Luca's patch ported
[cbs-scheduler.git] / ipc / sem.c
blobe1713ab86d29bdc3bcee1192eaa78dac132e38d9
1 /*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7 * This code underwent a massive rewrite in order to solve some problems
8 * with the original code. In particular the original code failed to
9 * wake up processes that were waiting for semval to go to 0 if the
10 * value went to 0 and was then incremented rapidly enough. In solving
11 * this problem I have also modified the implementation so that it
12 * processes pending operations in a FIFO manner, thus give a guarantee
13 * that processes waiting for a lock on the semaphore won't starve
14 * unless another locking process fails to unlock.
15 * In addition the following two changes in behavior have been introduced:
16 * - The original implementation of semop returned the value
17 * last semaphore element examined on success. This does not
18 * match the manual page specifications, and effectively
19 * allows the user to read the semaphore even if they do not
20 * have read permissions. The implementation now returns 0
21 * on success as stated in the manual page.
22 * - There is some confusion over whether the set of undo adjustments
23 * to be performed at exit should be done in an atomic manner.
24 * That is, if we are attempting to decrement the semval should we queue
25 * up and wait until we can do so legally?
26 * The original implementation attempted to do this.
27 * The current implementation does not do so. This is because I don't
28 * think it is the right thing (TM) to do, and because I couldn't
29 * see a clean way to get the old behavior with the new design.
30 * The POSIX standard and SVID should be consulted to determine
31 * what behavior is mandated.
33 * Further notes on refinement (Christoph Rohland, December 1998):
34 * - The POSIX standard says, that the undo adjustments simply should
35 * redo. So the current implementation is o.K.
36 * - The previous code had two flaws:
37 * 1) It actively gave the semaphore to the next waiting process
38 * sleeping on the semaphore. Since this process did not have the
39 * cpu this led to many unnecessary context switches and bad
40 * performance. Now we only check which process should be able to
41 * get the semaphore and if this process wants to reduce some
42 * semaphore value we simply wake it up without doing the
43 * operation. So it has to try to get it later. Thus e.g. the
44 * running process may reacquire the semaphore during the current
45 * time slice. If it only waits for zero or increases the semaphore,
46 * we do the operation in advance and wake it up.
47 * 2) It did not wake up all zero waiting processes. We try to do
48 * better but only get the semops right which only wait for zero or
49 * increase. If there are decrement operations in the operations
50 * array we do the same as before.
52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53 * check/retry algorithm for waking up blocked processes as the new scheduler
54 * is better at handling thread switch than the old one.
56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
58 * SMP-threaded, sysctl's added
59 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
60 * Enforced range limit on SEM_UNDO
61 * (c) 2001 Red Hat Inc
62 * Lockless wakeup
63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
65 * support for audit of ipc object properties and permission changes
66 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
68 * namespaces support
69 * OpenVZ, SWsoft Inc.
70 * Pavel Emelianov <xemul@openvz.org>
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/audit.h>
81 #include <linux/capability.h>
82 #include <linux/seq_file.h>
83 #include <linux/rwsem.h>
84 #include <linux/nsproxy.h>
85 #include <linux/ipc_namespace.h>
87 #include <asm/uaccess.h>
88 #include "util.h"
90 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
92 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
93 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
95 static int newary(struct ipc_namespace *, struct ipc_params *);
96 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
97 #ifdef CONFIG_PROC_FS
98 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
99 #endif
101 #define SEMMSL_FAST 256 /* 512 bytes on stack */
102 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
105 * linked list protection:
106 * sem_undo.id_next,
107 * sem_array.sem_pending{,last},
108 * sem_array.sem_undo: sem_lock() for read/write
109 * sem_undo.proc_next: only "current" is allowed to read/write that field.
113 #define sc_semmsl sem_ctls[0]
114 #define sc_semmns sem_ctls[1]
115 #define sc_semopm sem_ctls[2]
116 #define sc_semmni sem_ctls[3]
118 void sem_init_ns(struct ipc_namespace *ns)
120 ns->sc_semmsl = SEMMSL;
121 ns->sc_semmns = SEMMNS;
122 ns->sc_semopm = SEMOPM;
123 ns->sc_semmni = SEMMNI;
124 ns->used_sems = 0;
125 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
128 #ifdef CONFIG_IPC_NS
129 void sem_exit_ns(struct ipc_namespace *ns)
131 free_ipcs(ns, &sem_ids(ns), freeary);
133 #endif
135 void __init sem_init (void)
137 sem_init_ns(&init_ipc_ns);
138 ipc_init_proc_interface("sysvipc/sem",
139 " key semid perms nsems uid gid cuid cgid otime ctime\n",
140 IPC_SEM_IDS, sysvipc_sem_proc_show);
144 * sem_lock_(check_) routines are called in the paths where the rw_mutex
145 * is not held.
