2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
22 #include <linux/sched.h>
24 #include <linux/file.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/eventfd.h>
35 #include <asm/kmap_types.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
40 #define dprintk printk
42 #define dprintk(x...) do { ; } while (0)
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock
);
47 unsigned long aio_nr
; /* current system wide number of aio requests */
48 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
51 static struct kmem_cache
*kiocb_cachep
;
52 static struct kmem_cache
*kioctx_cachep
;
54 static struct workqueue_struct
*aio_wq
;
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct
*);
58 static DECLARE_WORK(fput_work
, aio_fput_routine
);
60 static DEFINE_SPINLOCK(fput_lock
);
61 static LIST_HEAD(fput_head
);
63 static void aio_kick_handler(struct work_struct
*);
64 static void aio_queue_work(struct kioctx
*);
67 * Creates the slab caches used by the aio routines, panic on
68 * failure as this is done early during the boot sequence.
70 static int __init
aio_setup(void)
72 kiocb_cachep
= KMEM_CACHE(kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
73 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
75 aio_wq
= create_workqueue("aio");
77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page
));
82 static void aio_free_ring(struct kioctx
*ctx
)
84 struct aio_ring_info
*info
= &ctx
->ring_info
;
87 for (i
=0; i
<info
->nr_pages
; i
++)
88 put_page(info
->ring_pages
[i
]);
90 if (info
->mmap_size
) {
91 down_write(&ctx
->mm
->mmap_sem
);
92 do_munmap(ctx
->mm
, info
->mmap_base
, info
->mmap_size
);
93 up_write(&ctx
->mm
->mmap_sem
);
96 if (info
->ring_pages
&& info
->ring_pages
!= info
->internal_pages
)
97 kfree(info
->ring_pages
);
98 info
->ring_pages
= NULL
;
102 static int aio_setup_ring(struct kioctx
*ctx
)
104 struct aio_ring
*ring
;
105 struct aio_ring_info
*info
= &ctx
->ring_info
;
106 unsigned nr_events
= ctx
->max_reqs
;
110 /* Compensate for the ring buffer's head/tail overlap entry */
111 nr_events
+= 2; /* 1 is required, 2 for good luck */
113 size
= sizeof(struct aio_ring
);
114 size
+= sizeof(struct io_event
) * nr_events
;
115 nr_pages
= (size
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
120 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
)) / sizeof(struct io_event
);
123 info
->ring_pages
= info
->internal_pages
;
124 if (nr_pages
> AIO_RING_PAGES
) {
125 info
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_KERNEL
);
126 if (!info
->ring_pages
)
130 info
->mmap_size
= nr_pages
* PAGE_SIZE
;
131 dprintk("attempting mmap of %lu bytes\n", info
->mmap_size
);
132 down_write(&ctx
->mm
->mmap_sem
);
133 info
->mmap_base
= do_mmap(NULL
, 0, info
->mmap_size
,
134 PROT_READ
|PROT_WRITE
, MAP_ANONYMOUS
|MAP_PRIVATE
,
136 if (IS_ERR((void *)info
->mmap_base
)) {
137 up_write(&ctx
->mm
->mmap_sem
);
143 dprintk("mmap address: 0x%08lx\n", info
->mmap_base
);
144 info
->nr_pages
= get_user_pages(current
, ctx
->mm
,
145 info
->mmap_base
, nr_pages
,
146 1, 0, info
->ring_pages
, NULL
);
147 up_write(&ctx
->mm
->mmap_sem
);
149 if (unlikely(info
->nr_pages
!= nr_pages
)) {
154 ctx
->user_id
= info
->mmap_base
;
156 info
->nr
= nr_events
; /* trusted copy */
158 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
159 ring
->nr
= nr_events
; /* user copy */
160 ring
->id
= ctx
->user_id
;
161 ring
->head
= ring
->tail
= 0;
162 ring
->magic
= AIO_RING_MAGIC
;
163 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
164 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
165 ring
->header_length
= sizeof(struct aio_ring
);
166 kunmap_atomic(ring
, KM_USER0
);
172 /* aio_ring_event: returns a pointer to the event at the given index from
173 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
175 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
179 #define aio_ring_event(info, nr, km) ({ \
180 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
181 struct io_event *__event; \
182 __event = kmap_atomic( \
183 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184 __event += pos % AIO_EVENTS_PER_PAGE; \
188 #define put_aio_ring_event(event, km) do { \
189 struct io_event *__event = (event); \
191 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
194 static void ctx_rcu_free(struct rcu_head
*head
)
196 struct kioctx
*ctx
= container_of(head
, struct kioctx
, rcu_head
);
197 unsigned nr_events
= ctx
->max_reqs
;
199 kmem_cache_free(kioctx_cachep
, ctx
);
202 spin_lock(&aio_nr_lock
);
203 BUG_ON(aio_nr
- nr_events
> aio_nr
);
205 spin_unlock(&aio_nr_lock
);
210 * Called when the last user of an aio context has gone away,
211 * and the struct needs to be freed.
