1 /* libFLAC - Free Lossless Audio Codec library
2 * Copyright (C) 2000-2009 Josh Coalson
3 * Copyright (C) 2011-2014 Xiph.Org Foundation
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * - Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
16 * - Neither the name of the Xiph.org Foundation nor the names of its
17 * contributors may be used to endorse or promote products derived from
18 * this software without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
24 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 #include "../compat.h"
40 #include "include/private/bitmath.h"
41 #include "include/private/fixed.h"
42 #include "../assert.h"
47 #define local_abs(x) ((unsigned)((x)<0? -(x) : (x)))
49 #ifdef FLAC__INTEGER_ONLY_LIBRARY
50 /* rbps stands for residual bits per sample
53 * rbps = log (-----------)
56 static FLAC__fixedpoint
local__compute_rbps_integerized(FLAC__uint32 err
, FLAC__uint32 n
)
59 unsigned bits
; /* the number of bits required to represent a number */
60 int fracbits
; /* the number of bits of rbps that comprise the fractional part */
62 FLAC__ASSERT(sizeof(rbps
) == sizeof(FLAC__fixedpoint
));
63 FLAC__ASSERT(err
> 0);
66 FLAC__ASSERT(n
<= FLAC__MAX_BLOCK_SIZE
);
70 * The above two things tell us 1) n fits in 16 bits; 2) err/n > 1.
71 * These allow us later to know we won't lose too much precision in the
72 * fixed-point division (err<<fracbits)/n.
75 fracbits
= (8*sizeof(err
)) - (FLAC__bitmath_ilog2(err
)+1);
79 /* err now holds err/n with fracbits fractional bits */
82 * Whittle err down to 16 bits max. 16 significant bits is enough for
85 FLAC__ASSERT(err
> 0);
86 bits
= FLAC__bitmath_ilog2(err
)+1;
89 fracbits
-= (bits
-16);
91 rbps
= (FLAC__uint32
)err
;
93 /* Multiply by fixed-point version of ln(2), with 16 fractional bits */
96 FLAC__ASSERT(fracbits
>= 0);
98 /* FLAC__fixedpoint_log2 requires fracbits%4 to be 0 */
100 const int f
= fracbits
& 3;
107 rbps
= FLAC__fixedpoint_log2(rbps
, fracbits
, (unsigned)(-1));
113 * The return value must have 16 fractional bits. Since the whole part
114 * of the base-2 log of a 32 bit number must fit in 5 bits, and fracbits
115 * must be >= -3, these assertion allows us to be able to shift rbps
116 * left if necessary to get 16 fracbits without losing any bits of the
117 * whole part of rbps.
119 * There is a slight chance due to accumulated error that the whole part
120 * will require 6 bits, so we use 6 in the assertion. Really though as
121 * long as it fits in 13 bits (32 - (16 - (-3))) we are fine.
123 FLAC__ASSERT((int)FLAC__bitmath_ilog2(rbps
)+1 <= fracbits
+ 6);
124 FLAC__ASSERT(fracbits
>= -3);
126 /* now shift the decimal point into place */
128 return rbps
<< (16-fracbits
);
129 else if(fracbits
> 16)
130 return rbps
>> (fracbits
-16);
135 static FLAC__fixedpoint
local__compute_rbps_wide_integerized(FLAC__uint64 err
, FLAC__uint32 n
)
138 unsigned bits
; /* the number of bits required to represent a number */
139 int fracbits
; /* the number of bits of rbps that comprise the fractional part */
141 FLAC__ASSERT(sizeof(rbps
) == sizeof(FLAC__fixedpoint
));
142 FLAC__ASSERT(err
> 0);
145 FLAC__ASSERT(n
<= FLAC__MAX_BLOCK_SIZE
);
149 * The above two things tell us 1) n fits in 16 bits; 2) err/n > 1.
150 * These allow us later to know we won't lose too much precision in the
151 * fixed-point division (err<<fracbits)/n.