147 static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id)
149 struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id);
151 if (IS_ERR(ipcp))
152 return (struct sem_array *)ipcp;
154 return container_of(ipcp, struct sem_array, sem_perm);
157 static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns,
158 int id)
160 struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id);
162 if (IS_ERR(ipcp))
163 return (struct sem_array *)ipcp;
165 return container_of(ipcp, struct sem_array, sem_perm);
168 static inline void sem_lock_and_putref(struct sem_array *sma)
170 ipc_lock_by_ptr(&sma->sem_perm);
171 ipc_rcu_putref(sma);
174 static inline void sem_getref_and_unlock(struct sem_array *sma)
176 ipc_rcu_getref(sma);
177 ipc_unlock(&(sma)->sem_perm);
180 static inline void sem_putref(struct sem_array *sma)
182 ipc_lock_by_ptr(&sma->sem_perm);
183 ipc_rcu_putref(sma);
184 ipc_unlock(&(sma)->sem_perm);
187 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
189 ipc_rmid(&sem_ids(ns), &s->sem_perm);
193 * Lockless wakeup algorithm:
194 * Without the check/retry algorithm a lockless wakeup is possible:
195 * - queue.status is initialized to -EINTR before blocking.
196 * - wakeup is performed by
197 * * unlinking the queue entry from sma->sem_pending
198 * * setting queue.status to IN_WAKEUP
199 * This is the notification for the blocked thread that a
200 * result value is imminent.
201 * * call wake_up_process
202 * * set queue.status to the final value.
203 * - the previously blocked thread checks queue.status:
204 * * if it's IN_WAKEUP, then it must wait until the value changes
205 * * if it's not -EINTR, then the operation was completed by
206 * update_queue. semtimedop can return queue.status without
207 * performing any operation on the sem array.
208 * * otherwise it must acquire the spinlock and check what's up.
210 * The two-stage algorithm is necessary to protect against the following
211 * races:
212 * - if queue.status is set after wake_up_process, then the woken up idle
213 * thread could race forward and try (and fail) to acquire sma->lock
214 * before update_queue had a chance to set queue.status
215 * - if queue.status is written before wake_up_process and if the
216 * blocked process is woken up by a signal between writing
217 * queue.status and the wake_up_process, then the woken up
218 * process could return from semtimedop and die by calling
219 * sys_exit before wake_up_process is called. Then wake_up_process
220 * will oops, because the task structure is already invalid.
221 * (yes, this happened on s390 with sysv msg).
224 #define IN_WAKEUP 1
227 * newary - Create a new semaphore set
228 * @ns: namespace
229 * @params: ptr to the structure that contains key, semflg and nsems
231 * Called with sem_ids.rw_mutex held (as a writer)
234 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
236 int id;
237 int retval;
238 struct sem_array *sma;
239 int size;
240 key_t key = params->key;
241 int nsems = params->u.nsems;
242 int semflg = params->flg;
244 if (!nsems)
245 return -EINVAL;
246 if (ns->used_sems + nsems > ns->sc_semmns)
247 return -ENOSPC;
249 size = sizeof (*sma) + nsems * sizeof (struct sem);
250 sma = ipc_rcu_alloc(size);
251 if (!sma) {
252 return -ENOMEM;
254 memset (sma, 0, size);
256 sma->sem_perm.mode = (semflg & S_IRWXUGO);
257 sma->sem_perm.key = key;
259 sma->sem_perm.security = NULL;
260 retval = security_sem_alloc(sma);
261 if (retval) {
262 ipc_rcu_putref(sma);
263 return retval;
266 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
267 if (id < 0) {
268 security_sem_free(sma);
269 ipc_rcu_putref(sma);
270 return id;
272 ns->used_sems += nsems;
274 sma->sem_base = (struct sem *) &sma[1];
275 INIT_LIST_HEAD(&sma->sem_pending);
276 INIT_LIST_HEAD(&sma->list_id);
277 sma->sem_nsems = nsems;
278 sma->sem_ctime = get_seconds();
279 sem_unlock(sma);
281 return sma->sem_perm.id;
286 * Called with sem_ids.rw_mutex and ipcp locked.
288 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
290 struct sem_array *sma;
292 sma = container_of(ipcp, struct sem_array, sem_perm);
293 return security_sem_associate(sma, semflg);
297 * Called with sem_ids.rw_mutex and ipcp locked.