213 static void __put_ioctx(struct kioctx
*ctx
)
215 BUG_ON(ctx
->reqs_active
);
217 cancel_delayed_work(&ctx
->wq
);
218 cancel_work_sync(&ctx
->wq
.work
);
222 pr_debug("__put_ioctx: freeing %p\n", ctx
);
223 call_rcu(&ctx
->rcu_head
, ctx_rcu_free
);
226 #define get_ioctx(kioctx) do { \
227 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
228 atomic_inc(&(kioctx)->users); \
230 #define put_ioctx(kioctx) do { \
231 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
232 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \
233 __put_ioctx(kioctx); \
237 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
239 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
241 struct mm_struct
*mm
;
245 /* Prevent overflows */
246 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
247 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
248 pr_debug("ENOMEM: nr_events too high\n");
249 return ERR_PTR(-EINVAL
);
252 if ((unsigned long)nr_events
> aio_max_nr
)
253 return ERR_PTR(-EAGAIN
);
255 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
257 return ERR_PTR(-ENOMEM
);
259 ctx
->max_reqs
= nr_events
;
260 mm
= ctx
->mm
= current
->mm
;
261 atomic_inc(&mm
->mm_count
);
263 atomic_set(&ctx
->users
, 1);
264 spin_lock_init(&ctx
->ctx_lock
);
265 spin_lock_init(&ctx
->ring_info
.ring_lock
);
266 init_waitqueue_head(&ctx
->wait
);
268 INIT_LIST_HEAD(&ctx
->active_reqs
);
269 INIT_LIST_HEAD(&ctx
->run_list
);
270 INIT_DELAYED_WORK(&ctx
->wq
, aio_kick_handler
);
272 if (aio_setup_ring(ctx
) < 0)
275 /* limit the number of system wide aios */
277 spin_lock_bh(&aio_nr_lock
);
278 if (aio_nr
+ nr_events
> aio_max_nr
||
279 aio_nr
+ nr_events
< aio_nr
)
282 aio_nr
+= ctx
->max_reqs
;
283 spin_unlock_bh(&aio_nr_lock
);
284 if (ctx
->max_reqs
|| did_sync
)
287 /* wait for rcu callbacks to have completed before giving up */
290 ctx
->max_reqs
= nr_events
;
293 if (ctx
->max_reqs
== 0)
296 /* now link into global list. */
297 spin_lock(&mm
->ioctx_lock
);
298 hlist_add_head_rcu(&ctx
->list
, &mm
->ioctx_list
);
299 spin_unlock(&mm
->ioctx_lock
);
301 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
302 ctx
, ctx
->user_id
, current
->mm
, ctx
->ring_info
.nr
);
307 return ERR_PTR(-EAGAIN
);
311 kmem_cache_free(kioctx_cachep
, ctx
);
312 ctx
= ERR_PTR(-ENOMEM
);
314 dprintk("aio: error allocating ioctx %p\n", ctx
);
319 * Cancels all outstanding aio requests on an aio context. Used
320 * when the processes owning a context have all exited to encourage
321 * the rapid destruction of the kioctx.
323 static void aio_cancel_all(struct kioctx
*ctx
)
325 int (*cancel
)(struct kiocb
*, struct io_event
*);
327 spin_lock_irq(&ctx
->ctx_lock
);
329 while (!list_empty(&ctx
->active_reqs
)) {
330 struct list_head
*pos
= ctx
->active_reqs
.next
;
331 struct kiocb
*iocb
= list_kiocb(pos
);
332 list_del_init(&iocb
->ki_list
);
333 cancel
= iocb
->ki_cancel
;
334 kiocbSetCancelled(iocb
);
337 spin_unlock_irq(&ctx
->ctx_lock
);
339 spin_lock_irq(&ctx
->ctx_lock
);
342 spin_unlock_irq(&ctx
->ctx_lock
);
345 static void wait_for_all_aios(struct kioctx
*ctx
)
347 struct task_struct
*tsk
= current
;
348 DECLARE_WAITQUEUE(wait
, tsk
);
350 spin_lock_irq(&ctx
->ctx_lock
);
351 if (!ctx
->reqs_active
)
354 add_wait_queue(&ctx
->wait
, &wait
);
355 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
356 while (ctx
->reqs_active
) {
357 spin_unlock_irq(&ctx
->ctx_lock
);
359 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
360 spin_lock_irq(&ctx
->ctx_lock
);
362 __set_task_state(tsk
, TASK_RUNNING
);
363 remove_wait_queue(&ctx
->wait
, &wait
);
366 spin_unlock_irq(&ctx
->ctx_lock
);
369 /* wait_on_sync_kiocb:
370 * Waits on the given sync kiocb to complete.
372 ssize_t
wait_on_sync_kiocb(struct kiocb
*iocb
)
374 while (iocb
->ki_users
) {
375 set_current_state(TASK_UNINTERRUPTIBLE
);
380 __set_current_state(TASK_RUNNING
);
381 return iocb
->ki_user_data
;
384 /* exit_aio: called when the last user of mm goes away. At this point,
385 * there is no way for any new requests to be submited or any of the
386 * io_* syscalls to be called on the context. However, there may be
387 * outstanding requests which hold references to the context; as they
388 * go away, they will call put_ioctx and release any pinned memory
389 * associated with the request (held via struct page * references).
391 void exit_aio(struct mm_struct
*mm
)
395 while (!hlist_empty(&mm
->ioctx_list
)) {
396 ctx
= hlist_entry(mm
->ioctx_list
.first
, struct kioctx
, list
);
397 hlist_del_rcu(&ctx
->list
);
401 wait_for_all_aios(ctx
);
403 * Ensure we don't leave the ctx on the aio_wq
405 cancel_work_sync(&ctx
->wq
.work
);
407 if (1 != atomic_read(&ctx
->users
))
409 "exit_aio:ioctx still alive: %d %d %d\n",
410 atomic_read(&ctx
->users
), ctx
->dead
,
417 * Allocate a slot for an aio request. Increments the users count
418 * of the kioctx so that the kioctx stays around until all requests are
419 * complete. Returns NULL if no requests are free.
421 * Returns with kiocb->users set to 2. The io submit code path holds
422 * an extra reference while submitting the i/o.
423 * This prevents races between the aio code path referencing the
424 * req (after submitting it) and aio_complete() freeing the req.
426 static struct kiocb
*__aio_get_req(struct kioctx
*ctx
)
428 struct kiocb
*req
= NULL
;
429 struct aio_ring
*ring
;
432 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
440 req
->ki_cancel
= NULL
;
441 req
->ki_retry
= NULL
;
444 req
->ki_iovec
= NULL
;
445 INIT_LIST_HEAD(&req
->ki_run_list
);
446 req
->ki_eventfd
= NULL
;
448 /* Check if the completion queue has enough free space to
449 * accept an event from this io.
451 spin_lock_irq(&ctx
->ctx_lock
);
452 ring
= kmap_atomic(ctx
->ring_info
.ring_pages
[0], KM_USER0
);
453 if (ctx
->reqs_active
< aio_ring_avail(&ctx
->ring_info
, ring
)) {
454 list_add(&req
->ki_list
, &ctx
->active_reqs
);
458 kunmap_atomic(ring
, KM_USER0
);
459 spin_unlock_irq(&ctx
->ctx_lock
);
462 kmem_cache_free(kiocb_cachep
, req
);
469 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
472 /* Handle a potential starvation case -- should be exceedingly rare as
473 * requests will be stuck on fput_head only if the aio_fput_routine is
474 * delayed and the requests were the last user of the struct file.
