH(wsize - G.dstrm.avail_out)) != 0)
692 goto uzinflate_cleanup_exit;
693 Trace((stderr, "final loop: flushing %ld bytes (ptr diff = %ld)\n",
694 (long)(wsize - G.dstrm.avail_out),
695 (long)(G.dstrm.next_out-(Bytef *)redirSlide)));
696 G.dstrm.next_out = redirSlide;
697 G.dstrm.avail_out = wsize;
699 Trace((stderr, "total in = %lu, total out = %lu\n", G.dstrm.total_in,
700 G.dstrm.total_out));
702 G.inptr = (uch *)G.dstrm.next_in;
703 G.incnt = (G.inbuf + INBUFSIZ) - G.inptr; /* reset for other routines */
705 uzinflate_cleanup_exit:
706 err = inflateReset(&G.dstrm);
707 if (err != Z_OK)
708 Trace((stderr, "oops! (inflateReset() err = %d)\n", err));
710 #endif /* ?USE_ZLIB_INFLATCB */
711 return retval;
715 /*---------------------------------------------------------------------------*/
716 #else /* !USE_ZLIB */
719 /* Function prototypes */
720 #ifndef OF
721 # ifdef __STDC__
722 # define OF(a) a
723 # else
724 # define OF(a) ()
725 # endif
726 #endif /* !OF */
727 int inflate_codes OF((__GPRO__ struct huft *tl, struct huft *td,
728 unsigned bl, unsigned bd));
729 static int inflate_stored OF((__GPRO));
730 static int inflate_fixed OF((__GPRO));
731 static int inflate_dynamic OF((__GPRO));
732 static int inflate_block OF((__GPRO__ int *e));
735 /* The inflate algorithm uses a sliding 32K byte window on the uncompressed
736 stream to find repeated byte strings. This is implemented here as a
737 circular buffer. The index is updated simply by incrementing and then
738 and'ing with 0x7fff (32K-1). */
739 /* It is left to other modules to supply the 32K area. It is assumed
740 to be usable as if it were declared "uch slide[32768];" or as just
741 "uch *slide;" and then malloc'ed in the latter case. The definition
742 must be in unzip.h, included above. */
745 /* unsigned wp; moved to globals.h */ /* current position in slide */
747 /* Tables for deflate from PKZIP's appnote.txt. */
748 /* - Order of the bit length code lengths */
749 static ZCONST unsigned border[] = {
750 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
752 /* - Copy lengths for literal codes 257..285 */
753 #ifdef USE_DEFLATE64
754 static ZCONST ush cplens64[] = {
755 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
756 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 3, 0, 0};
757 /* For Deflate64, the code 285 is defined differently. */
758 #else
759 # define cplens32 cplens
760 #endif
761 static ZCONST ush cplens32[] = {
762 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
763 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
764 /* note: see note #13 above about the 258 in this list. */
765 /* - Extra bits for literal codes 257..285 */
766 #ifdef USE_DEFLATE64
767 static ZCONST uch cplext64[] = {
768 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
769 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 16, INVALID_CODE, INVALID_CODE};
770 #else
771 # define cplext32 cplext
772 #endif
773 static ZCONST uch cplext32[] = {
774 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
775 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, INVALID_CODE, INVALID_CODE};
777 /* - Copy offsets for distance codes 0..29 (0..31 for Deflate64) */
778 static ZCONST ush cpdist[] = {
779 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
780 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
781 #if (defined(USE_DEFLATE64) || defined(PKZIP_BUG_WORKAROUND))
782 8193, 12289, 16385, 24577, 32769, 49153};
783 #else
784 8193, 12289, 16385, 24577};
785 #endif
787 /* - Extra bits for distance codes 0..29 (0..31 for Deflate64) */
788 #ifdef USE_DEFLATE64
789 static ZCONST uch cpdext64[] = {
790 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
791 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
792 12, 12, 13, 13, 14, 14};
793 #else
794 # define cpdext32 cpdext
795 #endif
796 static ZCONST uch cpdext32[] = {
797 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
798 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
799 #ifdef PKZIP_BUG_WORKAROUND
800 12, 12, 13, 13, INVALID_CODE, INVALID_CODE};
801 #else
802 12, 12, 13, 13};
803 #endif
805 #ifdef PKZIP_BUG_WORKAROUND
806 # define MAXLITLENS 288
807 #else
808 # define MAXLITLENS 286
809 #endif
810 #if (defined(USE_DEFLATE64) || defined(PKZIP_BUG_WORKAROUND))
811 # define MAXDISTS 32
812 #else
813 # define MAXDISTS 30
814 #endif
817 /* moved to consts.h (included in unzip.c), resp. funzip.c */
818 #if 0
819 /* And'ing with mask_bits[n] masks the lower n bits */
820 ZCONST unsigned near mask_bits[17] = {
821 0x0000,
822 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
823 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
825 #endif /* 0 */
828 /* Macros for inflate() bit peeking and grabbing.
