2 * Definitions for the 'struct sk_buff' memory handlers.
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
33 #define HAVE_ALLOC_SKB /* For the drivers to know */
34 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
36 /* Don't change this without changing skb_csum_unnecessary! */
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 1
39 #define CHECKSUM_COMPLETE 2
40 #define CHECKSUM_PARTIAL 3
42 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
43 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_WITH_OVERHEAD(X) \
45 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
51 /* A. Checksumming of received packets by device.
53 * NONE: device failed to checksum this packet.
54 * skb->csum is undefined.
56 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
57 * skb->csum is undefined.
58 * It is bad option, but, unfortunately, many of vendors do this.
59 * Apparently with secret goal to sell you new device, when you
60 * will add new protocol to your host. F.e. IPv6. 8)
62 * COMPLETE: the most generic way. Device supplied checksum of _all_
63 * the packet as seen by netif_rx in skb->csum.
64 * NOTE: Even if device supports only some protocols, but
65 * is able to produce some skb->csum, it MUST use COMPLETE,
68 * PARTIAL: identical to the case for output below. This may occur
69 * on a packet received directly from another Linux OS, e.g.,
70 * a virtualised Linux kernel on the same host. The packet can
71 * be treated in the same way as UNNECESSARY except that on
72 * output (i.e., forwarding) the checksum must be filled in
73 * by the OS or the hardware.
75 * B. Checksumming on output.
77 * NONE: skb is checksummed by protocol or csum is not required.
79 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
80 * from skb->csum_start to the end and to record the checksum
81 * at skb->csum_start + skb->csum_offset.
83 * Device must show its capabilities in dev->features, set
84 * at device setup time.
85 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
87 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
88 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
89 * TCP/UDP over IPv4. Sigh. Vendors like this
90 * way by an unknown reason. Though, see comment above
91 * about CHECKSUM_UNNECESSARY. 8)
92 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
94 * Any questions? No questions, good. --ANK
99 struct pipe_inode_info
;
101 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
102 struct nf_conntrack
{
104 #ifdef CONFIG_PREEMPT_RT
110 #ifdef CONFIG_BRIDGE_NETFILTER
111 struct nf_bridge_info
{
113 struct net_device
*physindev
;
114 struct net_device
*physoutdev
;
116 unsigned long data
[32 / sizeof(unsigned long)];
120 struct sk_buff_head
{
121 /* These two members must be first. */
122 struct sk_buff
*next
;
123 struct sk_buff
*prev
;
131 /* To allow 64K frame to be packed as single skb without frag_list */
132 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
134 typedef struct skb_frag_struct skb_frag_t
;
136 struct skb_frag_struct
{
142 /* This data is invariant across clones and lives at
143 * the end of the header data, ie. at skb->end.
145 struct skb_shared_info
{
147 unsigned short nr_frags
;
148 unsigned short gso_size
;
149 /* Warning: this field is not always filled in (UFO)! */
150 unsigned short gso_segs
;
151 unsigned short gso_type
;
153 #ifdef CONFIG_HAS_DMA
154 unsigned int num_dma_maps
;
156 struct sk_buff
*frag_list
;
157 skb_frag_t frags
[MAX_SKB_FRAGS
];
158 #ifdef CONFIG_HAS_DMA
159 dma_addr_t dma_maps
[MAX_SKB_FRAGS
+ 1];
163 /* We divide dataref into two halves. The higher 16 bits hold references
164 * to the payload part of skb->data. The lower 16 bits hold references to
165 * the entire skb->data. A clone of a headerless skb holds the length of
166 * the header in skb->hdr_len.
168 * All users must obey the rule that the skb->data reference count must be
169 * greater than or equal to the payload reference count.
171 * Holding a reference to the payload part means that the user does not
172 * care about modifications to the header part of skb->data.
174 #define SKB_DATAREF_SHIFT 16
175 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
179 SKB_FCLONE_UNAVAILABLE
,
185 SKB_GSO_TCPV4
= 1 << 0,
186 SKB_GSO_UDP
= 1 << 1,
188 /* This indicates the skb is from an untrusted source. */
189 SKB_GSO_DODGY
= 1 << 2,
191 /* This indicates the tcp segment has CWR set. */
192 SKB_GSO_TCP_ECN
= 1 << 3,
194 SKB_GSO_TCPV6
= 1 << 4,
197 #if BITS_PER_LONG > 32
198 #define NET_SKBUFF_DATA_USES_OFFSET 1
201 #ifdef NET_SKBUFF_DATA_USES_OFFSET
202 typedef unsigned int sk_buff_data_t
;
204 typedef unsigned char *sk_buff_data_t
;
208 * struct sk_buff - socket buffer
209 * @next: Next buffer in list
210 * @prev: Previous buffer in list
211 * @sk: Socket we are owned by
212 * @tstamp: Time we arrived
213 * @dev: Device we arrived on/are leaving by
214 * @transport_header: Transport layer header
215 * @network_header: Network layer header
216 * @mac_header: Link layer header
217 * @dst: destination entry
218 * @sp: the security path, used for xfrm
219 * @cb: Control buffer. Free for use by every layer. Put private vars here
220 * @len: Length of actual data
221 * @data_len: Data length
222 * @mac_len: Length of link layer header
223 * @hdr_len: writable header length of cloned skb
224 * @csum: Checksum (must include start/offset pair)
225 * @csum_start: Offset from skb->head where checksumming should start
226 * @csum_offset: Offset from csum_start where checksum should be stored
227 * @local_df: allow local fragmentation
228 * @cloned: Head may be cloned (check refcnt to be sure)
229 * @nohdr: Payload reference only, must not modify header
230 * @pkt_type: Packet class
231 * @fclone: skbuff clone status
232 * @ip_summed: Driver fed us an IP checksum
233 * @priority: Packet queueing priority
234 * @users: User count - see {datagram,tcp}.c
235 * @protocol: Packet protocol from driver
236 * @truesize: Buffer size
237 * @head: Head of buffer
238 * @data: Data head pointer
239 * @tail: Tail pointer
241 * @destructor: Destruct function
242 * @mark: Generic packet mark
243 * @nfct: Associated connection, if any
244 * @ipvs_property: skbuff is owned by ipvs
245 * @peeked: this packet has been seen already, so stats have been
246 * done for it, don't do them again
247 * @nf_trace: netfilter packet trace flag
248 * @nfctinfo: Relationship of this skb to the connection
249 * @nfct_reasm: netfilter conntrack re-assembly pointer
250 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
251 * @iif: ifindex of device we arrived on
252 * @queue_mapping: Queue mapping for multiqueue devices
253 * @tc_index: Traffic control index
254 * @tc_verd: traffic control verdict
255 * @ndisc_nodetype: router type (from link layer)
256 * @do_not_encrypt: set to prevent encryption of this frame
257 * @requeue: set to indicate that the wireless core should attempt
258 * a software retry on this frame if we failed to
259 * receive an ACK for it
260 * @dma_cookie: a cookie to one of several possible DMA operations
261 * done by skb DMA functions
262 * @secmark: security marking
263 * @vlan_tci: vlan tag control information
267 /* These two members must be first. */
268 struct sk_buff
*next
;
269 struct sk_buff
*prev
;
273 struct net_device
*dev
;
276 struct dst_entry
*dst
;
277 struct rtable
*rtable
;
283 * This is the control buffer. It is free to use for every
284 * layer. Please put your private variables there. If you
285 * want to keep them across layers you have to do a skb_clone()
286 * first. This is owned by whoever has the skb queued ATM.