476 req
= __aio_get_req(ctx
);
477 if (unlikely(NULL
== req
)) {
478 aio_fput_routine(NULL
);
479 req
= __aio_get_req(ctx
);
484 static inline void really_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
486 assert_spin_locked(&ctx
->ctx_lock
);
490 if (req
->ki_iovec
!= &req
->ki_inline_vec
)
491 kfree(req
->ki_iovec
);
492 kmem_cache_free(kiocb_cachep
, req
);
495 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
499 static void aio_fput_routine(struct work_struct
*data
)
501 spin_lock_irq(&fput_lock
);
502 while (likely(!list_empty(&fput_head
))) {
503 struct kiocb
*req
= list_kiocb(fput_head
.next
);
504 struct kioctx
*ctx
= req
->ki_ctx
;
506 list_del(&req
->ki_list
);
507 spin_unlock_irq(&fput_lock
);
509 /* Complete the fput(s) */
510 if (req
->ki_filp
!= NULL
)
511 __fput(req
->ki_filp
);
512 if (req
->ki_eventfd
!= NULL
)
513 __fput(req
->ki_eventfd
);
515 /* Link the iocb into the context's free list */
516 spin_lock_irq(&ctx
->ctx_lock
);
517 really_put_req(ctx
, req
);
518 spin_unlock_irq(&ctx
->ctx_lock
);
521 spin_lock_irq(&fput_lock
);
523 spin_unlock_irq(&fput_lock
);
527 * Returns true if this put was the last user of the request.
529 static int __aio_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
531 int schedule_putreq
= 0;
533 dprintk(KERN_DEBUG
"aio_put(%p): f_count=%ld\n",
534 req
, atomic_long_read(&req
->ki_filp
->f_count
));
536 assert_spin_locked(&ctx
->ctx_lock
);
539 BUG_ON(req
->ki_users
< 0);
540 if (likely(req
->ki_users
))
542 list_del(&req
->ki_list
); /* remove from active_reqs */
543 req
->ki_cancel
= NULL
;
544 req
->ki_retry
= NULL
;
547 * Try to optimize the aio and eventfd file* puts, by avoiding to
548 * schedule work in case it is not __fput() time. In normal cases,
549 * we would not be holding the last reference to the file*, so
550 * this function will be executed w/out any aio kthread wakeup.
552 if (unlikely(atomic_long_dec_and_test(&req
->ki_filp
->f_count
)))
556 if (req
->ki_eventfd
!= NULL
) {
557 if (unlikely(atomic_long_dec_and_test(&req
->ki_eventfd
->f_count
)))
560 req
->ki_eventfd
= NULL
;
562 if (unlikely(schedule_putreq
)) {
564 spin_lock(&fput_lock
);
565 list_add(&req
->ki_list
, &fput_head
);
566 spin_unlock(&fput_lock
);
567 queue_work(aio_wq
, &fput_work
);
569 really_put_req(ctx
, req
);
574 * Returns true if this put was the last user of the kiocb,
575 * false if the request is still in use.
577 int aio_put_req(struct kiocb
*req
)
579 struct kioctx
*ctx
= req
->ki_ctx
;
581 spin_lock_irq(&ctx
->ctx_lock
);
582 ret
= __aio_put_req(ctx
, req
);
583 spin_unlock_irq(&ctx
->ctx_lock
);
587 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
589 struct mm_struct
*mm
= current
->mm
;
590 struct kioctx
*ctx
, *ret
= NULL
;
591 struct hlist_node
*n
;
595 hlist_for_each_entry_rcu(ctx
, n
, &mm
->ioctx_list
, list
) {
596 if (ctx
->user_id
== ctx_id
&& !ctx
->dead
) {
609 * Makes the calling kernel thread take on the specified
611 * Called by the retry thread execute retries within the
612 * iocb issuer's mm context, so that copy_from/to_user
613 * operations work seamlessly for aio.
614 * (Note: this routine is intended to be called only
615 * from a kernel thread context)
617 static void use_mm(struct mm_struct
*mm
)
619 struct mm_struct
*active_mm
;
620 struct task_struct
*tsk
= current
;
623 active_mm
= tsk
->active_mm
;
624 atomic_inc(&mm
->mm_count
);
625 local_irq_disable(); // FIXME
626 switch_mm(active_mm
, mm
, tsk
);
637 * Reverses the effect of use_mm, i.e. releases the
638 * specified mm context which was earlier taken on
639 * by the calling kernel thread
640 * (Note: this routine is intended to be called only
641 * from a kernel thread context)
643 static void unuse_mm(struct mm_struct
*mm
)
645 struct task_struct
*tsk
= current
;
649 /* active_mm is still 'mm' */
650 enter_lazy_tlb(mm
, tsk
);
655 * Queue up a kiocb to be retried. Assumes that the kiocb
656 * has already been marked as kicked, and places it on
657 * the retry run list for the corresponding ioctx, if it
658 * isn't already queued. Returns 1 if it actually queued
659 * the kiocb (to tell the caller to activate the work
660 * queue to process it), or 0, if it found that it was
663 static inline int __queue_kicked_iocb(struct kiocb
*iocb
)
665 struct kioctx
*ctx
= iocb
->ki_ctx
;
667 assert_spin_locked(&ctx
->ctx_lock
);
669 if (list_empty(&iocb
->ki_run_list
)) {
670 list_add_tail(&iocb
->ki_run_list
,
678 * This is the core aio execution routine. It is
679 * invoked both for initial i/o submission and
680 * subsequent retries via the aio_kick_handler.
681 * Expects to be invoked with iocb->ki_ctx->lock
682 * already held. The lock is released and reacquired
683 * as needed during processing.
685 * Calls the iocb retry method (already setup for the
686 * iocb on initial submission) for operation specific
687 * handling, but takes care of most of common retry
688 * execution details for a given iocb. The retry method
689 * needs to be non-blocking as far as possible, to avoid
690 * holding up other iocbs waiting to be serviced by the
691 * retry kernel thread.