829 The usage is:
831 NEEDBITS(j)
832 x = b & mask_bits[j];
833 DUMPBITS(j)
835 where NEEDBITS makes sure that b has at least j bits in it, and
836 DUMPBITS removes the bits from b. The macros use the variable k
837 for the number of bits in b. Normally, b and k are register
838 variables for speed and are initialized at the beginning of a
839 routine that uses these macros from a global bit buffer and count.
841 In order to not ask for more bits than there are in the compressed
842 stream, the Huffman tables are constructed to only ask for just
843 enough bits to make up the end-of-block code (value 256). Then no
844 bytes need to be "returned" to the buffer at the end of the last
845 block. See the huft_build() routine.
847 Actually, the precautions mentioned above are not sufficient to
848 prevent fetches of bits beyound the end of the last block in every
849 case. When the last code fetched before the end-of-block code was
850 a very short distance code (shorter than "distance-prefetch-bits" -
851 "end-of-block code bits"), this last distance code fetch already
852 exausts the available data. To prevent failure of extraction in this
853 case, the "read beyond EOF" check delays the raise of the "invalid
854 data" error until an actual overflow of "used data" is detected.
855 This error condition is only fulfilled when the "number of available
856 bits" counter k is found to be negative in the NEEDBITS() macro.
858 An alternate fix for that problem adjusts the size of the distance code
859 base table so that it does not exceed the length of the end-of-block code
860 plus the minimum length of a distance code. This alternate fix can be
861 enabled by defining the preprocessor symbol FIX_PAST_EOB_BY_TABLEADJUST.
864 /* These have been moved to globals.h */
865 #if 0
866 ulg bb; /* bit buffer */
867 unsigned bk; /* bits in bit buffer */
868 #endif
870 #ifndef CHECK_EOF
871 # define CHECK_EOF /* default as of 5.13/5.2 */
872 #endif
874 #ifndef CHECK_EOF
875 # define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE)<<k;k+=8;}}
876 #else
877 # ifdef FIX_PAST_EOB_BY_TABLEADJUST
878 # define NEEDBITS(n) {while(k<(n)){int c=NEXTBYTE;\
879 if(c==EOF){retval=1;goto cleanup_and_exit;}\
880 b|=((ulg)c)<<k;k+=8;}}
881 # else
882 # define NEEDBITS(n) {while((int)k<(int)(n)){int c=NEXTBYTE;\
883 if(c==EOF){if((int)k>=0)break;retval=1;goto cleanup_and_exit;}\
884 b|=((ulg)c)<<k;k+=8;}}
885 # endif
886 #endif
888 #define DUMPBITS(n) {b>>=(n);k-=(n);}
892 Huffman code decoding is performed using a multi-level table lookup.
893 The fastest way to decode is to simply build a lookup table whose
894 size is determined by the longest code. However, the time it takes
895 to build this table can also be a factor if the data being decoded
896 are not very long. The most common codes are necessarily the
897 shortest codes, so those codes dominate the decoding time, and hence
898 the speed. The idea is you can have a shorter table that decodes the
899 shorter, more probable codes, and then point to subsidiary tables for
900 the longer codes. The time it costs to decode the longer codes is
901 then traded against the time it takes to make longer tables.
903 This results of this trade are in the variables lbits and dbits
904 below. lbits is the number of bits the first level table for literal/
905 length codes can decode in one step, and dbits is the same thing for
906 the distance codes. Subsequent tables are also less than or equal to
907 those sizes. These values may be adjusted either when all of the
908 codes are shorter than that, in which case the longest code length in
909 bits is used, or when the shortest code is *longer* than the requested
910 table size, in which case the length of the shortest code in bits is
911 used.
913 There are two different values for the two tables, since they code a
914 different number of possibilities each. The literal/length table
915 codes 286 possible values, or in a flat code, a little over eight
916 bits. The distance table codes 30 possible values, or a little less
917 than five bits, flat. The optimum values for speed end up being
918 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
919 The optimum values may differ though from machine to machine, and
920 possibly even between compilers. Your mileage may vary.
924 /* bits in base literal/length lookup table */
925 static ZCONST unsigned lbits = 9;
926 /* bits in base distance lookup table */
927 static ZCONST unsigned dbits = 6;
930 #ifndef ASM_INFLATECODES
932 int inflate_codes(__G__ tl, td, bl, bd)
933 __GDEF
934 struct huft *tl, *td; /* literal/length and distance decoder tables */
935 unsigned bl, bd; /* number of bits decoded by tl[] and td[] */
936 /* inflate (decompress) the codes in a deflated (compressed) block.