302 kmemcheck_define_bitfield(flags1
, {
316 void (*destructor
)(struct sk_buff
*skb
);
317 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
318 struct nf_conntrack
*nfct
;
319 struct sk_buff
*nfct_reasm
;
321 #ifdef CONFIG_BRIDGE_NETFILTER
322 struct nf_bridge_info
*nf_bridge
;
327 #ifdef CONFIG_NET_SCHED
328 __u16 tc_index
; /* traffic control index */
329 #ifdef CONFIG_NET_CLS_ACT
330 __u16 tc_verd
; /* traffic control verdict */
334 kmemcheck_define_bitfield(flags2
, {
335 #ifdef CONFIG_IPV6_NDISC_NODETYPE
336 __u8 ndisc_nodetype
:2;
338 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
339 __u8 do_not_encrypt
:1;
344 /* 0/13/14 bit hole */
346 #ifdef CONFIG_NET_DMA
347 dma_cookie_t dma_cookie
;
349 #ifdef CONFIG_NETWORK_SECMARK
357 sk_buff_data_t transport_header
;
358 sk_buff_data_t network_header
;
359 sk_buff_data_t mac_header
;
360 /* These elements must be at the end, see alloc_skb() for details. */
365 unsigned int truesize
;
371 * Handling routines are only of interest to the kernel
373 #include <linux/slab.h>
375 #include <asm/system.h>
377 #ifdef CONFIG_HAS_DMA
378 #include <linux/dma-mapping.h>
379 extern int skb_dma_map(struct device
*dev
, struct sk_buff
*skb
,
380 enum dma_data_direction dir
);
381 extern void skb_dma_unmap(struct device
*dev
, struct sk_buff
*skb
,
382 enum dma_data_direction dir
);
385 extern void kfree_skb(struct sk_buff
*skb
);
386 extern void __kfree_skb(struct sk_buff
*skb
);
387 extern struct sk_buff
*__alloc_skb(unsigned int size
,
388 gfp_t priority
, int fclone
, int node
);
389 static inline struct sk_buff
*alloc_skb(unsigned int size
,
392 return __alloc_skb(size
, priority
, 0, -1);
395 static inline struct sk_buff
*alloc_skb_fclone(unsigned int size
,
398 return __alloc_skb(size
, priority
, 1, -1);
401 extern int skb_recycle_check(struct sk_buff
*skb
, int skb_size
);
403 extern struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
);
404 extern struct sk_buff
*skb_clone(struct sk_buff
*skb
,
406 extern struct sk_buff
*skb_copy(const struct sk_buff
*skb
,
408 extern struct sk_buff
*pskb_copy(struct sk_buff
*skb
,
410 extern int pskb_expand_head(struct sk_buff
*skb
,
411 int nhead
, int ntail
,
413 extern struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
,
414 unsigned int headroom
);
415 extern struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
416 int newheadroom
, int newtailroom
,
418 extern int skb_to_sgvec(struct sk_buff
*skb
,
419 struct scatterlist
*sg
, int offset
,
421 extern int skb_cow_data(struct sk_buff
*skb
, int tailbits
,
422 struct sk_buff
**trailer
);
423 extern int skb_pad(struct sk_buff
*skb
, int pad
);
424 #define dev_kfree_skb(a) kfree_skb(a)
425 extern void skb_over_panic(struct sk_buff
*skb
, int len
,
427 extern void skb_under_panic(struct sk_buff
*skb
, int len
,
430 extern int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
431 int getfrag(void *from
, char *to
, int offset
,
432 int len
,int odd
, struct sk_buff
*skb
),
433 void *from
, int length
);
440 __u32 stepped_offset
;
441 struct sk_buff
*root_skb
;
442 struct sk_buff
*cur_skb
;
446 extern void skb_prepare_seq_read(struct sk_buff
*skb
,
447 unsigned int from
, unsigned int to
,
448 struct skb_seq_state
*st
);
449 extern unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
450 struct skb_seq_state
*st
);
451 extern void skb_abort_seq_read(struct skb_seq_state
*st
);
453 extern unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
454 unsigned int to
, struct ts_config
*config
,
455 struct ts_state
*state
);
457 #ifdef NET_SKBUFF_DATA_USES_OFFSET
458 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
460 return skb
->head
+ skb
->end
;
463 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
470 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
473 * skb_queue_empty - check if a queue is empty
476 * Returns true if the queue is empty, false otherwise.
478 static inline int skb_queue_empty(const struct sk_buff_head
*list
)
480 return list
->next
== (struct sk_buff
*)list
;
484 * skb_queue_is_last - check if skb is the last entry in the queue
488 * Returns true if @skb is the last buffer on the list.
490 static inline bool skb_queue_is_last(const struct sk_buff_head
*list
,
491 const struct sk_buff
*skb
)
493 return (skb
->next
== (struct sk_buff
*) list
);
497 * skb_queue_is_first - check if skb is the first entry in the queue
501 * Returns true if @skb is the first buffer on the list.
503 static inline bool skb_queue_is_first(const struct sk_buff_head
*list
,
504 const struct sk_buff
*skb
)
506 return (skb
->prev
== (struct sk_buff
*) list
);
510 * skb_queue_next - return the next packet in the queue
512 * @skb: current buffer
514 * Return the next packet in @list after @skb. It is only valid to
515 * call this if skb_queue_is_last() evaluates to false.
517 static inline struct sk_buff
*skb_queue_next(const struct sk_buff_head
*list
,
518 const struct sk_buff
*skb
)
520 /* This BUG_ON may seem severe, but if we just return then we
521 * are going to dereference garbage.