154 fracbits
= (8*sizeof(err
)) - (FLAC__bitmath_ilog2_wide(err
)+1);
158 /* err now holds err/n with fracbits fractional bits */
161 * Whittle err down to 16 bits max. 16 significant bits is enough for
164 FLAC__ASSERT(err
> 0);
165 bits
= FLAC__bitmath_ilog2_wide(err
)+1;
168 fracbits
-= (bits
-16);
170 rbps
= (FLAC__uint32
)err
;
172 /* Multiply by fixed-point version of ln(2), with 16 fractional bits */
173 rbps
*= FLAC__FP_LN2
;
175 FLAC__ASSERT(fracbits
>= 0);
177 /* FLAC__fixedpoint_log2 requires fracbits%4 to be 0 */
179 const int f
= fracbits
& 3;
186 rbps
= FLAC__fixedpoint_log2(rbps
, fracbits
, (unsigned)(-1));
192 * The return value must have 16 fractional bits. Since the whole part
193 * of the base-2 log of a 32 bit number must fit in 5 bits, and fracbits
194 * must be >= -3, these assertion allows us to be able to shift rbps
195 * left if necessary to get 16 fracbits without losing any bits of the
196 * whole part of rbps.
198 * There is a slight chance due to accumulated error that the whole part
199 * will require 6 bits, so we use 6 in the assertion. Really though as
200 * long as it fits in 13 bits (32 - (16 - (-3))) we are fine.
202 FLAC__ASSERT((int)FLAC__bitmath_ilog2(rbps
)+1 <= fracbits
+ 6);
203 FLAC__ASSERT(fracbits
>= -3);
205 /* now shift the decimal point into place */
207 return rbps
<< (16-fracbits
);
208 else if(fracbits
> 16)
209 return rbps
>> (fracbits
-16);
215 #ifndef FLAC__INTEGER_ONLY_LIBRARY
216 unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data
[], unsigned data_len
, FLAC__float residual_bits_per_sample
[FLAC__MAX_FIXED_ORDER
+1])
218 unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data
[], unsigned data_len
, FLAC__fixedpoint residual_bits_per_sample
[FLAC__MAX_FIXED_ORDER
+1])
221 FLAC__int32 last_error_0
= data
[-1];
222 FLAC__int32 last_error_1
= data
[-1] - data
[-2];
223 FLAC__int32 last_error_2
= last_error_1
- (data
[-2] - data
[-3]);
224 FLAC__int32 last_error_3
= last_error_2
- (data
[-2] - 2*data
[-3] + data
[-4]);
225 FLAC__int32 error
, save
;
226 FLAC__uint32 total_error_0
= 0, total_error_1
= 0, total_error_2
= 0, total_error_3
= 0, total_error_4
= 0;
229 for(i
= 0; i
< data_len
; i
++) {
230 error
= data
[i
] ; total_error_0
+= local_abs(error
); save
= error
;
231 error
-= last_error_0
; total_error_1
+= local_abs(error
); last_error_0
= save
; save
= error
;
232 error
-= last_error_1
; total_error_2
+= local_abs(error
); last_error_1
= save
; save
= error
;
233 error
-= last_error_2
; total_error_3
+= local_abs(error
); last_error_2
= save
; save
= error
;
234 error
-= last_error_3
; total_error_4
+= local_abs(error
); last_error_3
= save
;
237 if(total_error_0
< flac_min(flac_min(flac_min(total_error_1
, total_error_2
), total_error_3
), total_error_4
))
239 else if(total_error_1
< flac_min(flac_min(total_error_2
, total_error_3
), total_error_4
))
241 else if(total_error_2
< flac_min(total_error_3
, total_error_4
))
243 else if(total_error_3
< total_error_4
)
248 /* Estimate the expected number of bits per residual signal sample. */
249 /* 'total_error*' is linearly related to the variance of the residual */
250 /* signal, so we use it directly to compute E(|x|) */
251 FLAC__ASSERT(data_len
> 0 || total_error_0
== 0);
252 FLAC__ASSERT(data_len
> 0 || total_error_1
== 0);
253 FLAC__ASSERT(data_len
> 0 || total_error_2
== 0);
254 FLAC__ASSERT(data_len
> 0 || total_error_3
== 0);
255 FLAC__ASSERT(data_len
> 0 || total_error_4
== 0);
256 #ifndef FLAC__INTEGER_ONLY_LIBRARY
257 residual_bits_per_sample
[0] = (FLAC__float
)((total_error_0
> 0) ? log(M_LN2
* (FLAC__double
)total_error_0
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