937 Return an error code or zero if it all goes ok. */
939 register unsigned e; /* table entry flag/number of extra bits */
940 unsigned d; /* index for copy */
941 UINT_D64 n; /* length for copy (deflate64: might be 64k+2) */
942 UINT_D64 w; /* current window position (deflate64: up to 64k) */
943 struct huft *t; /* pointer to table entry */
944 unsigned ml, md; /* masks for bl and bd bits */
945 register ulg b; /* bit buffer */
946 register unsigned k; /* number of bits in bit buffer */
947 int retval = 0; /* error code returned: initialized to "no error" */
950 /* make local copies of globals */
951 b = G.bb; /* initialize bit buffer */
952 k = G.bk;
953 w = G.wp; /* initialize window position */
956 /* inflate the coded data */
957 ml = mask_bits[bl]; /* precompute masks for speed */
958 md = mask_bits[bd];
959 while (1) /* do until end of block */
961 NEEDBITS(bl)
962 t = tl + ((unsigned)b & ml);
963 while (1) {
964 DUMPBITS(t->b)
966 if ((e = t->e) == 32) /* then it's a literal */
968 redirSlide[w++] = (uch)t->v.n;
969 if (w == wsize)
971 if ((retval = FLUSH(w)) != 0) goto cleanup_and_exit;
972 w = 0;
974 break;
977 if (e < 31) /* then it's a length */
979 /* get length of block to copy */
980 NEEDBITS(e)
981 n = t->v.n + ((unsigned)b & mask_bits[e]);
982 DUMPBITS(e)
984 /* decode distance of block to copy */
985 NEEDBITS(bd)
986 t = td + ((unsigned)b & md);
987 while (1) {
988 DUMPBITS(t->b)
989 if ((e = t->e) < 32)
990 break;
991 if (IS_INVALID_CODE(e))
992 return 1;
993 e &= 31;
994 NEEDBITS(e)
995 t = t->v.t + ((unsigned)b & mask_bits[e]);
997 NEEDBITS(e)
998 d = (unsigned)w - t->v.n - ((unsigned)b & mask_bits[e]);
999 DUMPBITS(e)
1001 /* do the copy */
1002 do {
1003 #if (defined(DLL) && !defined(NO_SLIDE_REDIR))
1004 if (G.redirect_slide) {
1005 /* &= w/ wsize unnecessary & wrong if redirect */
1006 if ((UINT_D64)d >= wsize)
1007 return 1; /* invalid compressed data */
1008 e = (unsigned)(wsize - (d > (unsigned)w ? (UINT_D64)d : w));
1010 else
1011 #endif
1012 e = (unsigned)(wsize -
1013 ((d &= (unsigned)(wsize-1)) > (unsigned)w ?
1014 (UINT_D64)d : w));
1015 if ((UINT_D64)e > n) e = (unsigned)n;
1016 n -= e;
1017 #ifndef NOMEMCPY
1018 if ((unsigned)w - d >= e)
1019 /* (this test assumes unsigned comparison) */
1021 memcpy(redirSlide + (unsigned)w, redirSlide + d, e);
1022 w += e;
1023 d += e;
1025 else /* do it slowly to avoid memcpy() overlap */
1026 #endif /* !NOMEMCPY */
1027 do {
1028 redirSlide[w++] = redirSlide[d++];
1029 } while (--e);
1030 if (w == wsize)
1032 if ((retval = FLUSH(w)) != 0) goto cleanup_and_exit;
1033 w = 0;
1035 } while (n);
1036 break;
1039 if (e == 31) /* it's the EOB signal */
1041 /* sorry for this goto, but we have to exit two loops at once */
1042 goto cleanup_decode;
1045 if (IS_INVALID_CODE(e))
1046 return 1;
1048 e &= 31;
1049 NEEDBITS(e)
1050 t = t->v.t + ((unsigned)b & mask_bits[e]);
1053 cleanup_decode:
1055 /* restore the globals from the locals */
1056 G.wp = (unsigned)w; /* restore global window pointer */
1057 G.bb = b; /* restore global bit buffer */
1058 G.bk = k;
1061 cleanup_and_exit:
1062 /* done */
1063 return retval;
1066 #endif /* ASM_INFLATECODES */
1070 static int inflate_stored(__G)
1071 __GDEF
1072 /* "decompress" an inflated type 0 (stored) block. */
1074 UINT_D64 w; /* current window position (deflate64: up to 64k!) */