523 BUG_ON(skb_queue_is_last(list
, skb
));
528 * skb_queue_prev - return the prev packet in the queue
530 * @skb: current buffer
532 * Return the prev packet in @list before @skb. It is only valid to
533 * call this if skb_queue_is_first() evaluates to false.
535 static inline struct sk_buff
*skb_queue_prev(const struct sk_buff_head
*list
,
536 const struct sk_buff
*skb
)
538 /* This BUG_ON may seem severe, but if we just return then we
539 * are going to dereference garbage.
541 BUG_ON(skb_queue_is_first(list
, skb
));
546 * skb_get - reference buffer
547 * @skb: buffer to reference
549 * Makes another reference to a socket buffer and returns a pointer
552 static inline struct sk_buff
*skb_get(struct sk_buff
*skb
)
554 atomic_inc(&skb
->users
);
559 * If users == 1, we are the only owner and are can avoid redundant
564 * skb_cloned - is the buffer a clone
565 * @skb: buffer to check
567 * Returns true if the buffer was generated with skb_clone() and is
568 * one of multiple shared copies of the buffer. Cloned buffers are
569 * shared data so must not be written to under normal circumstances.
571 static inline int skb_cloned(const struct sk_buff
*skb
)
573 return skb
->cloned
&&
574 (atomic_read(&skb_shinfo(skb
)->dataref
) & SKB_DATAREF_MASK
) != 1;
578 * skb_header_cloned - is the header a clone
579 * @skb: buffer to check
581 * Returns true if modifying the header part of the buffer requires
582 * the data to be copied.
584 static inline int skb_header_cloned(const struct sk_buff
*skb
)
591 dataref
= atomic_read(&skb_shinfo(skb
)->dataref
);
592 dataref
= (dataref
& SKB_DATAREF_MASK
) - (dataref
>> SKB_DATAREF_SHIFT
);
597 * skb_header_release - release reference to header
598 * @skb: buffer to operate on
600 * Drop a reference to the header part of the buffer. This is done
601 * by acquiring a payload reference. You must not read from the header
602 * part of skb->data after this.
604 static inline void skb_header_release(struct sk_buff
*skb
)
608 atomic_add(1 << SKB_DATAREF_SHIFT
, &skb_shinfo(skb
)->dataref
);
612 * skb_shared - is the buffer shared
613 * @skb: buffer to check
615 * Returns true if more than one person has a reference to this
618 static inline int skb_shared(const struct sk_buff
*skb
)
620 return atomic_read(&skb
->users
) != 1;
624 * skb_share_check - check if buffer is shared and if so clone it
625 * @skb: buffer to check
626 * @pri: priority for memory allocation
628 * If the buffer is shared the buffer is cloned and the old copy
629 * drops a reference. A new clone with a single reference is returned.
630 * If the buffer is not shared the original buffer is returned. When
631 * being called from interrupt status or with spinlocks held pri must
634 * NULL is returned on a memory allocation failure.
636 static inline struct sk_buff
*skb_share_check(struct sk_buff
*skb
,
639 might_sleep_if(pri
& __GFP_WAIT
);
640 if (skb_shared(skb
)) {
641 struct sk_buff
*nskb
= skb_clone(skb
, pri
);
649 * Copy shared buffers into a new sk_buff. We effectively do COW on
650 * packets to handle cases where we have a local reader and forward
651 * and a couple of other messy ones. The normal one is tcpdumping
652 * a packet thats being forwarded.
656 * skb_unshare - make a copy of a shared buffer
657 * @skb: buffer to check
658 * @pri: priority for memory allocation
660 * If the socket buffer is a clone then this function creates a new
661 * copy of the data, drops a reference count on the old copy and returns
662 * the new copy with the reference count at 1. If the buffer is not a clone
663 * the original buffer is returned. When called with a spinlock held or
664 * from interrupt state @pri must be %GFP_ATOMIC
666 * %NULL is returned on a memory allocation failure.
668 static inline struct sk_buff
*skb_unshare(struct sk_buff
*skb
,
671 might_sleep_if(pri
& __GFP_WAIT
);
672 if (skb_cloned(skb
)) {
673 struct sk_buff
*nskb
= skb_copy(skb
, pri
);
674 kfree_skb(skb
); /* Free our shared copy */
682 * @list_: list to peek at
684 * Peek an &sk_buff. Unlike most other operations you _MUST_
685 * be careful with this one. A peek leaves the buffer on the
686 * list and someone else may run off with it. You must hold
687 * the appropriate locks or have a private queue to do this.
689 * Returns %NULL for an empty list or a pointer to the head element.
690 * The reference count is not incremented and the reference is therefore
691 * volatile. Use with caution.
693 static inline struct sk_buff
*skb_peek(struct sk_buff_head
*list_
)
695 struct sk_buff
*list
= ((struct sk_buff
*)list_
)->next
;
696 if (list
== (struct sk_buff
*)list_
)
703 * @list_: list to peek at
705 * Peek an &sk_buff. Unlike most other operations you _MUST_
706 * be careful with this one. A peek leaves the buffer on the
707 * list and someone else may run off with it. You must hold
708 * the appropriate locks or have a private queue to do this.
710 * Returns %NULL for an empty list or a pointer to the tail element.
711 * The reference count is not incremented and the reference is therefore
712 * volatile. Use with caution.
714 static inline struct sk_buff
*skb_peek_tail(struct sk_buff_head
*list_
)
716 struct sk_buff
*list
= ((struct sk_buff
*)list_
)->prev
;
717 if (list
== (struct sk_buff
*)list_
)
723 * skb_queue_len - get queue length
724 * @list_: list to measure
726 * Return the length of an &sk_buff queue.
728 static inline __u32
skb_queue_len(const struct sk_buff_head
*list_
)
734 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
735 * @list: queue to initialize
737 * This initializes only the list and queue length aspects of
738 * an sk_buff_head object. This allows to initialize the list
739 * aspects of an sk_buff_head without reinitializing things like
740 * the spinlock. It can also be used for on-stack sk_buff_head
741 * objects where the spinlock is known to not be used.
743 static inline void __skb_queue_head_init(struct sk_buff_head
*list
)
745 list
->prev
= list
->next
= (struct sk_buff
*)list
;
750 * This function creates a split out lock class for each invocation;
751 * this is needed for now since a whole lot of users of the skb-queue
752 * infrastructure in drivers have different locking usage (in hardirq)
753 * than the networking core (in softirq only). In the long run either the
754 * network layer or drivers should need annotation to consolidate the
755 * main types of usage into 3 classes.