299 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
300 struct ipc_params *params)
302 struct sem_array *sma;
304 sma = container_of(ipcp, struct sem_array, sem_perm);
305 if (params->u.nsems > sma->sem_nsems)
306 return -EINVAL;
308 return 0;
311 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
313 struct ipc_namespace *ns;
314 struct ipc_ops sem_ops;
315 struct ipc_params sem_params;
317 ns = current->nsproxy->ipc_ns;
319 if (nsems < 0 || nsems > ns->sc_semmsl)
320 return -EINVAL;
322 sem_ops.getnew = newary;
323 sem_ops.associate = sem_security;
324 sem_ops.more_checks = sem_more_checks;
326 sem_params.key = key;
327 sem_params.flg = semflg;
328 sem_params.u.nsems = nsems;
330 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
334 * Determine whether a sequence of semaphore operations would succeed
335 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
338 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
339 int nsops, struct sem_undo *un, int pid)
341 int result, sem_op;
342 struct sembuf *sop;
343 struct sem * curr;
345 for (sop = sops; sop < sops + nsops; sop++) {
346 curr = sma->sem_base + sop->sem_num;
347 sem_op = sop->sem_op;
348 result = curr->semval;
350 if (!sem_op && result)
351 goto would_block;
353 result += sem_op;
354 if (result < 0)
355 goto would_block;
356 if (result > SEMVMX)
357 goto out_of_range;
358 if (sop->sem_flg & SEM_UNDO) {
359 int undo = un->semadj[sop->sem_num] - sem_op;
361 * Exceeding the undo range is an error.
363 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
364 goto out_of_range;
366 curr->semval = result;
369 sop--;
370 while (sop >= sops) {
371 sma->sem_base[sop->sem_num].sempid = pid;
372 if (sop->sem_flg & SEM_UNDO)
373 un->semadj[sop->sem_num] -= sop->sem_op;
374 sop--;
377 sma->sem_otime = get_seconds();
378 return 0;
380 out_of_range:
381 result = -ERANGE;
382 goto undo;
384 would_block:
385 if (sop->sem_flg & IPC_NOWAIT)
386 result = -EAGAIN;
387 else
388 result = 1;
390 undo:
391 sop--;
392 while (sop >= sops) {
393 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
394 sop--;
397 return result;
400 /* Go through the pending queue for the indicated semaphore
401 * looking for tasks that can be completed.
403 static void update_queue (struct sem_array * sma)
405 int error;
406 struct sem_queue * q;
408 q = list_entry(sma->sem_pending.next, struct sem_queue, list);
409 while (&q->list != &sma->sem_pending) {
410 error = try_atomic_semop(sma, q->sops, q->nsops,
411 q->undo, q->pid);
413 /* Does q->sleeper still need to sleep? */
414 if (error <= 0) {
415 struct sem_queue *n;
418 * make sure that the wakeup doesnt preempt
419 * _this_ cpu prematurely. (on preempt_rt)
421 preempt_disable();
423 * Continue scanning. The next operation
424 * that must be checked depends on the type of the
425 * completed operation:
426 * - if the operation modified the array, then
427 * restart from the head of the queue and
428 * check for threads that might be waiting
429 * for semaphore values to become 0.
430 * - if the operation didn't modify the array,
431 * then just continue.
432 * The order of list_del() and reading ->next
433 * is crucial: In the former case, the list_del()
434 * must be done first [because we might be the
435 * first entry in ->sem_pending], in the latter
436 * case the list_del() must be done last
437 * [because the list is invalid after the list_del()]
439 if (q->alter) {
440 list_del(&q->list);
441 n = list_entry(sma->sem_pending.next,
442 struct sem_queue, list);
443 } else {
444 n = list_entry(q->list.next, struct sem_queue,
445 list);
446 list_del(&q->list);
449 /* wake up the waiting thread */
450 q->status = IN_WAKEUP;
452 wake_up_process(q->sleeper);
453 /* hands-off: q will disappear immediately after
454 * writing q->status.
456 smp_wmb();
457 q->status = error;
458 preempt_enable();
459 q = n;
460 } else {
461 q = list_entry(q->list.next, struct sem_queue, list);
466 /* The following counts are associated to each semaphore:
467 * semncnt number of tasks waiting on semval being nonzero
468 * semzcnt number of tasks waiting on semval being zero
469 * This model assumes that a task waits on exactly one semaphore.
470 * Since semaphore operations are to be performed atomically, tasks actually
471 * wait on a whole sequence of semaphores simultaneously.
472 * The counts we return here are a rough approximation, but still
473 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
475 static int count_semncnt (struct sem_array * sma, ushort semnum)
477 int semncnt;
478 struct sem_queue * q;
480 semncnt = 0;
481 list_for_each_entry(q, &sma->sem_pending, list) {
482 struct sembuf * sops = q->sops;
483 int nsops = q->nsops;
484 int i;
485 for (i = 0; i < nsops; i++)
486 if (sops[i].sem_num == semnum
487 && (sops[i].sem_op < 0)
488 && !(sops[i].sem_flg & IPC_NOWAIT))
489 semncnt++;
491 return semncnt;
494 static int count_semzcnt (struct sem_array * sma, ushort semnum)
496 int semzcnt;
497 struct sem_queue * q;
499 semzcnt = 0;
500 list_for_each_entry(q, &sma->sem_pending, list) {
501 struct sembuf * sops = q->sops;
502 int nsops = q->nsops;
503 int i;
504 for (i = 0; i < nsops; i++)
505 if (sops[i].sem_num == semnum
506 && (sops[i].sem_op == 0)
507 && !(sops[i].sem_flg & IPC_NOWAIT))
508 semzcnt++;
510 return semzcnt;
513 static void free_un(struct rcu_head *head)
515 struct sem_undo *un = container_of(head, struct sem_undo, rcu);
516 kfree(un);
519 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
520 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
521 * remains locked on exit.