1075 unsigned n; /* number of bytes in block */
1076 register ulg b; /* bit buffer */
1077 register unsigned k; /* number of bits in bit buffer */
1078 int retval = 0; /* error code returned: initialized to "no error" */
1081 /* make local copies of globals */
1082 Trace((stderr, "\nstored block"));
1083 b = G.bb; /* initialize bit buffer */
1084 k = G.bk;
1085 w = G.wp; /* initialize window position */
1088 /* go to byte boundary */
1089 n = k & 7;
1090 DUMPBITS(n);
1093 /* get the length and its complement */
1094 NEEDBITS(16)
1095 n = ((unsigned)b & 0xffff);
1096 DUMPBITS(16)
1097 NEEDBITS(16)
1098 if (n != (unsigned)((~b) & 0xffff))
1099 return 1; /* error in compressed data */
1100 DUMPBITS(16)
1103 /* read and output the compressed data */
1104 while (n--)
1106 NEEDBITS(8)
1107 redirSlide[w++] = (uch)b;
1108 if (w == wsize)
1110 if ((retval = FLUSH(w)) != 0) goto cleanup_and_exit;
1111 w = 0;
1113 DUMPBITS(8)
1117 /* restore the globals from the locals */
1118 G.wp = (unsigned)w; /* restore global window pointer */
1119 G.bb = b; /* restore global bit buffer */
1120 G.bk = k;
1122 cleanup_and_exit:
1123 return retval;
1127 /* Globals for literal tables (built once) */
1128 /* Moved to globals.h */
1129 #if 0
1130 struct huft *fixed_tl = (struct huft *)NULL;
1131 struct huft *fixed_td;
1132 int fixed_bl, fixed_bd;
1133 #endif
1135 static int inflate_fixed(__G)
1136 __GDEF
1137 /* decompress an inflated type 1 (fixed Huffman codes) block. We should
1138 either replace this with a custom decoder, or at least precompute the
1139 Huffman tables. */
1141 /* if first time, set up tables for fixed blocks */
1142 Trace((stderr, "\nliteral block"));
1143 if (G.fixed_tl == (struct huft *)NULL)
1145 int i; /* temporary variable */
1146 unsigned l[288]; /* length list for huft_build */
1148 /* literal table */
1149 for (i = 0; i < 144; i++)
1150 l[i] = 8;
1151 for (; i < 256; i++)
1152 l[i] = 9;
1153 for (; i < 280; i++)
1154 l[i] = 7;
1155 for (; i < 288; i++) /* make a complete, but wrong code set */
1156 l[i] = 8;
1157 G.fixed_bl = 7;
1158 #ifdef USE_DEFLATE64
1159 if ((i = huft_build(__G__ l, 288, 257, G.cplens, G.cplext,
1160 &G.fixed_tl, &G.fixed_bl)) != 0)
1161 #else
1162 if ((i = huft_build(__G__ l, 288, 257, cplens, cplext,
1163 &G.fixed_tl, &G.fixed_bl)) != 0)
1164 #endif
1166 G.fixed_tl = (struct huft *)NULL;
1167 return i;
1170 /* distance table */
1171 for (i = 0; i < MAXDISTS; i++) /* make an incomplete code set */
1172 l[i] = 5;
1173 G.fixed_bd = 5;
1174 #ifdef USE_DEFLATE64
1175 if ((i = huft_build(__G__ l, MAXDISTS, 0, cpdist, G.cpdext,
1176 &G.fixed_td, &G.fixed_bd)) > 1)
1177 #else
1178 if ((i = huft_build(__G__ l, MAXDISTS, 0, cpdist, cpdext,
1179 &G.fixed_td, &G.fixed_bd)) > 1)
1180 #endif
1182 huft_free(G.fixed_tl);
1183 G.fixed_td = G.fixed_tl = (struct huft *)NULL;
1184 return i;
1188 /* decompress until an end-of-block code */
1189 return inflate_codes(__G__ G.fixed_tl, G.fixed_td,
1190 G.fixed_bl, G.fixed_bd);
1195 static int inflate_dynamic(__G)
1196 __GDEF
1197 /* decompress an inflated type 2 (dynamic Huffman codes) block. */
1199 unsigned i; /* temporary variables */
1200 unsigned j;
1201 unsigned l; /* last length */
1202 unsigned m; /* mask for bit lengths table */
1203 unsigned n; /* number of lengths to get */
1204 struct huft *tl = (struct huft *)NULL; /* literal/length code table */