757 static inline void skb_queue_head_init(struct sk_buff_head
*list
)
759 spin_lock_init(&list
->lock
);
760 __skb_queue_head_init(list
);
763 static inline void skb_queue_head_init_class(struct sk_buff_head
*list
,
764 struct lock_class_key
*class)
766 skb_queue_head_init(list
);
767 lockdep_set_class(&list
->lock
, class);
771 * Insert an sk_buff on a list.
773 * The "__skb_xxxx()" functions are the non-atomic ones that
774 * can only be called with interrupts disabled.
776 extern void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
);
777 static inline void __skb_insert(struct sk_buff
*newsk
,
778 struct sk_buff
*prev
, struct sk_buff
*next
,
779 struct sk_buff_head
*list
)
783 next
->prev
= prev
->next
= newsk
;
787 static inline void __skb_queue_splice(const struct sk_buff_head
*list
,
788 struct sk_buff
*prev
,
789 struct sk_buff
*next
)
791 struct sk_buff
*first
= list
->next
;
792 struct sk_buff
*last
= list
->prev
;
802 * skb_queue_splice - join two skb lists, this is designed for stacks
803 * @list: the new list to add
804 * @head: the place to add it in the first list
806 static inline void skb_queue_splice(const struct sk_buff_head
*list
,
807 struct sk_buff_head
*head
)
809 if (!skb_queue_empty(list
)) {
810 __skb_queue_splice(list
, (struct sk_buff
*) head
, head
->next
);
811 head
->qlen
+= list
->qlen
;
816 * skb_queue_splice - join two skb lists and reinitialise the emptied list
817 * @list: the new list to add
818 * @head: the place to add it in the first list
820 * The list at @list is reinitialised
822 static inline void skb_queue_splice_init(struct sk_buff_head
*list
,
823 struct sk_buff_head
*head
)
825 if (!skb_queue_empty(list
)) {
826 __skb_queue_splice(list
, (struct sk_buff
*) head
, head
->next
);
827 head
->qlen
+= list
->qlen
;
828 __skb_queue_head_init(list
);
833 * skb_queue_splice_tail - join two skb lists, each list being a queue
834 * @list: the new list to add
835 * @head: the place to add it in the first list
837 static inline void skb_queue_splice_tail(const struct sk_buff_head
*list
,
838 struct sk_buff_head
*head
)
840 if (!skb_queue_empty(list
)) {
841 __skb_queue_splice(list
, head
->prev
, (struct sk_buff
*) head
);
842 head
->qlen
+= list
->qlen
;
847 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
848 * @list: the new list to add
849 * @head: the place to add it in the first list
851 * Each of the lists is a queue.
852 * The list at @list is reinitialised
854 static inline void skb_queue_splice_tail_init(struct sk_buff_head
*list
,
855 struct sk_buff_head
*head
)
857 if (!skb_queue_empty(list
)) {
858 __skb_queue_splice(list
, head
->prev
, (struct sk_buff
*) head
);
859 head
->qlen
+= list
->qlen
;
860 __skb_queue_head_init(list
);
865 * __skb_queue_after - queue a buffer at the list head
867 * @prev: place after this buffer
868 * @newsk: buffer to queue
870 * Queue a buffer int the middle of a list. This function takes no locks
871 * and you must therefore hold required locks before calling it.
873 * A buffer cannot be placed on two lists at the same time.
875 static inline void __skb_queue_after(struct sk_buff_head
*list
,
876 struct sk_buff
*prev
,
877 struct sk_buff
*newsk
)
879 __skb_insert(newsk
, prev
, prev
->next
, list
);
882 extern void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
,
883 struct sk_buff_head
*list
);
885 static inline void __skb_queue_before(struct sk_buff_head
*list
,
886 struct sk_buff
*next
,
887 struct sk_buff
*newsk
)
889 __skb_insert(newsk
, next
->prev
, next
, list
);
893 * __skb_queue_head - queue a buffer at the list head
895 * @newsk: buffer to queue
897 * Queue a buffer at the start of a list. This function takes no locks
898 * and you must therefore hold required locks before calling it.
900 * A buffer cannot be placed on two lists at the same time.
902 extern void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
903 static inline void __skb_queue_head(struct sk_buff_head
*list
,
904 struct sk_buff
*newsk
)
906 __skb_queue_after(list
, (struct sk_buff
*)list
, newsk
);
910 * __skb_queue_tail - queue a buffer at the list tail
912 * @newsk: buffer to queue
914 * Queue a buffer at the end of a list. This function takes no locks
915 * and you must therefore hold required locks before calling it.
917 * A buffer cannot be placed on two lists at the same time.
919 extern void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
920 static inline void __skb_queue_tail(struct sk_buff_head
*list
,
921 struct sk_buff
*newsk
)
923 __skb_queue_before(list
, (struct sk_buff
*)list
, newsk
);
927 * remove sk_buff from list. _Must_ be called atomically, and with
930 extern void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
);
931 static inline void __skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
933 struct sk_buff
*next
, *prev
;
938 skb
->next
= skb
->prev
= NULL
;
944 * __skb_dequeue - remove from the head of the queue
945 * @list: list to dequeue from
947 * Remove the head of the list. This function does not take any locks
948 * so must be used with appropriate locks held only. The head item is
949 * returned or %NULL if the list is empty.
951 extern struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
);
952 static inline struct sk_buff
*__skb_dequeue(struct sk_buff_head
*list
)
954 struct sk_buff
*skb
= skb_peek(list
);
956 __skb_unlink(skb
, list
);
961 * __skb_dequeue_tail - remove from the tail of the queue
962 * @list: list to dequeue from
964 * Remove the tail of the list. This function does not take any locks
965 * so must be used with appropriate locks held only. The tail item is
966 * returned or %NULL if the list is empty.