693 * The trickier parts in this code have to do with
694 * ensuring that only one retry instance is in progress
695 * for a given iocb at any time. Providing that guarantee
696 * simplifies the coding of individual aio operations as
697 * it avoids various potential races.
699 static ssize_t
aio_run_iocb(struct kiocb
*iocb
)
701 struct kioctx
*ctx
= iocb
->ki_ctx
;
702 ssize_t (*retry
)(struct kiocb
*);
705 if (!(retry
= iocb
->ki_retry
)) {
706 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
711 * We don't want the next retry iteration for this
712 * operation to start until this one has returned and
713 * updated the iocb state. However, wait_queue functions
714 * can trigger a kick_iocb from interrupt context in the
715 * meantime, indicating that data is available for the next
716 * iteration. We want to remember that and enable the
717 * next retry iteration _after_ we are through with
720 * So, in order to be able to register a "kick", but
721 * prevent it from being queued now, we clear the kick
722 * flag, but make the kick code *think* that the iocb is
723 * still on the run list until we are actually done.
724 * When we are done with this iteration, we check if
725 * the iocb was kicked in the meantime and if so, queue
729 kiocbClearKicked(iocb
);
732 * This is so that aio_complete knows it doesn't need to
733 * pull the iocb off the run list (We can't just call
734 * INIT_LIST_HEAD because we don't want a kick_iocb to
735 * queue this on the run list yet)
737 iocb
->ki_run_list
.next
= iocb
->ki_run_list
.prev
= NULL
;
738 spin_unlock_irq(&ctx
->ctx_lock
);
740 /* Quit retrying if the i/o has been cancelled */
741 if (kiocbIsCancelled(iocb
)) {
743 aio_complete(iocb
, ret
, 0);
744 /* must not access the iocb after this */
749 * Now we are all set to call the retry method in async
754 if (ret
!= -EIOCBRETRY
&& ret
!= -EIOCBQUEUED
) {
755 BUG_ON(!list_empty(&iocb
->ki_wait
.task_list
));
756 aio_complete(iocb
, ret
, 0);
759 spin_lock_irq(&ctx
->ctx_lock
);
761 if (-EIOCBRETRY
== ret
) {
763 * OK, now that we are done with this iteration
764 * and know that there is more left to go,
765 * this is where we let go so that a subsequent
766 * "kick" can start the next iteration
769 /* will make __queue_kicked_iocb succeed from here on */
770 INIT_LIST_HEAD(&iocb
->ki_run_list
);
771 /* we must queue the next iteration ourselves, if it
772 * has already been kicked */
773 if (kiocbIsKicked(iocb
)) {
774 __queue_kicked_iocb(iocb
);
777 * __queue_kicked_iocb will always return 1 here, because
778 * iocb->ki_run_list is empty at this point so it should
779 * be safe to unconditionally queue the context into the
790 * Process all pending retries queued on the ioctx
792 * Assumes it is operating within the aio issuer's mm
795 static int __aio_run_iocbs(struct kioctx
*ctx
)
798 struct list_head run_list
;
800 assert_spin_locked(&ctx
->ctx_lock
);
802 list_replace_init(&ctx
->run_list
, &run_list
);
803 while (!list_empty(&run_list
)) {
804 iocb
= list_entry(run_list
.next
, struct kiocb
,
806 list_del(&iocb
->ki_run_list
);
808 * Hold an extra reference while retrying i/o.
810 iocb
->ki_users
++; /* grab extra reference */
812 __aio_put_req(ctx
, iocb
);
814 if (!list_empty(&ctx
->run_list
))
819 static void aio_queue_work(struct kioctx
* ctx
)
821 unsigned long timeout
;
823 * if someone is waiting, get the work started right
824 * away, otherwise, use a longer delay
827 if (waitqueue_active(&ctx
->wait
))
831 queue_delayed_work(aio_wq
, &ctx
->wq
, timeout
);
837 * Process all pending retries queued on the ioctx
839 * Assumes it is operating within the aio issuer's mm
842 static inline void aio_run_iocbs(struct kioctx
*ctx
)
846 spin_lock_irq(&ctx
->ctx_lock
);
848 requeue
= __aio_run_iocbs(ctx
);
849 spin_unlock_irq(&ctx
->ctx_lock
);
855 * just like aio_run_iocbs, but keeps running them until
856 * the list stays empty
858 static inline void aio_run_all_iocbs(struct kioctx
*ctx
)
860 spin_lock_irq(&ctx
->ctx_lock
);
861 while (__aio_run_iocbs(ctx
))
863 spin_unlock_irq(&ctx
->ctx_lock
);
868 * Work queue handler triggered to process pending
869 * retries on an ioctx. Takes on the aio issuer's
870 * mm context before running the iocbs, so that
871 * copy_xxx_user operates on the issuer's address
873 * Run on aiod's context.
875 static void aio_kick_handler(struct work_struct
*work
)
877 struct kioctx
*ctx
= container_of(work
, struct kioctx
, wq
.work
);
878 mm_segment_t oldfs
= get_fs();
879 struct mm_struct
*mm
;
884 spin_lock_irq(&ctx
->ctx_lock
);
885 requeue
=__aio_run_iocbs(ctx
);
887 spin_unlock_irq(&ctx
->ctx_lock
);
891 * we're in a worker thread already, don't use queue_delayed_work,
894 queue_delayed_work(aio_wq
, &ctx
->wq
, 0);
899 * Called by kick_iocb to queue the kiocb for retry
900 * and if required activate the aio work queue to process
903 static void try_queue_kicked_iocb(struct kiocb
*iocb
)
905 struct kioctx
*ctx
= iocb
->ki_ctx
;
909 /* We're supposed to be the only path putting the iocb back on the run
910 * list. If we find that the iocb is *back* on a wait queue already
911 * than retry has happened before we could queue the iocb. This also
912 * means that the retry could have completed and freed our iocb, no
914 BUG_ON((!list_empty(&iocb
->ki_wait
.task_list
)));
916 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
917 /* set this inside the lock so that we can't race with aio_run_iocb()
918 * testing it and putting the iocb on the run list under the lock */
919 if (!kiocbTryKick(iocb
))
920 run
= __queue_kicked_iocb(iocb
);
921 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
928 * Called typically from a wait queue callback context
929 * (aio_wake_function) to trigger a retry of the iocb.