1205 struct huft *td = (struct huft *)NULL; /* distance code table */
1206 struct huft *th; /* temp huft table pointer used in tables decoding */
1207 unsigned bl; /* lookup bits for tl */
1208 unsigned bd; /* lookup bits for td */
1209 unsigned nb; /* number of bit length codes */
1210 unsigned nl; /* number of literal/length codes */
1211 unsigned nd; /* number of distance codes */
1212 unsigned ll[MAXLITLENS+MAXDISTS]; /* lit./length and distance code lengths */
1213 register ulg b; /* bit buffer */
1214 register unsigned k; /* number of bits in bit buffer */
1215 int retval = 0; /* error code returned: initialized to "no error" */
1218 /* make local bit buffer */
1219 Trace((stderr, "\ndynamic block"));
1220 b = G.bb;
1221 k = G.bk;
1224 /* read in table lengths */
1225 NEEDBITS(5)
1226 nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */
1227 DUMPBITS(5)
1228 NEEDBITS(5)
1229 nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */
1230 DUMPBITS(5)
1231 NEEDBITS(4)
1232 nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */
1233 DUMPBITS(4)
1234 if (nl > MAXLITLENS || nd > MAXDISTS)
1235 return 1; /* bad lengths */
1238 /* read in bit-length-code lengths */
1239 for (j = 0; j < nb; j++)
1241 NEEDBITS(3)
1242 ll[border[j]] = (unsigned)b & 7;
1243 DUMPBITS(3)
1245 for (; j < 19; j++)
1246 ll[border[j]] = 0;
1249 /* build decoding table for trees--single level, 7 bit lookup */
1250 bl = 7;
1251 retval = huft_build(__G__ ll, 19, 19, NULL, NULL, &tl, &bl);
1252 if (bl == 0) /* no bit lengths */
1253 retval = 1;
1254 if (retval)
1256 if (retval == 1)
1257 huft_free(tl);
1258 return retval; /* incomplete code set */
1262 /* read in literal and distance code lengths */
1263 n = nl + nd;
1264 m = mask_bits[bl];
1265 i = l = 0;
1266 while (i < n)
1268 NEEDBITS(bl)
1269 j = (th = tl + ((unsigned)b & m))->b;
1270 DUMPBITS(j)
1271 j = th->v.n;
1272 if (j < 16) /* length of code in bits (0..15) */
1273 ll[i++] = l = j; /* save last length in l */
1274 else if (j == 16) /* repeat last length 3 to 6 times */
1276 NEEDBITS(2)
1277 j = 3 + ((unsigned)b & 3);
1278 DUMPBITS(2)
1279 if ((unsigned)i + j > n) {
1280 huft_free(tl);
1281 return 1;
1283 while (j--)
1284 ll[i++] = l;
1286 else if (j == 17) /* 3 to 10 zero length codes */
1288 NEEDBITS(3)
1289 j = 3 + ((unsigned)b & 7);
1290 DUMPBITS(3)
1291 if ((unsigned)i + j > n) {
1292 huft_free(tl);
1293 return 1;
1295 while (j--)
1296 ll[i++] = 0;
1297 l = 0;
1299 else /* j == 18: 11 to 138 zero length codes */
1301 NEEDBITS(7)
1302 j = 11 + ((unsigned)b & 0x7f);
1303 DUMPBITS(7)
1304 if ((unsigned)i + j > n) {
1305 huft_free(tl);
1306 return 1;
1308 while (j--)
1309 ll[i++] = 0;
1310 l = 0;
1315 /* free decoding table for trees */
1316 huft_free(tl);
1319 /* restore the global bit buffer */
1320 G.bb = b;
1321 G.bk = k;
1324 /* build the decoding tables for literal/length and distance codes */
1325 bl = lbits;
1326 #ifdef USE_DEFLATE64
1327 retval = huft_build(__G__ ll, nl, 257, G.cplens, G.cplext, &tl, &bl);
1328 #else
1329 retval = huft_build(__G__ ll, nl, 257, cplens, cplext, &tl, &bl);
1330 #endif
1331 if (bl == 0) /* no literals or lengths */
1332 retval = 1;
1333 if (retval)
1335 if (retval == 1) {
1336 if (!uO.qflag)
1337 MESSAGE((uch *)"(incomplete l-tree) ", 21L, 1);
1338 huft_free(tl);
1340 return retval; /* incomplete code set */