968 extern struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
);
969 static inline struct sk_buff
*__skb_dequeue_tail(struct sk_buff_head
*list
)
971 struct sk_buff
*skb
= skb_peek_tail(list
);
973 __skb_unlink(skb
, list
);
978 static inline int skb_is_nonlinear(const struct sk_buff
*skb
)
980 return skb
->data_len
;
983 static inline unsigned int skb_headlen(const struct sk_buff
*skb
)
985 return skb
->len
- skb
->data_len
;
988 static inline int skb_pagelen(const struct sk_buff
*skb
)
992 for (i
= (int)skb_shinfo(skb
)->nr_frags
- 1; i
>= 0; i
--)
993 len
+= skb_shinfo(skb
)->frags
[i
].size
;
994 return len
+ skb_headlen(skb
);
997 static inline void skb_fill_page_desc(struct sk_buff
*skb
, int i
,
998 struct page
*page
, int off
, int size
)
1000 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1003 frag
->page_offset
= off
;
1005 skb_shinfo(skb
)->nr_frags
= i
+ 1;
1008 extern void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
,
1011 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1012 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
1013 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1015 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1016 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
1018 return skb
->head
+ skb
->tail
;
1021 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
1023 skb
->tail
= skb
->data
- skb
->head
;
1026 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
1028 skb_reset_tail_pointer(skb
);
1029 skb
->tail
+= offset
;
1031 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1032 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
1037 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
1039 skb
->tail
= skb
->data
;
1042 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
1044 skb
->tail
= skb
->data
+ offset
;
1047 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1050 * Add data to an sk_buff
1052 extern unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
);
1053 static inline unsigned char *__skb_put(struct sk_buff
*skb
, unsigned int len
)
1055 unsigned char *tmp
= skb_tail_pointer(skb
);
1056 SKB_LINEAR_ASSERT(skb
);
1062 extern unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
);
1063 static inline unsigned char *__skb_push(struct sk_buff
*skb
, unsigned int len
)
1070 extern unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
);
1071 static inline unsigned char *__skb_pull(struct sk_buff
*skb
, unsigned int len
)
1074 BUG_ON(skb
->len
< skb
->data_len
);
1075 return skb
->data
+= len
;
1078 extern unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
);
1080 static inline unsigned char *__pskb_pull(struct sk_buff
*skb
, unsigned int len
)
1082 if (len
> skb_headlen(skb
) &&
1083 !__pskb_pull_tail(skb
, len
- skb_headlen(skb
)))
1086 return skb
->data
+= len
;
1089 static inline unsigned char *pskb_pull(struct sk_buff
*skb
, unsigned int len
)
1091 return unlikely(len
> skb
->len
) ? NULL
: __pskb_pull(skb
, len
);
1094 static inline int pskb_may_pull(struct sk_buff
*skb
, unsigned int len
)
1096 if (likely(len
<= skb_headlen(skb
)))
1098 if (unlikely(len
> skb
->len
))
1100 return __pskb_pull_tail(skb
, len
- skb_headlen(skb
)) != NULL
;
1104 * skb_headroom - bytes at buffer head
1105 * @skb: buffer to check
1107 * Return the number of bytes of free space at the head of an &sk_buff.
1109 static inline unsigned int skb_headroom(const struct sk_buff
*skb
)
1111 return skb
->data
- skb
->head
;
1115 * skb_tailroom - bytes at buffer end
1116 * @skb: buffer to check
1118 * Return the number of bytes of free space at the tail of an sk_buff
1120 static inline int skb_tailroom(const struct sk_buff
*skb
)
1122 return skb_is_nonlinear(skb
) ? 0 : skb
->end
- skb
->tail
;
1126 * skb_reserve - adjust headroom
1127 * @skb: buffer to alter
1128 * @len: bytes to move
1130 * Increase the headroom of an empty &sk_buff by reducing the tail
1131 * room. This is only allowed for an empty buffer.
1133 static inline void skb_reserve(struct sk_buff
*skb
, int len
)
1139 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1140 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
1142 return skb
->head
+ skb
->transport_header
;
1145 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
1147 skb
->transport_header
= skb
->data
- skb
->head
;
1150 static inline void skb_set_transport_header(struct sk_buff
*skb
,
1153 skb_reset_transport_header(skb
);
1154 skb
->transport_header
+= offset
;
1157 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
1159 return skb
->head
+ skb
->network_header
;
1162 static inline void skb_reset_network_header(struct sk_buff
*skb
)
1164 skb
->network_header
= skb
->data
- skb
->head
;
1167 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
1169 skb_reset_network_header(skb
);
1170 skb
->network_header
+= offset
;
1173 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
1175 return skb
->head
+ skb
->mac_header
;
1178 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1180 return skb
->mac_header
!= ~0U;
1183 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1185 skb
->mac_header
= skb
->data
- skb
->head
;
1188 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1190 skb_reset_mac_header(skb
);
1191 skb
->mac_header
+= offset
;
1194 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1196 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
1198 return skb
->transport_header
;
1201 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
1203 skb
->transport_header
= skb
->data
;
1206 static inline void skb_set_transport_header(struct sk_buff
*skb
,
1209 skb
->transport_header
= skb
->data
+ offset
;
1212 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
1214 return skb
->network_header
;
1217 static inline void skb_reset_network_header(struct sk_buff
*skb
)
1219 skb
->network_header
= skb
->data
;
1222 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
1224 skb
->network_header
= skb
->data
+ offset
;
1227 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
1229 return skb
->mac_header
;
1232 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1234 return skb
->mac_header
!= NULL
;
1237 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1239 skb
->mac_header
= skb
->data
;
1242 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1244 skb
->mac_header
= skb
->data
+ offset
;
1246 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1248 static inline int skb_transport_offset(const struct sk_buff
*skb
)
1250 return skb_transport_header(skb
) - skb
->data
;
1253 static inline u32
skb_network_header_len(const struct sk_buff
*skb
)
1255 return skb
->transport_header
- skb
->network_header
;
1258 static inline int skb_network_offset(const struct sk_buff
*skb
)
1260 return skb_network_header(skb
) - skb
->data
;
1264 * CPUs often take a performance hit when accessing unaligned memory
1265 * locations. The actual performance hit varies, it can be small if the
1266 * hardware handles it or large if we have to take an exception and fix it
1269 * Since an ethernet header is 14 bytes network drivers often end up with
1270 * the IP header at an unaligned offset. The IP header can be aligned by
1271 * shifting the start of the packet by 2 bytes. Drivers should do this
1274 * skb_reserve(NET_IP_ALIGN);
1276 * The downside to this alignment of the IP header is that the DMA is now
1277 * unaligned. On some architectures the cost of an unaligned DMA is high
1278 * and this cost outweighs the gains made by aligning the IP header.
1280 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1283 #ifndef NET_IP_ALIGN
1284 #define NET_IP_ALIGN 2
1288 * The networking layer reserves some headroom in skb data (via
1289 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1290 * the header has to grow. In the default case, if the header has to grow
1291 * 16 bytes or less we avoid the reallocation.
1293 * Unfortunately this headroom changes the DMA alignment of the resulting
1294 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1295 * on some architectures. An architecture can override this value,
1296 * perhaps setting it to a cacheline in size (since that will maintain
1297 * cacheline alignment of the DMA). It must be a power of 2.