523 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
525 struct sem_undo *un, *tu;
526 struct sem_queue *q, *tq;
527 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
529 /* Free the existing undo structures for this semaphore set. */
530 assert_spin_locked(&sma->sem_perm.lock);
531 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
532 list_del(&un->list_id);
533 spin_lock(&un->ulp->lock);
534 un->semid = -1;
535 list_del_rcu(&un->list_proc);
536 spin_unlock(&un->ulp->lock);
537 call_rcu(&un->rcu, free_un);
540 /* Wake up all pending processes and let them fail with EIDRM. */
541 list_for_each_entry_safe(q, tq, &sma->sem_pending, list) {
542 list_del(&q->list);
544 q->status = IN_WAKEUP;
545 wake_up_process(q->sleeper); /* doesn't sleep */
546 smp_wmb();
547 q->status = -EIDRM; /* hands-off q */
550 /* Remove the semaphore set from the IDR */
551 sem_rmid(ns, sma);
552 sem_unlock(sma);
554 ns->used_sems -= sma->sem_nsems;
555 security_sem_free(sma);
556 ipc_rcu_putref(sma);
559 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
561 switch(version) {
562 case IPC_64:
563 return copy_to_user(buf, in, sizeof(*in));
564 case IPC_OLD:
566 struct semid_ds out;
568 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
570 out.sem_otime = in->sem_otime;
571 out.sem_ctime = in->sem_ctime;
572 out.sem_nsems = in->sem_nsems;
574 return copy_to_user(buf, &out, sizeof(out));
576 default:
577 return -EINVAL;
581 static int semctl_nolock(struct ipc_namespace *ns, int semid,
582 int cmd, int version, union semun arg)
584 int err = -EINVAL;
585 struct sem_array *sma;
587 switch(cmd) {
588 case IPC_INFO:
589 case SEM_INFO:
591 struct seminfo seminfo;
592 int max_id;
594 err = security_sem_semctl(NULL, cmd);
595 if (err)
596 return err;
598 memset(&seminfo,0,sizeof(seminfo));
599 seminfo.semmni = ns->sc_semmni;
600 seminfo.semmns = ns->sc_semmns;
601 seminfo.semmsl = ns->sc_semmsl;
602 seminfo.semopm = ns->sc_semopm;
603 seminfo.semvmx = SEMVMX;
604 seminfo.semmnu = SEMMNU;
605 seminfo.semmap = SEMMAP;
606 seminfo.semume = SEMUME;
607 down_read(&sem_ids(ns).rw_mutex);
608 if (cmd == SEM_INFO) {
609 seminfo.semusz = sem_ids(ns).in_use;
610 seminfo.semaem = ns->used_sems;
611 } else {
612 seminfo.semusz = SEMUSZ;
613 seminfo.semaem = SEMAEM;
615 max_id = ipc_get_maxid(&sem_ids(ns));
616 up_read(&sem_ids(ns).rw_mutex);
617 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
618 return -EFAULT;
619 return (max_id < 0) ? 0: max_id;
621 case IPC_STAT:
622 case SEM_STAT:
624 struct semid64_ds tbuf;
625 int id;
627 if (cmd == SEM_STAT) {
628 sma = sem_lock(ns, semid);
629 if (IS_ERR(sma))
630 return PTR_ERR(sma);
631 id = sma->sem_perm.id;
632 } else {
633 sma = sem_lock_check(ns, semid);
634 if (IS_ERR(sma))
635 return PTR_ERR(sma);
636 id = 0;
639 err = -EACCES;
640 if (ipcperms (&sma->sem_perm, S_IRUGO))
641 goto out_unlock;
643 err = security_sem_semctl(sma, cmd);
644 if (err)
645 goto out_unlock;
647 memset(&tbuf, 0, sizeof(tbuf));
649 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
650 tbuf.sem_otime = sma->sem_otime;
651 tbuf.sem_ctime = sma->sem_ctime;
652 tbuf.sem_nsems = sma->sem_nsems;
653 sem_unlock(sma);
654 if (copy_semid_to_user (arg.buf, &tbuf, version))
655 return -EFAULT;
656 return id;
658 default:
659 return -EINVAL;
661 return err;
662 out_unlock:
663 sem_unlock(sma);
664 return err;
667 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
668 int cmd, int version, union semun arg)
670 struct sem_array *sma;
671 struct sem* curr;
672 int err;
673 ushort fast_sem_io[SEMMSL_FAST];
674 ushort* sem_io = fast_sem_io;
675 int nsems;
677 sma = sem_lock_check(ns, semid);