1342 #ifdef FIX_PAST_EOB_BY_TABLEADJUST
1343 /* Adjust the requested distance base table size so that a distance code
1344 fetch never tries to get bits behind an immediatly following end-of-block
1345 code. */
1346 bd = (dbits <= bl+1 ? dbits : bl+1);
1347 #else
1348 bd = dbits;
1349 #endif
1350 #ifdef USE_DEFLATE64
1351 retval = huft_build(__G__ ll + nl, nd, 0, cpdist, G.cpdext, &td, &bd);
1352 #else
1353 retval = huft_build(__G__ ll + nl, nd, 0, cpdist, cpdext, &td, &bd);
1354 #endif
1355 #ifdef PKZIP_BUG_WORKAROUND
1356 if (retval == 1)
1357 retval = 0;
1358 #endif
1359 if (bd == 0 && nl > 257) /* lengths but no distances */
1360 retval = 1;
1361 if (retval)
1363 if (retval == 1) {
1364 if (!uO.qflag)
1365 MESSAGE((uch *)"(incomplete d-tree) ", 21L, 1);
1366 huft_free(td);
1368 huft_free(tl);
1369 return retval;
1372 /* decompress until an end-of-block code */
1373 retval = inflate_codes(__G__ tl, td, bl, bd);
1375 cleanup_and_exit:
1376 /* free the decoding tables, return */
1377 if (tl != (struct huft *)NULL)
1378 huft_free(tl);
1379 if (td != (struct huft *)NULL)
1380 huft_free(td);
1381 return retval;
1386 static int inflate_block(__G__ e)
1387 __GDEF
1388 int *e; /* last block flag */
1389 /* decompress an inflated block */
1391 unsigned t; /* block type */
1392 register ulg b; /* bit buffer */
1393 register unsigned k; /* number of bits in bit buffer */
1394 int retval = 0; /* error code returned: initialized to "no error" */
1397 /* make local bit buffer */
1398 b = G.bb;
1399 k = G.bk;
1402 /* read in last block bit */
1403 NEEDBITS(1)
1404 *e = (int)b & 1;
1405 DUMPBITS(1)
1408 /* read in block type */
1409 NEEDBITS(2)
1410 t = (unsigned)b & 3;
1411 DUMPBITS(2)
1414 /* restore the global bit buffer */
1415 G.bb = b;
1416 G.bk = k;
1419 /* inflate that block type */
1420 if (t == 2)
1421 return inflate_dynamic(__G);
1422 if (t == 0)
1423 return inflate_stored(__G);
1424 if (t == 1)
1425 return inflate_fixed(__G);
1428 /* bad block type */
1429 retval = 2;
1431 cleanup_and_exit:
1432 return retval;
1437 int inflate(__G__ is_defl64)
1438 __GDEF
1439 int is_defl64;
1440 /* decompress an inflated entry */
1442 int e; /* last block flag */
1443 int r; /* result code */
1444 #ifdef DEBUG
1445 unsigned h = 0; /* maximum struct huft's malloc'ed */
1446 #endif
1448 #if (defined(DLL) && !defined(NO_SLIDE_REDIR))
1449 if (G.redirect_slide)
1450 wsize = G.redirect_size, redirSlide = G.redirect_buffer;
1451 else
1452 wsize = WSIZE, redirSlide = slide; /* how they're #defined if !DLL */
1453 #endif
1455 /* initialize window, bit buffer */
1456 G.wp = 0;
1457 G.bk = 0;
1458 G.bb = 0;
1460 #ifdef USE_DEFLATE64
1461 if (is_defl64) {
1462 G.cplens = cplens64;
1463 G.cplext = cplext64;
1464 G.cpdext = cpdext64;
1465 G.fixed_tl = G.fixed_tl64;
1466 G.fixed_bl = G.fixed_bl64;
1467 G.fixed_td = G.fixed_td64;
1468 G.fixed_bd = G.fixed_bd64;
1469 } else {
1470 G.cplens = cplens32;
1471 G.cplext = cplext32;
1472 G.cpdext = cpdext32;
1473 G.fixed_tl = G.fixed_tl32;
1474 G.fixed_bl = G.fixed_bl32;
1475 G.fixed_td = G.fixed_td32;
1476 G.fixed_bd = G.fixed_bd32;
1478 #else /* !USE_DEFLATE64 */
1479 if (is_defl64) {
1480 /* This should not happen unless UnZip is built from object files
1481 * compiled with inconsistent option setting. Handle this by
1482 * returning with "bad input" error code.