1299 * Various parts of the networking layer expect at least 16 bytes of
1300 * headroom, you should not reduce this.
1303 #define NET_SKB_PAD 16
1306 extern int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
);
1308 static inline void __skb_trim(struct sk_buff
*skb
, unsigned int len
)
1310 if (unlikely(skb
->data_len
)) {
1315 skb_set_tail_pointer(skb
, len
);
1318 extern void skb_trim(struct sk_buff
*skb
, unsigned int len
);
1320 static inline int __pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1323 return ___pskb_trim(skb
, len
);
1324 __skb_trim(skb
, len
);
1328 static inline int pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1330 return (len
< skb
->len
) ? __pskb_trim(skb
, len
) : 0;
1334 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1335 * @skb: buffer to alter
1338 * This is identical to pskb_trim except that the caller knows that
1339 * the skb is not cloned so we should never get an error due to out-
1342 static inline void pskb_trim_unique(struct sk_buff
*skb
, unsigned int len
)
1344 int err
= pskb_trim(skb
, len
);
1349 * skb_orphan - orphan a buffer
1350 * @skb: buffer to orphan
1352 * If a buffer currently has an owner then we call the owner's
1353 * destructor function and make the @skb unowned. The buffer continues
1354 * to exist but is no longer charged to its former owner.
1356 static inline void skb_orphan(struct sk_buff
*skb
)
1358 if (skb
->destructor
)
1359 skb
->destructor(skb
);
1360 skb
->destructor
= NULL
;
1365 * __skb_queue_purge - empty a list
1366 * @list: list to empty
1368 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1369 * the list and one reference dropped. This function does not take the
1370 * list lock and the caller must hold the relevant locks to use it.
1372 extern void skb_queue_purge(struct sk_buff_head
*list
);
1373 static inline void __skb_queue_purge(struct sk_buff_head
*list
)
1375 struct sk_buff
*skb
;
1376 while ((skb
= __skb_dequeue(list
)) != NULL
)
1381 * __dev_alloc_skb - allocate an skbuff for receiving
1382 * @length: length to allocate
1383 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1385 * Allocate a new &sk_buff and assign it a usage count of one. The
1386 * buffer has unspecified headroom built in. Users should allocate
1387 * the headroom they think they need without accounting for the
1388 * built in space. The built in space is used for optimisations.
1390 * %NULL is returned if there is no free memory.
1392 static inline struct sk_buff
*__dev_alloc_skb(unsigned int length
,
1395 struct sk_buff
*skb
= alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
);
1397 skb_reserve(skb
, NET_SKB_PAD
);
1401 extern struct sk_buff
*dev_alloc_skb(unsigned int length
);
1403 extern struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
1404 unsigned int length
, gfp_t gfp_mask
);
1407 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1408 * @dev: network device to receive on
1409 * @length: length to allocate
1411 * Allocate a new &sk_buff and assign it a usage count of one. The
1412 * buffer has unspecified headroom built in. Users should allocate
1413 * the headroom they think they need without accounting for the
1414 * built in space. The built in space is used for optimisations.
1416 * %NULL is returned if there is no free memory. Although this function
1417 * allocates memory it can be called from an interrupt.
1419 static inline struct sk_buff
*netdev_alloc_skb(struct net_device
*dev
,
1420 unsigned int length
)
1422 return __netdev_alloc_skb(dev
, length
, GFP_ATOMIC
);
1425 extern struct page
*__netdev_alloc_page(struct net_device
*dev
, gfp_t gfp_mask
);
1428 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1429 * @dev: network device to receive on
1431 * Allocate a new page node local to the specified device.
1433 * %NULL is returned if there is no free memory.
1435 static inline struct page
*netdev_alloc_page(struct net_device
*dev
)
1437 return __netdev_alloc_page(dev
, GFP_ATOMIC
);
1440 static inline void netdev_free_page(struct net_device
*dev
, struct page
*page
)
1446 * skb_clone_writable - is the header of a clone writable
1447 * @skb: buffer to check
1448 * @len: length up to which to write
1450 * Returns true if modifying the header part of the cloned buffer
1451 * does not requires the data to be copied.
1453 static inline int skb_clone_writable(struct sk_buff
*skb
, unsigned int len
)
1455 return !skb_header_cloned(skb
) &&
1456 skb_headroom(skb
) + len
<= skb
->hdr_len
;
1459 static inline int __skb_cow(struct sk_buff
*skb
, unsigned int headroom
,
1464 if (headroom
< NET_SKB_PAD
)
1465 headroom
= NET_SKB_PAD
;
1466 if (headroom
> skb_headroom(skb
))
1467 delta
= headroom
- skb_headroom(skb
);
1469 if (delta
|| cloned
)
1470 return pskb_expand_head(skb
, ALIGN(delta
, NET_SKB_PAD
), 0,
1476 * skb_cow - copy header of skb when it is required
1477 * @skb: buffer to cow
1478 * @headroom: needed headroom
1480 * If the skb passed lacks sufficient headroom or its data part
1481 * is shared, data is reallocated. If reallocation fails, an error
1482 * is returned and original skb is not changed.
1484 * The result is skb with writable area skb->head...skb->tail
1485 * and at least @headroom of space at head.
1487 static inline int skb_cow(struct sk_buff
*skb
, unsigned int headroom
)
1489 return __skb_cow(skb
, headroom
, skb_cloned(skb
));
1493 * skb_cow_head - skb_cow but only making the head writable
1494 * @skb: buffer to cow
1495 * @headroom: needed headroom
1497 * This function is identical to skb_cow except that we replace the
1498 * skb_cloned check by skb_header_cloned. It should be used when
1499 * you only need to push on some header and do not need to modify
1502 static inline int skb_cow_head(struct sk_buff
*skb
, unsigned int headroom
)
1504 return __skb_cow(skb
, headroom
, skb_header_cloned(skb
));
1508 * skb_padto - pad an skbuff up to a minimal size
1509 * @skb: buffer to pad
1510 * @len: minimal length
1512 * Pads up a buffer to ensure the trailing bytes exist and are
1513 * blanked. If the buffer already contains sufficient data it
1514 * is untouched. Otherwise it is extended. Returns zero on
1515 * success. The skb is freed on error.