258 residual_bits_per_sample
[1] = (FLAC__float
)((total_error_1
> 0) ? log(M_LN2
* (FLAC__double
)total_error_1
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
259 residual_bits_per_sample
[2] = (FLAC__float
)((total_error_2
> 0) ? log(M_LN2
* (FLAC__double
)total_error_2
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
260 residual_bits_per_sample
[3] = (FLAC__float
)((total_error_3
> 0) ? log(M_LN2
* (FLAC__double
)total_error_3
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
261 residual_bits_per_sample
[4] = (FLAC__float
)((total_error_4
> 0) ? log(M_LN2
* (FLAC__double
)total_error_4
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
263 residual_bits_per_sample
[0] = (total_error_0
> 0) ? local__compute_rbps_integerized(total_error_0
, data_len
) : 0;
264 residual_bits_per_sample
[1] = (total_error_1
> 0) ? local__compute_rbps_integerized(total_error_1
, data_len
) : 0;
265 residual_bits_per_sample
[2] = (total_error_2
> 0) ? local__compute_rbps_integerized(total_error_2
, data_len
) : 0;
266 residual_bits_per_sample
[3] = (total_error_3
> 0) ? local__compute_rbps_integerized(total_error_3
, data_len
) : 0;
267 residual_bits_per_sample
[4] = (total_error_4
> 0) ? local__compute_rbps_integerized(total_error_4
, data_len
) : 0;
273 #ifndef FLAC__INTEGER_ONLY_LIBRARY
274 unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data
[], unsigned data_len
, FLAC__float residual_bits_per_sample
[FLAC__MAX_FIXED_ORDER
+1])
276 unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data
[], unsigned data_len
, FLAC__fixedpoint residual_bits_per_sample
[FLAC__MAX_FIXED_ORDER
+1])
279 FLAC__int32 last_error_0
= data
[-1];
280 FLAC__int32 last_error_1
= data
[-1] - data
[-2];
281 FLAC__int32 last_error_2
= last_error_1
- (data
[-2] - data
[-3]);
282 FLAC__int32 last_error_3
= last_error_2
- (data
[-2] - 2*data
[-3] + data
[-4]);
283 FLAC__int32 error
, save
;
284 /* total_error_* are 64-bits to avoid overflow when encoding
285 * erratic signals when the bits-per-sample and blocksize are
288 FLAC__uint64 total_error_0
= 0, total_error_1
= 0, total_error_2
= 0, total_error_3
= 0, total_error_4
= 0;
291 for(i
= 0; i
< data_len
; i
++) {
292 error
= data
[i
] ; total_error_0
+= local_abs(error
); save
= error
;
293 error
-= last_error_0
; total_error_1
+= local_abs(error
); last_error_0
= save
; save
= error
;
294 error
-= last_error_1
; total_error_2
+= local_abs(error
); last_error_1
= save
; save
= error
;
295 error
-= last_error_2
; total_error_3
+= local_abs(error
); last_error_2
= save
; save
= error
;
296 error
-= last_error_3
; total_error_4
+= local_abs(error
); last_error_3
= save
;
299 if(total_error_0
< flac_min(flac_min(flac_min(total_error_1
, total_error_2
), total_error_3
), total_error_4
))
301 else if(total_error_1
< flac_min(flac_min(total_error_2
, total_error_3
), total_error_4
))
303 else if(total_error_2
< flac_min(total_error_3
, total_error_4
))
305 else if(total_error_3
< total_error_4
)
310 /* Estimate the expected number of bits per residual signal sample. */
311 /* 'total_error*' is linearly related to the variance of the residual */
312 /* signal, so we use it directly to compute E(|x|) */
313 FLAC__ASSERT(data_len
> 0 || total_error_0
== 0);
314 FLAC__ASSERT(data_len
> 0 || total_error_1
== 0);
315 FLAC__ASSERT(data_len
> 0 || total_error_2
== 0);
316 FLAC__ASSERT(data_len
> 0 || total_error_3
== 0);
317 FLAC__ASSERT(data_len
> 0 || total_error_4
== 0);
318 #ifndef FLAC__INTEGER_ONLY_LIBRARY
319 residual_bits_per_sample
[0] = (FLAC__float
)((total_error_0
> 0) ? log(M_LN2
* (FLAC__double
)total_error_0
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
320 residual_bits_per_sample