930 * The retry is usually executed by aio workqueue
931 * threads (See aio_kick_handler).
933 void kick_iocb(struct kiocb
*iocb
)
935 /* sync iocbs are easy: they can only ever be executing from a
937 if (is_sync_kiocb(iocb
)) {
938 kiocbSetKicked(iocb
);
939 wake_up_process(iocb
->ki_obj
.tsk
);
943 try_queue_kicked_iocb(iocb
);
945 EXPORT_SYMBOL(kick_iocb
);
948 * Called when the io request on the given iocb is complete.
949 * Returns true if this is the last user of the request. The
950 * only other user of the request can be the cancellation code.
952 int aio_complete(struct kiocb
*iocb
, long res
, long res2
)
954 struct kioctx
*ctx
= iocb
->ki_ctx
;
955 struct aio_ring_info
*info
;
956 struct aio_ring
*ring
;
957 struct io_event
*event
;
963 * Special case handling for sync iocbs:
964 * - events go directly into the iocb for fast handling
965 * - the sync task with the iocb in its stack holds the single iocb
966 * ref, no other paths have a way to get another ref
967 * - the sync task helpfully left a reference to itself in the iocb
969 if (is_sync_kiocb(iocb
)) {
970 BUG_ON(iocb
->ki_users
!= 1);
971 iocb
->ki_user_data
= res
;
973 wake_up_process(iocb
->ki_obj
.tsk
);
977 info
= &ctx
->ring_info
;
979 /* add a completion event to the ring buffer.
980 * must be done holding ctx->ctx_lock to prevent
981 * other code from messing with the tail
982 * pointer since we might be called from irq
985 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
987 if (iocb
->ki_run_list
.prev
&& !list_empty(&iocb
->ki_run_list
))
988 list_del_init(&iocb
->ki_run_list
);
991 * cancelled requests don't get events, userland was given one
992 * when the event got cancelled.
994 if (kiocbIsCancelled(iocb
))
997 ring
= kmap_atomic(info
->ring_pages
[0], KM_IRQ1
);
1000 event
= aio_ring_event(info
, tail
, KM_IRQ0
);
1001 if (++tail
>= info
->nr
)
1004 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
1005 event
->data
= iocb
->ki_user_data
;
1009 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
1010 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
1013 /* after flagging the request as done, we
1014 * must never even look at it again
1016 smp_wmb(); /* make event visible before updating tail */
1021 put_aio_ring_event(event
, KM_IRQ0
);
1022 kunmap_atomic(ring
, KM_IRQ1
);
1024 pr_debug("added to ring %p at [%lu]\n", iocb
, tail
);
1027 * Check if the user asked us to deliver the result through an
1028 * eventfd. The eventfd_signal() function is safe to be called
1031 if (iocb
->ki_eventfd
!= NULL
)
1032 eventfd_signal(iocb
->ki_eventfd
, 1);
1035 /* everything turned out well, dispose of the aiocb. */
1036 ret
= __aio_put_req(ctx
, iocb
);
1039 * We have to order our ring_info tail store above and test
1040 * of the wait list below outside the wait lock. This is
1041 * like in wake_up_bit() where clearing a bit has to be
1042 * ordered with the unlocked test.
1046 if (waitqueue_active(&ctx
->wait
))
1047 wake_up(&ctx
->wait
);
1049 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1054 * Pull an event off of the ioctx's event ring. Returns the number of
1055 * events fetched (0 or 1 ;-)
1056 * FIXME: make this use cmpxchg.
1057 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1059 static int aio_read_evt(struct kioctx
*ioctx
, struct io_event
*ent
)
1061 struct aio_ring_info
*info
= &ioctx
->ring_info
;
1062 struct aio_ring
*ring
;
1066 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
1067 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1068 (unsigned long)ring
->head
, (unsigned long)ring
->tail
,
1069 (unsigned long)ring
->nr
);
1071 if (ring
->head
== ring
->tail
)
1074 spin_lock(&info
->ring_lock
);
1076 head
= ring
->head
% info
->nr
;
1077 if (head
!= ring
->tail
) {
1078 struct io_event
*evp
= aio_ring_event(info
, head
, KM_USER1
);
1080 head
= (head
+ 1) % info
->nr
;
1081 smp_mb(); /* finish reading the event before updatng the head */
1084 put_aio_ring_event(evp
, KM_USER1
);
1086 spin_unlock(&info
->ring_lock
);
1089 kunmap_atomic(ring
, KM_USER0
);
1090 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret
,
1091 (unsigned long)ring
->head
, (unsigned long)ring
->tail
);
1095 struct aio_timeout
{
1096 struct timer_list timer
;
1098 struct task_struct
*p
;
1101 static void timeout_func(unsigned long data
)
1103 struct aio_timeout
*to
= (struct aio_timeout
*)data
;
1106 wake_up_process(to
->p
);
1109 static inline void init_timeout(struct aio_timeout
*to
)
1111 setup_timer_on_stack(&to
->timer
, timeout_func
, (unsigned long) to
);
1116 static inline void set_timeout(long start_jiffies
, struct aio_timeout
*to
,
1117 const struct timespec
*ts
)
1119 to
->timer
.expires
= start_jiffies
+ timespec_to_jiffies(ts
);
1120 if (time_after(to
->timer
.expires
, jiffies
))
1121 add_timer(&to
->timer
);
1126 static inline void clear_timeout(struct aio_timeout
*to
)
1128 del_singleshot_timer_sync(&to
->timer
);
1131 static int read_events(struct kioctx
*ctx
,
1132 long min_nr
, long nr
,
1133 struct io_event __user
*event
,
1134 struct timespec __user
*timeout
)
1136 long start_jiffies
= jiffies
;
1137 struct task_struct
*tsk
= current
;
1138 DECLARE_WAITQUEUE(wait
, tsk
);
1141 struct io_event ent
;
1142 struct aio_timeout to
;
1145 /* needed to zero any padding within an entry (there shouldn't be
1146 * any, but C is fun!