1518 static inline int skb_padto(struct sk_buff
*skb
, unsigned int len
)
1520 unsigned int size
= skb
->len
;
1521 if (likely(size
>= len
))
1523 return skb_pad(skb
, len
- size
);
1526 static inline int skb_add_data(struct sk_buff
*skb
,
1527 char __user
*from
, int copy
)
1529 const int off
= skb
->len
;
1531 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1533 __wsum csum
= csum_and_copy_from_user(from
, skb_put(skb
, copy
),
1536 skb
->csum
= csum_block_add(skb
->csum
, csum
, off
);
1539 } else if (!copy_from_user(skb_put(skb
, copy
), from
, copy
))
1542 __skb_trim(skb
, off
);
1546 static inline int skb_can_coalesce(struct sk_buff
*skb
, int i
,
1547 struct page
*page
, int off
)
1550 struct skb_frag_struct
*frag
= &skb_shinfo(skb
)->frags
[i
- 1];
1552 return page
== frag
->page
&&
1553 off
== frag
->page_offset
+ frag
->size
;
1558 static inline int __skb_linearize(struct sk_buff
*skb
)
1560 return __pskb_pull_tail(skb
, skb
->data_len
) ? 0 : -ENOMEM
;
1564 * skb_linearize - convert paged skb to linear one
1565 * @skb: buffer to linarize
1567 * If there is no free memory -ENOMEM is returned, otherwise zero
1568 * is returned and the old skb data released.
1570 static inline int skb_linearize(struct sk_buff
*skb
)
1572 return skb_is_nonlinear(skb
) ? __skb_linearize(skb
) : 0;
1576 * skb_linearize_cow - make sure skb is linear and writable
1577 * @skb: buffer to process
1579 * If there is no free memory -ENOMEM is returned, otherwise zero
1580 * is returned and the old skb data released.
1582 static inline int skb_linearize_cow(struct sk_buff
*skb
)
1584 return skb_is_nonlinear(skb
) || skb_cloned(skb
) ?
1585 __skb_linearize(skb
) : 0;
1589 * skb_postpull_rcsum - update checksum for received skb after pull
1590 * @skb: buffer to update
1591 * @start: start of data before pull
1592 * @len: length of data pulled
1594 * After doing a pull on a received packet, you need to call this to
1595 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1596 * CHECKSUM_NONE so that it can be recomputed from scratch.
1599 static inline void skb_postpull_rcsum(struct sk_buff
*skb
,
1600 const void *start
, unsigned int len
)
1602 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1603 skb
->csum
= csum_sub(skb
->csum
, csum_partial(start
, len
, 0));
1606 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
);
1609 * pskb_trim_rcsum - trim received skb and update checksum
1610 * @skb: buffer to trim
1613 * This is exactly the same as pskb_trim except that it ensures the
1614 * checksum of received packets are still valid after the operation.
1617 static inline int pskb_trim_rcsum(struct sk_buff
*skb
, unsigned int len
)
1619 if (likely(len
>= skb
->len
))
1621 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1622 skb
->ip_summed
= CHECKSUM_NONE
;
1623 return __pskb_trim(skb
, len
);
1626 #define skb_queue_walk(queue, skb) \
1627 for (skb = (queue)->next; \
1628 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1631 #define skb_queue_walk_safe(queue, skb, tmp) \
1632 for (skb = (queue)->next, tmp = skb->next; \
1633 skb != (struct sk_buff *)(queue); \
1634 skb = tmp, tmp = skb->next)
1636 #define skb_queue_walk_from(queue, skb) \
1637 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1640 #define skb_queue_walk_from_safe(queue, skb, tmp) \
1641 for (tmp = skb->next; \
1642 skb != (struct sk_buff *)(queue); \
1643 skb = tmp, tmp = skb->next)
1645 #define skb_queue_reverse_walk(queue, skb) \
1646 for (skb = (queue)->prev; \
1647 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1651 extern struct sk_buff
*__skb_recv_datagram(struct sock
*sk
, unsigned flags
,
1652 int *peeked
, int *err
);
1653 extern struct sk_buff
*skb_recv_datagram(struct sock
*sk
, unsigned flags
,
1654 int noblock
, int *err
);
1655 extern unsigned int datagram_poll(struct file
*file
, struct socket
*sock
,
1656 struct poll_table_struct
*wait
);
1657 extern int skb_copy_datagram_iovec(const struct sk_buff
*from
,
1658 int offset
, struct iovec
*to
,
1660 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff
*skb
,
1663 extern int skb_copy_datagram_from_iovec(struct sk_buff
*skb
,
1667 extern void skb_free_datagram(struct sock
*sk
, struct sk_buff
*skb
);
1668 extern int skb_kill_datagram(struct sock
*sk
, struct sk_buff
*skb
,
1669 unsigned int flags
);
1670 extern __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1671 int len
, __wsum csum
);
1672 extern int skb_copy_bits(const struct sk_buff
*skb
, int offset
,
1674 extern int skb_store_bits(struct sk_buff
*skb
, int offset
,
1675 const void *from
, int len
);
1676 extern __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
,
1677 int offset
, u8
*to
, int len
,
1679 extern int skb_splice_bits(struct sk_buff
*skb
,
1680 unsigned int offset
,
1681 struct pipe_inode_info
*pipe
,
1683 unsigned int flags
);
1684 extern void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
);
1685 extern void skb_split(struct sk_buff
*skb
,
1686 struct sk_buff
*skb1
, const u32 len
);
1687 extern int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
,
1690 extern struct sk_buff
*skb_segment(struct sk_buff
*skb
, int features
);
1691 extern int skb_gro_receive(struct sk_buff
**head
,
1692 struct sk_buff
*skb
);
1694 static inline void *skb_header_pointer(const struct sk_buff
*skb
, int offset
,
1695 int len
, void *buffer
)
1697 int hlen
= skb_headlen(skb
);
1699 if (hlen
- offset
>= len
)
1700 return skb
->data
+ offset
;
1702 if (skb_copy_bits(skb
, offset
, buffer
, len
) < 0)
1708 static inline void skb_copy_from_linear_data(const struct sk_buff
*skb
,
1710 const unsigned int len
)
1712 memcpy(to
, skb
->data
, len
);
1715 static inline void skb_copy_from_linear_data_offset(const struct sk_buff
*skb
,
1716 const int offset
, void *to
,
1717 const unsigned int len
)
1719 memcpy(to
, skb
->data
+ offset
, len
);
1722 static inline void skb_copy_to_linear_data(struct sk_buff
*skb
,
1724 const unsigned int len
)
1726 memcpy(skb
->data
, from
, len
);
1729 static inline void skb_copy_to_linear_data_offset(struct sk_buff
*skb
,
1732 const unsigned int len
)
1734 memcpy(skb
->data
+ offset
, from
, len
);
1737 extern void skb_init(void);
1740 * skb_get_timestamp - get timestamp from a skb
1741 * @skb: skb to get stamp from
1742 * @stamp: pointer to struct timeval to store stamp in
1744 * Timestamps are stored in the skb as offsets to a base timestamp.