[1] = (FLAC__float
)((total_error_1
> 0) ? log(M_LN2
* (FLAC__double
)total_error_1
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
321 residual_bits_per_sample
[2] = (FLAC__float
)((total_error_2
> 0) ? log(M_LN2
* (FLAC__double
)total_error_2
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
322 residual_bits_per_sample
[3] = (FLAC__float
)((total_error_3
> 0) ? log(M_LN2
* (FLAC__double
)total_error_3
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
323 residual_bits_per_sample
[4] = (FLAC__float
)((total_error_4
> 0) ? log(M_LN2
* (FLAC__double
)total_error_4
/ (FLAC__double
)data_len
) / M_LN2
: 0.0);
325 residual_bits_per_sample
[0] = (total_error_0
> 0) ? local__compute_rbps_wide_integerized(total_error_0
, data_len
) : 0;
326 residual_bits_per_sample
[1] = (total_error_1
> 0) ? local__compute_rbps_wide_integerized(total_error_1
, data_len
) : 0;
327 residual_bits_per_sample
[2] = (total_error_2
> 0) ? local__compute_rbps_wide_integerized(total_error_2
, data_len
) : 0;
328 residual_bits_per_sample
[3] = (total_error_3
> 0) ? local__compute_rbps_wide_integerized(total_error_3
, data_len
) : 0;
329 residual_bits_per_sample
[4] = (total_error_4
> 0) ? local__compute_rbps_wide_integerized(total_error_4
, data_len
) : 0;
335 void FLAC__fixed_compute_residual(const FLAC__int32 data
[], unsigned data_len
, unsigned order
, FLAC__int32 residual
[])
337 const int idata_len
= (int)data_len
;
342 FLAC__ASSERT(sizeof(residual
[0]) == sizeof(data
[0]));
343 memcpy(residual
, data
, sizeof(residual
[0])*data_len
);
346 for(i
= 0; i
< idata_len
; i
++)
347 residual
[i
] = data
[i
] - data
[i
-1];
350 for(i
= 0; i
< idata_len
; i
++)
351 #if 1 /* OPT: may be faster with some compilers on some systems */
352 residual
[i
] = data
[i
] - (data
[i
-1] << 1) + data
[i
-2];
354 residual
[i
] = data
[i
] - 2*data
[i
-1] + data
[i
-2];
358 for(i
= 0; i
< idata_len
; i
++)
359 #if 1 /* OPT: may be faster with some compilers on some systems */
360 residual
[i
] = data
[i
] - (((data
[i
-1]-data
[i
-2])<<1) + (data
[i
-1]-data
[i
-2])) - data
[i
-3];
362 residual
[i
] = data
[i
] - 3*data
[i
-1] + 3*data
[i
-2] - data
[i
-3];
366 for(i
= 0; i
< idata_len
; i
++)
367 #if 1 /* OPT: may be faster with some compilers on some systems */
368 residual
[i
] = data
[i
] - ((data
[i
-1]+data
[i
-3])<<2) + ((data
[i
-2]<<2) + (data
[i
-2]<<1)) + data
[i
-4];
370 residual
[i
] = data
[i
] - 4*data
[i
-1] + 6*data
[i
-2] - 4*data
[i
-3] + data
[i
-4];
378 void FLAC__fixed_restore_signal(const FLAC__int32 residual
[], unsigned data_len
, unsigned order
, FLAC__int32 data
[])
380 int i
, idata_len
= (int)data_len
;
384 FLAC__ASSERT(sizeof(residual
[0]) == sizeof(data
[0]));
385 memcpy(data
, residual
, sizeof(residual
[0])*data_len
);
388 for(i
= 0; i
< idata_len
; i
++)
389 data
[i
] = residual
[i
] + data
[i
-1];
392 for(i
= 0; i
< idata_len
; i
++)
393 #if 1 /* OPT: may be faster with some compilers on some systems */
394 data
[i
] = residual
[i
] + (data
[i
-1]<<1) - data
[i
-2];
396 data
[i
] = residual
[i
] + 2*data
[i
-1] - data
[i
-2];
400 for(i
= 0; i
< idata_len
; i
++)
401 #if 1 /* OPT: may be faster with some compilers on some systems */
402 data
[i
] = residual
[i
] + (((data
[i
-1]-data
[i
-2])<<1) + (data
[i
-1]-data
[i
-2])) + data
[i
-3];
404 data
[i
] = residual
[i
] + 3*data
[i
-1] - 3*data
[i
-2] + data
[i
-3];
408 for(i
= 0; i
< idata_len
; i
++)
409 #if 1 /* OPT: may be faster with some compilers on some systems */
410 data
[i
] = residual
[i
] + ((data
[i
-1]+data
[i
-3])<<2) - ((data
[i
-2]<<2) + (data
[i
-2]<<1)) - data
[i
-4];
412 data
[i
] = residual
[i
] + 4*data
[i
-1] - 6*data
[i
-2] + 4*data
[i
-3] - data
[i
-4];