1148 memset(&ent
, 0, sizeof(ent
));
1151 while (likely(i
< nr
)) {
1152 ret
= aio_read_evt(ctx
, &ent
);
1153 if (unlikely(ret
<= 0))
1156 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1157 ent
.data
, ent
.obj
, ent
.res
, ent
.res2
);
1159 /* Could we split the check in two? */
1161 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1162 dprintk("aio: lost an event due to EFAULT.\n");
1167 /* Good, event copied to userland, update counts. */
1179 /* racey check, but it gets redone */
1180 if (!retry
&& unlikely(!list_empty(&ctx
->run_list
))) {
1182 aio_run_all_iocbs(ctx
);
1190 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1193 set_timeout(start_jiffies
, &to
, &ts
);
1196 while (likely(i
< nr
)) {
1197 add_wait_queue_exclusive(&ctx
->wait
, &wait
);
1199 set_task_state(tsk
, TASK_INTERRUPTIBLE
);
1200 ret
= aio_read_evt(ctx
, &ent
);
1205 if (unlikely(ctx
->dead
)) {
1209 if (to
.timed_out
) /* Only check after read evt */
1211 /* Try to only show up in io wait if there are ops
1213 if (ctx
->reqs_active
)
1217 if (signal_pending(tsk
)) {
1221 /*ret = aio_read_evt(ctx, &ent);*/
1224 set_task_state(tsk
, TASK_RUNNING
);
1225 remove_wait_queue(&ctx
->wait
, &wait
);
1227 if (unlikely(ret
<= 0))
1231 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1232 dprintk("aio: lost an event due to EFAULT.\n");
1236 /* Good, event copied to userland, update counts. */
1244 destroy_timer_on_stack(&to
.timer
);
1248 /* Take an ioctx and remove it from the list of ioctx's. Protects
1249 * against races with itself via ->dead.
1251 static void io_destroy(struct kioctx
*ioctx
)
1253 struct mm_struct
*mm
= current
->mm
;
1256 /* delete the entry from the list is someone else hasn't already */
1257 spin_lock(&mm
->ioctx_lock
);
1258 was_dead
= ioctx
->dead
;
1260 hlist_del_rcu(&ioctx
->list
);
1261 spin_unlock(&mm
->ioctx_lock
);
1263 dprintk("aio_release(%p)\n", ioctx
);
1264 if (likely(!was_dead
))
1265 put_ioctx(ioctx
); /* twice for the list */
1267 aio_cancel_all(ioctx
);
1268 wait_for_all_aios(ioctx
);
1271 * Wake up any waiters. The setting of ctx->dead must be seen
1272 * by other CPUs at this point. Right now, we rely on the
1273 * locking done by the above calls to ensure this consistency.
1275 wake_up(&ioctx
->wait
);
1276 put_ioctx(ioctx
); /* once for the lookup */
1280 * Create an aio_context capable of receiving at least nr_events.
1281 * ctxp must not point to an aio_context that already exists, and
1282 * must be initialized to 0 prior to the call. On successful
1283 * creation of the aio_context, *ctxp is filled in with the resulting
1284 * handle. May fail with -EINVAL if *ctxp is not initialized,
1285 * if the specified nr_events exceeds internal limits. May fail
1286 * with -EAGAIN if the specified nr_events exceeds the user's limit
1287 * of available events. May fail with -ENOMEM if insufficient kernel
1288 * resources are available. May fail with -EFAULT if an invalid
1289 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1292 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1294 struct kioctx
*ioctx
= NULL
;
1298 ret
= get_user(ctx
, ctxp
);
1303 if (unlikely(ctx
|| nr_events
== 0)) {
1304 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1309 ioctx
= ioctx_alloc(nr_events
);
1310 ret
= PTR_ERR(ioctx
);
1311 if (!IS_ERR(ioctx
)) {
1312 ret
= put_user(ioctx
->user_id
, ctxp
);
1316 get_ioctx(ioctx
); /* io_destroy() expects us to hold a ref */
1325 * Destroy the aio_context specified. May cancel any outstanding
1326 * AIOs and block on completion. Will fail with -ENOSYS if not
1327 * implemented. May fail with -EFAULT if the context pointed to
1330 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1332 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1333 if (likely(NULL
!= ioctx
)) {
1337 pr_debug("EINVAL: io_destroy: invalid context id\n");
1341 static void aio_advance_iovec(struct kiocb
*iocb
, ssize_t ret
)
1343 struct iovec
*iov
= &iocb
->ki_iovec
[iocb
->ki_cur_seg
];
1347 while (iocb
->ki_cur_seg
< iocb
->ki_nr_segs
&& ret
> 0) {
1348 ssize_t
this = min((ssize_t
)iov
->iov_len
, ret
);
1349 iov
->iov_base
+= this;
1350 iov
->iov_len
-= this;
1351 iocb
->ki_left
-= this;
1353 if (iov
->iov_len
== 0) {
1359 /* the caller should not have done more io than what fit in
1360 * the remaining iovecs */
1361 BUG_ON(ret
> 0 && iocb
->ki_left
== 0);
1364 static ssize_t
aio_rw_vect_retry(struct kiocb
*iocb
)
1366 struct file
*file
= iocb
->ki_filp
;
1367 struct address_space
*mapping
= file
->f_mapping
;
1368 struct inode
*inode
= mapping
->host
;
1369 ssize_t (*rw_op
)(struct kiocb
*, const struct iovec
*,
1370 unsigned long, loff_t
);
1372 unsigned short opcode
;
1374 if ((iocb
->ki_opcode
== IOCB_CMD_PREADV
) ||
1375 (iocb
->ki_opcode
== IOCB_CMD_PREAD
)) {
1376 rw_op
= file
->f_op
->aio_read
;
1377 opcode
= IOCB_CMD_PREADV
;
1379 rw_op
= file
->f_op
->aio_write
;
1380 opcode
= IOCB_CMD_PWRITEV
;
1383 /* This matches the pread()/pwrite() logic */
1384 if (iocb
->ki_pos
< 0)
1388 ret
= rw_op(iocb
, &iocb
->ki_iovec
[iocb
->ki_cur_seg
],
1389 iocb
->ki_nr_segs
- iocb
->ki_cur_seg
,
1392 aio_advance_iovec(iocb
, ret
);
1394 /* retry all partial writes. retry partial reads as long as its a