678 if (IS_ERR(sma))
679 return PTR_ERR(sma);
681 nsems = sma->sem_nsems;
683 err = -EACCES;
684 if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
685 goto out_unlock;
687 err = security_sem_semctl(sma, cmd);
688 if (err)
689 goto out_unlock;
691 err = -EACCES;
692 switch (cmd) {
693 case GETALL:
695 ushort __user *array = arg.array;
696 int i;
698 if(nsems > SEMMSL_FAST) {
699 sem_getref_and_unlock(sma);
701 sem_io = ipc_alloc(sizeof(ushort)*nsems);
702 if(sem_io == NULL) {
703 sem_putref(sma);
704 return -ENOMEM;
707 sem_lock_and_putref(sma);
708 if (sma->sem_perm.deleted) {
709 sem_unlock(sma);
710 err = -EIDRM;
711 goto out_free;
715 for (i = 0; i < sma->sem_nsems; i++)
716 sem_io[i] = sma->sem_base[i].semval;
717 sem_unlock(sma);
718 err = 0;
719 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
720 err = -EFAULT;
721 goto out_free;
723 case SETALL:
725 int i;
726 struct sem_undo *un;
728 sem_getref_and_unlock(sma);
730 if(nsems > SEMMSL_FAST) {
731 sem_io = ipc_alloc(sizeof(ushort)*nsems);
732 if(sem_io == NULL) {
733 sem_putref(sma);
734 return -ENOMEM;
738 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
739 sem_putref(sma);
740 err = -EFAULT;
741 goto out_free;
744 for (i = 0; i < nsems; i++) {
745 if (sem_io[i] > SEMVMX) {
746 sem_putref(sma);
747 err = -ERANGE;
748 goto out_free;
751 sem_lock_and_putref(sma);
752 if (sma->sem_perm.deleted) {
753 sem_unlock(sma);
754 err = -EIDRM;
755 goto out_free;
758 for (i = 0; i < nsems; i++)
759 sma->sem_base[i].semval = sem_io[i];
761 assert_spin_locked(&sma->sem_perm.lock);
762 list_for_each_entry(un, &sma->list_id, list_id) {
763 for (i = 0; i < nsems; i++)
764 un->semadj[i] = 0;
766 sma->sem_ctime = get_seconds();
767 /* maybe some queued-up processes were waiting for this */
768 update_queue(sma);
769 err = 0;
770 goto out_unlock;
772 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
774 err = -EINVAL;
775 if(semnum < 0 || semnum >= nsems)
776 goto out_unlock;
778 curr = &sma->sem_base[semnum];
780 switch (cmd) {
781 case GETVAL:
782 err = curr->semval;
783 goto out_unlock;
784 case GETPID:
785 err = curr->sempid;
786 goto out_unlock;
787 case GETNCNT:
788 err = count_semncnt(sma,semnum);
789 goto out_unlock;
790 case GETZCNT:
791 err = count_semzcnt(sma,semnum);
792 goto out_unlock;
793 case SETVAL:
795 int val = arg.val;
796 struct sem_undo *un;
798 err = -ERANGE;
799 if (val > SEMVMX || val < 0)
800 goto out_unlock;
802 assert_spin_locked(&sma->sem_perm.lock);
803 list_for_each_entry(un, &sma->list_id, list_id)
804 un->semadj[semnum] = 0;
806 curr->semval = val;
807 curr->sempid = task_tgid_vnr(current);
808 sma->sem_ctime = get_seconds();
809 /* maybe some queued-up processes were waiting for this */
810 update_queue(sma);
811 err = 0;
812 goto out_unlock;
815 out_unlock:
816 sem_unlock(sma);
817 out_free:
818 if(sem_io != fast_sem_io)
819 ipc_free(sem_io, sizeof(ushort)*nsems);
820 return err;
823 static inline unsigned long
824 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
826 switch(version) {
827 case IPC_64:
828 if (copy_from_user(out, buf, sizeof(*out)))
829 return -EFAULT;
830 return 0;
831 case IPC_OLD:
833 struct semid_ds tbuf_old;
835 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
836 return -EFAULT;
838 out->sem_perm.uid = tbuf_old.sem_perm.uid;
839 out->sem_perm.gid = tbuf_old.sem_perm.gid;
840 out->sem_perm.mode = tbuf_old.sem_perm.mode;
842 return 0;
844 default:
845 return -EINVAL;
850 * This function handles some semctl commands which require the rw_mutex
851 * to be held in write mode.
852 * NOTE: no locks must be held, the rw_mutex is taken inside this function.