1484 Trace((stderr, "\nThis inflate() cannot handle Deflate64!\n"));
1485 return 2;
1487 #endif /* ?USE_DEFLATE64 */
1489 /* decompress until the last block */
1490 do {
1491 #ifdef DEBUG
1492 G.hufts = 0;
1493 #endif
1494 if ((r = inflate_block(__G__ &e)) != 0)
1495 return r;
1496 #ifdef DEBUG
1497 if (G.hufts > h)
1498 h = G.hufts;
1499 #endif
1500 } while (!e);
1502 Trace((stderr, "\n%u bytes in Huffman tables (%u/entry)\n",
1503 h * (unsigned)sizeof(struct huft), (unsigned)sizeof(struct huft)));
1505 #ifdef USE_DEFLATE64
1506 if (is_defl64) {
1507 G.fixed_tl64 = G.fixed_tl;
1508 G.fixed_bl64 = G.fixed_bl;
1509 G.fixed_td64 = G.fixed_td;
1510 G.fixed_bd64 = G.fixed_bd;
1511 } else {
1512 G.fixed_tl32 = G.fixed_tl;
1513 G.fixed_bl32 = G.fixed_bl;
1514 G.fixed_td32 = G.fixed_td;
1515 G.fixed_bd32 = G.fixed_bd;
1517 #endif
1519 /* flush out redirSlide and return (success, unless final FLUSH failed) */
1520 return (FLUSH(G.wp));
1525 int inflate_free(__G)
1526 __GDEF
1528 if (G.fixed_tl != (struct huft *)NULL)
1530 huft_free(G.fixed_td);
1531 huft_free(G.fixed_tl);
1532 G.fixed_td = G.fixed_tl = (struct huft *)NULL;
1534 return 0;
1537 #endif /* ?USE_ZLIB */
1541 * GRR: moved huft_build() and huft_free() down here; used by explode()
1542 * and fUnZip regardless of whether USE_ZLIB defined or not
1546 /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
1547 #define BMAX 16 /* maximum bit length of any code (16 for explode) */
1548 #define N_MAX 288 /* maximum number of codes in any set */
1551 int huft_build(__G__ b, n, s, d, e, t, m)
1552 __GDEF
1553 ZCONST unsigned *b; /* code lengths in bits (all assumed <= BMAX) */
1554 unsigned n; /* number of codes (assumed <= N_MAX) */
1555 unsigned s; /* number of simple-valued codes (0..s-1) */
1556 ZCONST ush *d; /* list of base values for non-simple codes */
1557 ZCONST uch *e; /* list of extra bits for non-simple codes */
1558 struct huft **t; /* result: starting table */
1559 unsigned *m; /* maximum lookup bits, returns actual */
1560 /* Given a list of code lengths and a maximum table size, make a set of
1561 tables to decode that set of codes. Return zero on success, one if
1562 the given code set is incomplete (the tables are still built in this
1563 case), two if the input is invalid (all zero length codes or an
1564 oversubscribed set of lengths), and three if not enough memory.
1565 The code with value 256 is special, and the tables are constructed
1566 so that no bits beyond that code are fetched when that code is
1567 decoded. */
1569 unsigned a; /* counter for codes of length k */
1570 unsigned c[BMAX+1]; /* bit length count table */
1571 unsigned el; /* length of EOB code (value 256) */
1572 unsigned f; /* i repeats in table every f entries */
1573 int g; /* maximum code length */
1574 int h; /* table level */
1575 register unsigned i; /* counter, current code */
1576 register unsigned j; /* counter */
1577 register int k; /* number of bits in current code */
1578 int lx[BMAX+1]; /* memory for l[-1..BMAX-1] */
1579 int *l = lx+1; /* stack of bits per table */
1580 register unsigned *p; /* pointer into c[], b[], or v[] */
1581 register struct huft *q; /* points to current table */
1582 struct huft r; /* table entry for structure assignment */
1583 struct huft *u[BMAX]; /* table stack */
1584 unsigned v[N_MAX]; /* values in order of bit length */
1585 register int w; /* bits before this table == (l * h) */
1586 unsigned x[BMAX+1]; /* bit offsets, then code stack */
1587 unsigned *xp; /* pointer into x */
1588 int y; /* number of dummy codes added */
1589 unsigned z; /* number of entries in current table */
1592 /* Generate counts for each bit length */
1593 el = n > 256 ? b[256] : BMAX; /* set length of EOB code, if any */
1594 memzero((char *)c, sizeof(c));
1595 p = (unsigned *)b; i = n;
1596 do {
1597 c[*p]++; p++; /* assume all entries <= BMAX */
1598 } while (--i);
1599 if (c[0] == n) /* null input--all zero length codes */
1601 *t = (struct huft *)NULL;
1602 *m = 0;
1603 return 0;
1607 /* Find minimum and maximum length, bound *m by those */
1608 for (j = 1; j <= BMAX; j++)
1609 if (c[j])
1610 break;
1611 k = j; /* minimum code length */
1612 if (*m < j)
1613 *m = j;
1614 for (i = BMAX; i; i--)
1615 if (c[i])
1616 break;
1617 g = i; /* maximum code length */