1396 } while (ret
> 0 && iocb
->ki_left
> 0 &&
1397 (opcode
== IOCB_CMD_PWRITEV
||
1398 (!S_ISFIFO(inode
->i_mode
) && !S_ISSOCK(inode
->i_mode
))));
1400 /* This means we must have transferred all that we could */
1401 /* No need to retry anymore */
1402 if ((ret
== 0) || (iocb
->ki_left
== 0))
1403 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1405 /* If we managed to write some out we return that, rather than
1406 * the eventual error. */
1407 if (opcode
== IOCB_CMD_PWRITEV
1408 && ret
< 0 && ret
!= -EIOCBQUEUED
&& ret
!= -EIOCBRETRY
1409 && iocb
->ki_nbytes
- iocb
->ki_left
)
1410 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1415 static ssize_t
aio_fdsync(struct kiocb
*iocb
)
1417 struct file
*file
= iocb
->ki_filp
;
1418 ssize_t ret
= -EINVAL
;
1420 if (file
->f_op
->aio_fsync
)
1421 ret
= file
->f_op
->aio_fsync(iocb
, 1);
1425 static ssize_t
aio_fsync(struct kiocb
*iocb
)
1427 struct file
*file
= iocb
->ki_filp
;
1428 ssize_t ret
= -EINVAL
;
1430 if (file
->f_op
->aio_fsync
)
1431 ret
= file
->f_op
->aio_fsync(iocb
, 0);
1435 static ssize_t
aio_setup_vectored_rw(int type
, struct kiocb
*kiocb
)
1439 ret
= rw_copy_check_uvector(type
, (struct iovec __user
*)kiocb
->ki_buf
,
1440 kiocb
->ki_nbytes
, 1,
1441 &kiocb
->ki_inline_vec
, &kiocb
->ki_iovec
);
1445 kiocb
->ki_nr_segs
= kiocb
->ki_nbytes
;
1446 kiocb
->ki_cur_seg
= 0;
1447 /* ki_nbytes/left now reflect bytes instead of segs */
1448 kiocb
->ki_nbytes
= ret
;
1449 kiocb
->ki_left
= ret
;
1456 static ssize_t
aio_setup_single_vector(struct kiocb
*kiocb
)
1458 kiocb
->ki_iovec
= &kiocb
->ki_inline_vec
;
1459 kiocb
->ki_iovec
->iov_base
= kiocb
->ki_buf
;
1460 kiocb
->ki_iovec
->iov_len
= kiocb
->ki_left
;
1461 kiocb
->ki_nr_segs
= 1;
1462 kiocb
->ki_cur_seg
= 0;
1468 * Performs the initial checks and aio retry method
1469 * setup for the kiocb at the time of io submission.
1471 static ssize_t
aio_setup_iocb(struct kiocb
*kiocb
)
1473 struct file
*file
= kiocb
->ki_filp
;
1476 switch (kiocb
->ki_opcode
) {
1477 case IOCB_CMD_PREAD
:
1479 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1482 if (unlikely(!access_ok(VERIFY_WRITE
, kiocb
->ki_buf
,
1485 ret
= security_file_permission(file
, MAY_READ
);
1488 ret
= aio_setup_single_vector(kiocb
);
1492 if (file
->f_op
->aio_read
)
1493 kiocb
->ki_retry
= aio_rw_vect_retry
;
1495 case IOCB_CMD_PWRITE
:
1497 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1500 if (unlikely(!access_ok(VERIFY_READ
, kiocb
->ki_buf
,
1503 ret
= security_file_permission(file
, MAY_WRITE
);
1506 ret
= aio_setup_single_vector(kiocb
);
1510 if (file
->f_op
->aio_write
)
1511 kiocb
->ki_retry
= aio_rw_vect_retry
;
1513 case IOCB_CMD_PREADV
:
1515 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1517 ret
= security_file_permission(file
, MAY_READ
);
1520 ret
= aio_setup_vectored_rw(READ
, kiocb
);
1524 if (file
->f_op
->aio_read
)
1525 kiocb
->ki_retry
= aio_rw_vect_retry
;
1527 case IOCB_CMD_PWRITEV
:
1529 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1531 ret
= security_file_permission(file
, MAY_WRITE
);
1534 ret
= aio_setup_vectored_rw(WRITE
, kiocb
);
1538 if (file
->f_op
->aio_write
)
1539 kiocb
->ki_retry
= aio_rw_vect_retry
;
1541 case IOCB_CMD_FDSYNC
:
1543 if (file
->f_op
->aio_fsync
)
1544 kiocb
->ki_retry
= aio_fdsync
;
1546 case IOCB_CMD_FSYNC
:
1548 if (file
->f_op
->aio_fsync
)
1549 kiocb
->ki_retry
= aio_fsync
;
1552 dprintk("EINVAL: io_submit: no operation provided\n");
1556 if (!kiocb
->ki_retry
)
1563 * aio_wake_function:
1564 * wait queue callback function for aio notification,
1565 * Simply triggers a retry of the operation via kick_iocb.
1567 * This callback is specified in the wait queue entry in
1571 * This routine is executed with the wait queue lock held.
1572 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1573 * the ioctx lock inside the wait queue lock. This is safe
1574 * because this callback isn't used for wait queues which
1575 * are nested inside ioctx lock (i.e. ctx->wait)
1577 static int aio_wake_function(wait_queue_t
*wait
, unsigned mode
,
1578 int sync
, void *key
)
1580 struct kiocb
*iocb
= container_of(wait
, struct kiocb
, ki_wait
);
1582 list_del_init(&wait
->task_list
);
1587 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1594 /* enforce forwards compatibility on users */
1595 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
)) {
1596 pr_debug("EINVAL: io_submit: reserve field set\n");
1600 /* prevent overflows */
1602 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1603 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1604 ((ssize_t
)iocb
->aio_nbytes
< 0)
1606 pr_debug("EINVAL: io_submit: overflow check\n");
1610 file
= fget(iocb
->aio_fildes
);
1611 if (unlikely(!file
))
1614 req
= aio_get_req(ctx
); /* returns with 2 references to req */
1615 if (unlikely(!req
)) {
1619 req
->ki_filp
= file
;
1620 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1622 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1623 * instance of the file* now. The file descriptor must be
1624 * an eventfd() fd, and will be signaled for each completed
1625 * event using the eventfd_signal() function.