854 static int semctl_down(struct ipc_namespace *ns, int semid,
855 int cmd, int version, union semun arg)
857 struct sem_array *sma;
858 int err;
859 struct semid64_ds semid64;
860 struct kern_ipc_perm *ipcp;
862 if(cmd == IPC_SET) {
863 if (copy_semid_from_user(&semid64, arg.buf, version))
864 return -EFAULT;
867 ipcp = ipcctl_pre_down(&sem_ids(ns), semid, cmd, &semid64.sem_perm, 0);
868 if (IS_ERR(ipcp))
869 return PTR_ERR(ipcp);
871 sma = container_of(ipcp, struct sem_array, sem_perm);
873 err = security_sem_semctl(sma, cmd);
874 if (err)
875 goto out_unlock;
877 switch(cmd){
878 case IPC_RMID:
879 freeary(ns, ipcp);
880 goto out_up;
881 case IPC_SET:
882 ipc_update_perm(&semid64.sem_perm, ipcp);
883 sma->sem_ctime = get_seconds();
884 break;
885 default:
886 err = -EINVAL;
889 out_unlock:
890 sem_unlock(sma);
891 out_up:
892 up_write(&sem_ids(ns).rw_mutex);
893 return err;
896 SYSCALL_DEFINE(semctl)(int semid, int semnum, int cmd, union semun arg)
898 int err = -EINVAL;
899 int version;
900 struct ipc_namespace *ns;
902 if (semid < 0)
903 return -EINVAL;
905 version = ipc_parse_version(&cmd);
906 ns = current->nsproxy->ipc_ns;
908 switch(cmd) {
909 case IPC_INFO:
910 case SEM_INFO:
911 case IPC_STAT:
912 case SEM_STAT:
913 err = semctl_nolock(ns, semid, cmd, version, arg);
914 return err;
915 case GETALL:
916 case GETVAL:
917 case GETPID:
918 case GETNCNT:
919 case GETZCNT:
920 case SETVAL:
921 case SETALL:
922 err = semctl_main(ns,semid,semnum,cmd,version,arg);
923 return err;
924 case IPC_RMID:
925 case IPC_SET:
926 err = semctl_down(ns, semid, cmd, version, arg);
927 return err;
928 default:
929 return -EINVAL;
932 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
933 asmlinkage long SyS_semctl(int semid, int semnum, int cmd, union semun arg)
935 return SYSC_semctl((int) semid, (int) semnum, (int) cmd, arg);
937 SYSCALL_ALIAS(sys_semctl, SyS_semctl);
938 #endif
940 /* If the task doesn't already have a undo_list, then allocate one
941 * here. We guarantee there is only one thread using this undo list,
942 * and current is THE ONE
944 * If this allocation and assignment succeeds, but later
945 * portions of this code fail, there is no need to free the sem_undo_list.
946 * Just let it stay associated with the task, and it'll be freed later
947 * at exit time.
949 * This can block, so callers must hold no locks.
951 static inline int get_undo_list(struct sem_undo_list **undo_listp)
953 struct sem_undo_list *undo_list;
955 undo_list = current->sysvsem.undo_list;
956 if (!undo_list) {
957 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
958 if (undo_list == NULL)
959 return -ENOMEM;
960 spin_lock_init(&undo_list->lock);
961 atomic_set(&undo_list->refcnt, 1);
962 INIT_LIST_HEAD(&undo_list->list_proc);
964 current->sysvsem.undo_list = undo_list;
966 *undo_listp = undo_list;
967 return 0;
970 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
972 struct sem_undo *walk;
974 list_for_each_entry_rcu(walk, &ulp->list_proc, list_proc) {
975 if (walk->semid == semid)
976 return walk;
978 return NULL;
982 * find_alloc_undo - Lookup (and if not present create) undo array
983 * @ns: namespace
984 * @semid: semaphore array id
986 * The function looks up (and if not present creates) the undo structure.
987 * The size of the undo structure depends on the size of the semaphore
988 * array, thus the alloc path is not that straightforward.
989 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
990 * performs a rcu_read_lock().
992 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
994 struct sem_array *sma;
995 struct sem_undo_list *ulp;
996 struct sem_undo *un, *new;
997 int nsems;
998 int error;
1000 error = get_undo_list(&ulp);
1001 if (error)
1002 return ERR_PTR(error);
1004 rcu_read_lock();
1005 spin_lock(&ulp->lock);
1006 un = lookup_undo(ulp, semid);
1007 spin_unlock(&ulp->lock);
1008 if (likely(un!=NULL))
1009 goto out;
1010 rcu_read_unlock();
1012 /* no undo structure around - allocate one. */
1013 /* step 1: figure out the size of the semaphore array */
1014 sma = sem_lock_check(ns, semid);
1015 if (IS_ERR(sma))
1016 return ERR_PTR(PTR_ERR(sma));
1018 nsems = sma->sem_nsems;
1019 sem_getref_and_unlock(sma);
1021 /* step 2: allocate new undo structure */
1022 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1023 if (!new) {
1024 sem_putref(sma);
1025 return ERR_PTR(-ENOMEM);
1028 /* step 3: Acquire the lock on semaphore array */
1029 sem_lock_and_putref(sma);
1030 if (sma->sem_perm.deleted) {
1031 sem_unlock(sma);
1032 kfree(new);
1033 un = ERR_PTR(-EIDRM);
1034 goto out;
1036 spin_lock(&ulp->lock);
1039 * step 4: check for races: did someone else allocate the undo struct?