1618 if (*m > i)
1619 *m = i;
1622 /* Adjust last length count to fill out codes, if needed */
1623 for (y = 1 << j; j < i; j++, y <<= 1)
1624 if ((y -= c[j]) < 0)
1625 return 2; /* bad input: more codes than bits */
1626 if ((y -= c[i]) < 0)
1627 return 2;
1628 c[i] += y;
1631 /* Generate starting offsets into the value table for each length */
1632 x[1] = j = 0;
1633 p = c + 1; xp = x + 2;
1634 while (--i) { /* note that i == g from above */
1635 *xp++ = (j += *p++);
1639 /* Make a table of values in order of bit lengths */
1640 memzero((char *)v, sizeof(v));
1641 p = (unsigned *)b; i = 0;
1642 do {
1643 if ((j = *p++) != 0)
1644 v[x[j]++] = i;
1645 } while (++i < n);
1646 n = x[g]; /* set n to length of v */
1649 /* Generate the Huffman codes and for each, make the table entries */
1650 x[0] = i = 0; /* first Huffman code is zero */
1651 p = v; /* grab values in bit order */
1652 h = -1; /* no tables yet--level -1 */
1653 w = l[-1] = 0; /* no bits decoded yet */
1654 u[0] = (struct huft *)NULL; /* just to keep compilers happy */
1655 q = (struct huft *)NULL; /* ditto */
1656 z = 0; /* ditto */
1658 /* go through the bit lengths (k already is bits in shortest code) */
1659 for (; k <= g; k++)
1661 a = c[k];
1662 while (a--)
1664 /* here i is the Huffman code of length k bits for value *p */
1665 /* make tables up to required level */
1666 while (k > w + l[h])
1668 w += l[h++]; /* add bits already decoded */
1670 /* compute minimum size table less than or equal to *m bits */
1671 z = (z = g - w) > *m ? *m : z; /* upper limit */
1672 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
1673 { /* too few codes for k-w bit table */
1674 f -= a + 1; /* deduct codes from patterns left */
1675 xp = c + k;
1676 while (++j < z) /* try smaller tables up to z bits */
1678 if ((f <<= 1) <= *++xp)
1679 break; /* enough codes to use up j bits */
1680 f -= *xp; /* else deduct codes from patterns */
1683 if ((unsigned)w + j > el && (unsigned)w < el)
1684 j = el - w; /* make EOB code end at table */
1685 z = 1 << j; /* table entries for j-bit table */
1686 l[h] = j; /* set table size in stack */
1688 /* allocate and link in new table */
1689 if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
1690 (struct huft *)NULL)
1692 if (h)
1693 huft_free(u[0]);
1694 return 3; /* not enough memory */
1696 #ifdef DEBUG
1697 G.hufts += z + 1; /* track memory usage */
1698 #endif
1699 *t = q + 1; /* link to list for huft_free() */
1700 *(t = &(q->v.t)) = (struct huft *)NULL;
1701 u[h] = ++q; /* table starts after link */
1703 /* connect to last table, if there is one */
1704 if (h)
1706 x[h] = i; /* save pattern for backing up */
1707 r.b = (uch)l[h-1]; /* bits to dump before this table */
1708 r.e = (uch)(32 + j); /* bits in this table */
1709 r.v.t = q; /* pointer to this table */
1710 j = (i & ((1 << w) - 1)) >> (w - l[h-1]);
1711 u[h-1][j] = r; /* connect to last table */
1715 /* set up table entry in r */
1716 r.b = (uch)(k - w);
1717 if (p >= v + n)
1718 r.e = INVALID_CODE; /* out of values--invalid code */
1719 else if (*p < s)
1721 r.e = (uch)(*p < 256 ? 32 : 31); /* 256 is end-of-block code */
1722 r.v.n = (ush)*p++; /* simple code is just the value */
1724 else
1726 r.e = e[*p - s]; /* non-simple--look up in lists */
1727 r.v.n = d[*p++ - s];
1730 /* fill code-like entries with r */
1731 f = 1 << (k - w);
1732 for (j = i >> w; j < z; j += f)
1733 q[j] = r;
1735 /* backwards increment the k-bit code i */
1736 for (j = 1 << (k - 1); i & j; j >>= 1)
1737 i ^= j;
1738 i ^= j;
1740 /* backup over finished tables */
1741 while ((i & ((1 << w) - 1)) != x[h])
1742 w -= l[--h]; /* don't need to update q */
1747 /* return actual size of base table */
1748 *m = l[0];
1751 /* Return true (1) if we were given an incomplete table */
1752 return y != 0 && g != 1;
1757 int huft_free(t)
1758 struct huft *t; /* table to free */
1759 /* Free the malloc'ed tables built by huft_build(), which makes a linked
1760 list of the tables it made, with the links in a dummy first entry of
1761 each table. */
1763 register struct huft *p, *q;
1766 /* Go through linked list, freeing from the malloced (t[-1]) address. */
1767 p = t;
1768 while (p != (struct huft *)NULL)
1770 q = (--p)->v.t;
1771 free((zvoid *)p);
1772 p = q;
1774 return 0;