1627 req
->ki_eventfd
= eventfd_fget((int) iocb
->aio_resfd
);
1628 if (IS_ERR(req
->ki_eventfd
)) {
1629 ret
= PTR_ERR(req
->ki_eventfd
);
1630 req
->ki_eventfd
= NULL
;
1635 ret
= put_user(req
->ki_key
, &user_iocb
->aio_key
);
1636 if (unlikely(ret
)) {
1637 dprintk("EFAULT: aio_key\n");
1641 req
->ki_obj
.user
= user_iocb
;
1642 req
->ki_user_data
= iocb
->aio_data
;
1643 req
->ki_pos
= iocb
->aio_offset
;
1645 req
->ki_buf
= (char __user
*)(unsigned long)iocb
->aio_buf
;
1646 req
->ki_left
= req
->ki_nbytes
= iocb
->aio_nbytes
;
1647 req
->ki_opcode
= iocb
->aio_lio_opcode
;
1648 init_waitqueue_func_entry(&req
->ki_wait
, aio_wake_function
);
1649 INIT_LIST_HEAD(&req
->ki_wait
.task_list
);
1651 ret
= aio_setup_iocb(req
);
1656 spin_lock_irq(&ctx
->ctx_lock
);
1658 if (!list_empty(&ctx
->run_list
)) {
1659 /* drain the run list */
1660 while (__aio_run_iocbs(ctx
))
1663 spin_unlock_irq(&ctx
->ctx_lock
);
1664 aio_put_req(req
); /* drop extra ref to req */
1668 aio_put_req(req
); /* drop extra ref to req */
1669 aio_put_req(req
); /* drop i/o ref to req */
1674 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1675 * the number of iocbs queued. May return -EINVAL if the aio_context
1676 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1677 * *iocbpp[0] is not properly initialized, if the operation specified
1678 * is invalid for the file descriptor in the iocb. May fail with
1679 * -EFAULT if any of the data structures point to invalid data. May
1680 * fail with -EBADF if the file descriptor specified in the first
1681 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1682 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1683 * fail with -ENOSYS if not implemented.
1685 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1686 struct iocb __user
* __user
*, iocbpp
)
1692 if (unlikely(nr
< 0))
1695 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1698 ctx
= lookup_ioctx(ctx_id
);
1699 if (unlikely(!ctx
)) {
1700 pr_debug("EINVAL: io_submit: invalid context id\n");
1705 * AKPM: should this return a partial result if some of the IOs were
1706 * successfully submitted?
1708 for (i
=0; i
<nr
; i
++) {
1709 struct iocb __user
*user_iocb
;
1712 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1717 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1722 ret
= io_submit_one(ctx
, user_iocb
, &tmp
);
1732 * Finds a given iocb for cancellation.
1734 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1737 struct list_head
*pos
;
1739 assert_spin_locked(&ctx
->ctx_lock
);
1741 /* TODO: use a hash or array, this sucks. */
1742 list_for_each(pos
, &ctx
->active_reqs
) {
1743 struct kiocb
*kiocb
= list_kiocb(pos
);
1744 if (kiocb
->ki_obj
.user
== iocb
&& kiocb
->ki_key
== key
)
1751 * Attempts to cancel an iocb previously passed to io_submit. If
1752 * the operation is successfully cancelled, the resulting event is
1753 * copied into the memory pointed to by result without being placed
1754 * into the completion queue and 0 is returned. May fail with
1755 * -EFAULT if any of the data structures pointed to are invalid.
1756 * May fail with -EINVAL if aio_context specified by ctx_id is
1757 * invalid. May fail with -EAGAIN if the iocb specified was not
1758 * cancelled. Will fail with -ENOSYS if not implemented.
1760 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
1761 struct io_event __user
*, result
)
1763 int (*cancel
)(struct kiocb
*iocb
, struct io_event
*res
);
1765 struct kiocb
*kiocb
;
1769 ret
= get_user(key
, &iocb
->aio_key
);
1773 ctx
= lookup_ioctx(ctx_id
);
1777 spin_lock_irq(&ctx
->ctx_lock
);
1779 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1780 if (kiocb
&& kiocb
->ki_cancel
) {
1781 cancel
= kiocb
->ki_cancel
;
1783 kiocbSetCancelled(kiocb
);
1786 spin_unlock_irq(&ctx
->ctx_lock
);
1788 if (NULL
!= cancel
) {
1789 struct io_event tmp
;
1790 pr_debug("calling cancel\n");
1791 memset(&tmp
, 0, sizeof(tmp
));
1792 tmp
.obj
= (u64
)(unsigned long)kiocb
->ki_obj
.user
;
1793 tmp
.data
= kiocb
->ki_user_data
;
1794 ret
= cancel(kiocb
, &tmp
);
1796 /* Cancellation succeeded -- copy the result
1797 * into the user's buffer.
1799 if (copy_to_user(result
, &tmp
, sizeof(tmp
)))
1811 * Attempts to read at least min_nr events and up to nr events from
1812 * the completion queue for the aio_context specified by ctx_id. May
1813 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1814 * if nr is out of range, if when is out of range. May fail with
1815 * -EFAULT if any of the memory specified to is invalid. May return
1816 * 0 or < min_nr if no events are available and the timeout specified
1817 * by when has elapsed, where when == NULL specifies an infinite
1818 * timeout. Note that the timeout pointed to by when is relative and
1819 * will be updated if not NULL and the operation blocks. Will fail
1820 * with -ENOSYS if not implemented.
1822 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
1825 struct io_event __user
*, events
,
1826 struct timespec __user
*, timeout
)
1828 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1831 if (likely(ioctx
)) {
1832 if (likely(min_nr
<= nr
&& min_nr
>= 0 && nr
>= 0))
1833 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1837 asmlinkage_protect(5, ret
, ctx_id
, min_nr
, nr
, events
, timeout
);
1841 __initcall(aio_setup
);
1843 EXPORT_SYMBOL(aio_complete
);
1844 EXPORT_SYMBOL(aio_put_req
);
1845 EXPORT_SYMBOL(wait_on_sync_kiocb
);