1041 un = lookup_undo(ulp, semid);
1042 if (un) {
1043 kfree(new);
1044 goto success;
1046 /* step 5: initialize & link new undo structure */
1047 new->semadj = (short *) &new[1];
1048 new->ulp = ulp;
1049 new->semid = semid;
1050 assert_spin_locked(&ulp->lock);
1051 list_add_rcu(&new->list_proc, &ulp->list_proc);
1052 assert_spin_locked(&sma->sem_perm.lock);
1053 list_add(&new->list_id, &sma->list_id);
1054 un = new;
1056 success:
1057 spin_unlock(&ulp->lock);
1058 rcu_read_lock();
1059 sem_unlock(sma);
1060 out:
1061 return un;
1064 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1065 unsigned, nsops, const struct timespec __user *, timeout)
1067 int error = -EINVAL;
1068 struct sem_array *sma;
1069 struct sembuf fast_sops[SEMOPM_FAST];
1070 struct sembuf* sops = fast_sops, *sop;
1071 struct sem_undo *un;
1072 int undos = 0, alter = 0, max;
1073 struct sem_queue queue;
1074 unsigned long jiffies_left = 0;
1075 struct ipc_namespace *ns;
1077 ns = current->nsproxy->ipc_ns;
1079 if (nsops < 1 || semid < 0)
1080 return -EINVAL;
1081 if (nsops > ns->sc_semopm)
1082 return -E2BIG;
1083 if(nsops > SEMOPM_FAST) {
1084 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1085 if(sops==NULL)
1086 return -ENOMEM;
1088 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1089 error=-EFAULT;
1090 goto out_free;
1092 if (timeout) {
1093 struct timespec _timeout;
1094 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1095 error = -EFAULT;
1096 goto out_free;
1098 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1099 _timeout.tv_nsec >= 1000000000L) {
1100 error = -EINVAL;
1101 goto out_free;
1103 jiffies_left = timespec_to_jiffies(&_timeout);
1105 max = 0;
1106 for (sop = sops; sop < sops + nsops; sop++) {
1107 if (sop->sem_num >= max)
1108 max = sop->sem_num;
1109 if (sop->sem_flg & SEM_UNDO)
1110 undos = 1;
1111 if (sop->sem_op != 0)
1112 alter = 1;
1115 if (undos) {
1116 un = find_alloc_undo(ns, semid);
1117 if (IS_ERR(un)) {
1118 error = PTR_ERR(un);
1119 goto out_free;
1121 } else
1122 un = NULL;
1124 sma = sem_lock_check(ns, semid);
1125 if (IS_ERR(sma)) {
1126 if (un)
1127 rcu_read_unlock();
1128 error = PTR_ERR(sma);
1129 goto out_free;
1133 * semid identifiers are not unique - find_alloc_undo may have
1134 * allocated an undo structure, it was invalidated by an RMID
1135 * and now a new array with received the same id. Check and fail.
1136 * This case can be detected checking un->semid. The existance of
1137 * "un" itself is guaranteed by rcu.
1139 error = -EIDRM;
1140 if (un) {
1141 if (un->semid == -1) {
1142 rcu_read_unlock();
1143 goto out_unlock_free;
1144 } else {
1146 * rcu lock can be released, "un" cannot disappear:
1147 * - sem_lock is acquired, thus IPC_RMID is
1148 * impossible.
1149 * - exit_sem is impossible, it always operates on
1150 * current (or a dead task).
1153 rcu_read_unlock();
1157 error = -EFBIG;
1158 if (max >= sma->sem_nsems)
1159 goto out_unlock_free;
1161 error = -EACCES;
1162 if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1163 goto out_unlock_free;
1165 error = security_sem_semop(sma, sops, nsops, alter);
1166 if (error)
1167 goto out_unlock_free;
1169 error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1170 if (error <= 0) {
1171 if (alter && error == 0)
1172 update_queue (sma);
1173 goto out_unlock_free;
1176 /* We need to sleep on this operation, so we put the current
1177 * task into the pending queue and go to sleep.
1180 queue.sops = sops;
1181 queue.nsops = nsops;
1182 queue.undo = un;
1183 queue.pid = task_tgid_vnr(current);
1184 queue.alter = alter;
1185 if (alter)
1186 list_add_tail(&queue.list, &sma->sem_pending);
1187 else
1188 list_add(&queue.list, &sma->sem_pending);
1190 queue.status = -EINTR;
1191 queue.sleeper = current;
1192 current->state = TASK_INTERRUPTIBLE;
1193 sem_unlock(sma);
1195 if (timeout)
1196 jiffies_left = schedule_timeout(jiffies_left);
1197 else
1198 schedule();
1200 error = queue.status;
1201 while(unlikely(error == IN_WAKEUP)) {
1202 cpu_relax();
1203 error = queue.status;
1206 if (error != -EINTR) {
1207 /* fast path: update_queue already obtained all requested
1208 * resources */
1209 goto out_free;
1212 sma = sem_lock(ns, semid);
1213 if (IS_ERR(sma)) {
1214 error = -EIDRM;
1215 goto out_free;
1219 * If queue.status != -EINTR we are woken up by another process
1221 error = queue.status;
1222 if (error != -EINTR) {
1223 goto out_unlock_free;
1227 * If an interrupt occurred we have to clean up the queue
1229 if (timeout && jiffies_left == 0)
1230 error = -EAGAIN;
1231 list_del(&queue.list);
1233 out_unlock_free:
1234 sem_unlock(sma);
1235 out_free:
1236 if(sops != fast_sops)
1237 kfree(sops);
1238 return error;
1241 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1242 unsigned, nsops)
1244 return sys_semtimedop(semid, tsops, nsops, NULL);
1247 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1248 * parent and child tasks.