1745 * This function converts the offset back to a struct timeval and stores
1748 static inline void skb_get_timestamp(const struct sk_buff
*skb
, struct timeval
*stamp
)
1750 *stamp
= ktime_to_timeval(skb
->tstamp
);
1753 static inline void __net_timestamp(struct sk_buff
*skb
)
1755 skb
->tstamp
= ktime_get_real();
1758 static inline ktime_t
net_timedelta(ktime_t t
)
1760 return ktime_sub(ktime_get_real(), t
);
1763 static inline ktime_t
net_invalid_timestamp(void)
1765 return ktime_set(0, 0);
1768 extern __sum16
__skb_checksum_complete_head(struct sk_buff
*skb
, int len
);
1769 extern __sum16
__skb_checksum_complete(struct sk_buff
*skb
);
1771 static inline int skb_csum_unnecessary(const struct sk_buff
*skb
)
1773 return skb
->ip_summed
& CHECKSUM_UNNECESSARY
;
1777 * skb_checksum_complete - Calculate checksum of an entire packet
1778 * @skb: packet to process
1780 * This function calculates the checksum over the entire packet plus
1781 * the value of skb->csum. The latter can be used to supply the
1782 * checksum of a pseudo header as used by TCP/UDP. It returns the
1785 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1786 * this function can be used to verify that checksum on received
1787 * packets. In that case the function should return zero if the
1788 * checksum is correct. In particular, this function will return zero
1789 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1790 * hardware has already verified the correctness of the checksum.
1792 static inline __sum16
skb_checksum_complete(struct sk_buff
*skb
)
1794 return skb_csum_unnecessary(skb
) ?
1795 0 : __skb_checksum_complete(skb
);
1798 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1799 extern void nf_conntrack_destroy(struct nf_conntrack
*nfct
);
1800 static inline void nf_conntrack_put(struct nf_conntrack
*nfct
)
1802 if (nfct
&& atomic_dec_and_test(&nfct
->use
))
1803 nf_conntrack_destroy(nfct
);
1805 static inline void nf_conntrack_get(struct nf_conntrack
*nfct
)
1808 atomic_inc(&nfct
->use
);
1810 static inline void nf_conntrack_get_reasm(struct sk_buff
*skb
)
1813 atomic_inc(&skb
->users
);
1815 static inline void nf_conntrack_put_reasm(struct sk_buff
*skb
)
1821 #ifdef CONFIG_BRIDGE_NETFILTER
1822 static inline void nf_bridge_put(struct nf_bridge_info
*nf_bridge
)
1824 if (nf_bridge
&& atomic_dec_and_test(&nf_bridge
->use
))
1827 static inline void nf_bridge_get(struct nf_bridge_info
*nf_bridge
)
1830 atomic_inc(&nf_bridge
->use
);
1832 #endif /* CONFIG_BRIDGE_NETFILTER */
1833 static inline void nf_reset(struct sk_buff
*skb
)
1835 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1836 nf_conntrack_put(skb
->nfct
);
1838 nf_conntrack_put_reasm(skb
->nfct_reasm
);
1839 skb
->nfct_reasm
= NULL
;
1841 #ifdef CONFIG_BRIDGE_NETFILTER
1842 nf_bridge_put(skb
->nf_bridge
);
1843 skb
->nf_bridge
= NULL
;
1847 /* Note: This doesn't put any conntrack and bridge info in dst. */
1848 static inline void __nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
1850 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1851 dst
->nfct
= src
->nfct
;
1852 nf_conntrack_get(src
->nfct
);
1853 dst
->nfctinfo
= src
->nfctinfo
;
1854 dst
->nfct_reasm
= src
->nfct_reasm
;
1855 nf_conntrack_get_reasm(src
->nfct_reasm
);
1857 #ifdef CONFIG_BRIDGE_NETFILTER
1858 dst
->nf_bridge
= src
->nf_bridge
;
1859 nf_bridge_get(src
->nf_bridge
);
1863 static inline void nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
1865 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1866 nf_conntrack_put(dst
->nfct
);
1867 nf_conntrack_put_reasm(dst
->nfct_reasm
);
1869 #ifdef CONFIG_BRIDGE_NETFILTER
1870 nf_bridge_put(dst
->nf_bridge
);
1872 __nf_copy(dst
, src
);
1875 #ifdef CONFIG_NETWORK_SECMARK
1876 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
1878 to
->secmark
= from
->secmark
;
1881 static inline void skb_init_secmark(struct sk_buff
*skb
)
1886 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
1889 static inline void skb_init_secmark(struct sk_buff
*skb
)
1893 static inline void skb_set_queue_mapping(struct sk_buff
*skb
, u16 queue_mapping
)
1895 skb
->queue_mapping
= queue_mapping
;
1898 static inline u16
skb_get_queue_mapping(struct sk_buff
*skb
)
1900 return skb
->queue_mapping
;
1903 static inline void skb_copy_queue_mapping(struct sk_buff
*to
, const struct sk_buff
*from
)
1905 to
->queue_mapping
= from
->queue_mapping
;
1909 static inline struct sec_path
*skb_sec_path(struct sk_buff
*skb
)
1914 static inline struct sec_path
*skb_sec_path(struct sk_buff
*skb
)
1920 static inline int skb_is_gso(const struct sk_buff
*skb
)
1922 return skb_shinfo(skb
)->gso_size
;
1925 static inline int skb_is_gso_v6(const struct sk_buff
*skb
)
1927 return skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
;
1930 extern void __skb_warn_lro_forwarding(const struct sk_buff
*skb
);
1932 static inline bool skb_warn_if_lro(const struct sk_buff
*skb
)
1934 /* LRO sets gso_size but not gso_type, whereas if GSO is really
1935 * wanted then gso_type will be set. */
1936 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
1937 if (shinfo
->gso_size
!= 0 && unlikely(shinfo
->gso_type
== 0)) {
1938 __skb_warn_lro_forwarding(skb
);
1944 static inline void skb_forward_csum(struct sk_buff
*skb
)
1946 /* Unfortunately we don't support this one. Any brave souls? */
1947 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1948 skb
->ip_summed
= CHECKSUM_NONE
;
1951 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
);
1952 #endif /* __KERNEL__ */
1953 #endif /* _LINUX_SKBUFF_H */