1251 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1253 struct sem_undo_list *undo_list;
1254 int error;
1256 if (clone_flags & CLONE_SYSVSEM) {
1257 error = get_undo_list(&undo_list);
1258 if (error)
1259 return error;
1260 atomic_inc(&undo_list->refcnt);
1261 tsk->sysvsem.undo_list = undo_list;
1262 } else
1263 tsk->sysvsem.undo_list = NULL;
1265 return 0;
1269 * add semadj values to semaphores, free undo structures.
1270 * undo structures are not freed when semaphore arrays are destroyed
1271 * so some of them may be out of date.
1272 * IMPLEMENTATION NOTE: There is some confusion over whether the
1273 * set of adjustments that needs to be done should be done in an atomic
1274 * manner or not. That is, if we are attempting to decrement the semval
1275 * should we queue up and wait until we can do so legally?
1276 * The original implementation attempted to do this (queue and wait).
1277 * The current implementation does not do so. The POSIX standard
1278 * and SVID should be consulted to determine what behavior is mandated.
1280 void exit_sem(struct task_struct *tsk)
1282 struct sem_undo_list *ulp;
1284 ulp = tsk->sysvsem.undo_list;
1285 if (!ulp)
1286 return;
1287 tsk->sysvsem.undo_list = NULL;
1289 if (!atomic_dec_and_test(&ulp->refcnt))
1290 return;
1292 for (;;) {
1293 struct sem_array *sma;
1294 struct sem_undo *un;
1295 int semid;
1296 int i;
1298 rcu_read_lock();
1299 un = list_entry(rcu_dereference(ulp->list_proc.next),
1300 struct sem_undo, list_proc);
1301 if (&un->list_proc == &ulp->list_proc)
1302 semid = -1;
1303 else
1304 semid = un->semid;
1305 rcu_read_unlock();
1307 if (semid == -1)
1308 break;
1310 sma = sem_lock_check(tsk->nsproxy->ipc_ns, un->semid);
1312 /* exit_sem raced with IPC_RMID, nothing to do */
1313 if (IS_ERR(sma))
1314 continue;
1316 un = lookup_undo(ulp, semid);
1317 if (un == NULL) {
1318 /* exit_sem raced with IPC_RMID+semget() that created
1319 * exactly the same semid. Nothing to do.
1321 sem_unlock(sma);
1322 continue;
1325 /* remove un from the linked lists */
1326 assert_spin_locked(&sma->sem_perm.lock);
1327 list_del(&un->list_id);
1329 spin_lock(&ulp->lock);
1330 list_del_rcu(&un->list_proc);
1331 spin_unlock(&ulp->lock);
1333 /* perform adjustments registered in un */
1334 for (i = 0; i < sma->sem_nsems; i++) {
1335 struct sem * semaphore = &sma->sem_base[i];
1336 if (un->semadj[i]) {
1337 semaphore->semval += un->semadj[i];
1339 * Range checks of the new semaphore value,
1340 * not defined by sus:
1341 * - Some unices ignore the undo entirely
1342 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1343 * - some cap the value (e.g. FreeBSD caps
1344 * at 0, but doesn't enforce SEMVMX)
1346 * Linux caps the semaphore value, both at 0
1347 * and at SEMVMX.
1349 * Manfred <manfred@colorfullife.com>
1351 if (semaphore->semval < 0)
1352 semaphore->semval = 0;
1353 if (semaphore->semval > SEMVMX)
1354 semaphore->semval = SEMVMX;
1355 semaphore->sempid = task_tgid_vnr(current);
1358 sma->sem_otime = get_seconds();
1359 /* maybe some queued-up processes were waiting for this */
1360 update_queue(sma);
1361 sem_unlock(sma);
1363 call_rcu(&un->rcu, free_un);
1365 kfree(ulp);
1368 #ifdef CONFIG_PROC_FS
1369 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1371 struct sem_array *sma = it;
1373 return seq_printf(s,
1374 "%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",
1375 sma->sem_perm.key,
1376 sma->sem_perm.id,
1377 sma->sem_perm.mode,
1378 sma->sem_nsems,
1379 sma->sem_perm.uid,
1380 sma->sem_perm.gid,
1381 sma->sem_perm.cuid,
1382 sma->sem_perm.cgid,
1383 sma->sem_otime,
1384 sma->sem_ctime);
1386 #endif