Luca's patch ported
[cbs-scheduler.git] / kernel / exit.c
blob188e713e408199520c379dbd35806c5236a1405d
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/init_task.h>
50 #include <trace/sched.h>
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu_context.h>
56 #include "cred-internals.h"
58 DEFINE_TRACE(sched_process_free);
59 DEFINE_TRACE(sched_process_exit);
60 DEFINE_TRACE(sched_process_wait);
62 static void exit_mm(struct task_struct * tsk);
64 static inline int task_detached(struct task_struct *p)
66 return p->exit_signal == -1;
69 static void __unhash_process(struct task_struct *p)
71 nr_threads--;
72 detach_pid(p, PIDTYPE_PID);
73 if (thread_group_leader(p)) {
74 detach_pid(p, PIDTYPE_PGID);
75 detach_pid(p, PIDTYPE_SID);
77 list_del_rcu(&p->tasks);
78 preempt_disable();
79 __get_cpu_var(process_counts)--;
80 preempt_enable();
82 list_del_rcu(&p->thread_group);
83 list_del_init(&p->sibling);
87 * This function expects the tasklist_lock write-locked.
89 static void __exit_signal(struct task_struct *tsk)
91 struct signal_struct *sig = tsk->signal;
92 struct sighand_struct *sighand;
94 BUG_ON(!sig);
95 BUG_ON(!atomic_read(&sig->count));
97 sighand = rcu_dereference(tsk->sighand);
98 spin_lock(&sighand->siglock);
100 posix_cpu_timers_exit(tsk);
101 if (atomic_dec_and_test(&sig->count))
102 posix_cpu_timers_exit_group(tsk);
103 else {
105 * If there is any task waiting for the group exit
106 * then notify it:
108 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
109 wake_up_process(sig->group_exit_task);
111 if (tsk == sig->curr_target)
112 sig->curr_target = next_thread(tsk);
114 * Accumulate here the counters for all threads but the
115 * group leader as they die, so they can be added into
116 * the process-wide totals when those are taken.
117 * The group leader stays around as a zombie as long
118 * as there are other threads. When it gets reaped,
119 * the exit.c code will add its counts into these totals.
120 * We won't ever get here for the group leader, since it
121 * will have been the last reference on the signal_struct.
123 sig->utime = cputime_add(sig->utime, task_utime(tsk));
124 sig->stime = cputime_add(sig->stime, task_stime(tsk));
125 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
126 sig->min_flt += tsk->min_flt;
127 sig->maj_flt += tsk->maj_flt;
128 sig->nvcsw += tsk->nvcsw;
129 sig->nivcsw += tsk->nivcsw;
130 sig->inblock += task_io_get_inblock(tsk);
131 sig->oublock += task_io_get_oublock(tsk);
132 task_io_accounting_add(&sig->ioac, &tsk->ioac);
133 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
134 sig = NULL; /* Marker for below. */
137 __unhash_process(tsk);
140 * Do this under ->siglock, we can race with another thread
141 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
143 flush_task_sigqueue(tsk);
145 tsk->signal = NULL;
146 tsk->sighand = NULL;
147 spin_unlock(&sighand->siglock);
149 __cleanup_sighand(sighand);
150 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
151 if (sig) {
152 flush_sigqueue(&sig->shared_pending);
153 taskstats_tgid_free(sig);
155 * Make sure ->signal can't go away under rq->lock,
156 * see account_group_exec_runtime().
158 task_rq_unlock_wait(tsk);
159 __cleanup_signal(sig);
163 static void delayed_put_task_struct(struct rcu_head *rhp)
165 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
167 #ifdef CONFIG_PERF_COUNTERS
168 WARN_ON_ONCE(!list_empty(&tsk->perf_counter_ctx.counter_list));
169 #endif
170 trace_sched_process_free(tsk);
171 put_task_struct(tsk);
175 void release_task(struct task_struct * p)
177 struct task_struct *leader;
178 int zap_leader;
179 repeat:
180 tracehook_prepare_release_task(p);
181 /* don't need to get the RCU readlock here - the process is dead and
182 * can't be modifying its own credentials */
183 atomic_dec(&__task_cred(p)->user->processes);
185 proc_flush_task(p);
186 write_lock_irq(&tasklist_lock);
187 tracehook_finish_release_task(p);
188 __exit_signal(p);
191 * If we are the last non-leader member of the thread
192 * group, and the leader is zombie, then notify the
193 * group leader's parent process. (if it wants notification.)
195 zap_leader = 0;
196 leader = p->group_leader;
197 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
198 BUG_ON(task_detached(leader));
199 do_notify_parent(leader, leader->exit_signal);
201 * If we were the last child thread and the leader has
202 * exited already, and the leader's parent ignores SIGCHLD,
203 * then we are the one who should release the leader.
205 * do_notify_parent() will have marked it self-reaping in
206 * that case.
208 zap_leader = task_detached(leader);
211 * This maintains the invariant that release_task()
212 * only runs on a task in EXIT_DEAD, just for sanity.
214 if (zap_leader)
215 leader->exit_state = EXIT_DEAD;
218 write_unlock_irq(&tasklist_lock);
219 release_thread(p);
220 call_rcu(&p->rcu, delayed_put_task_struct);
222 p = leader;
223 if (unlikely(zap_leader))
224 goto repeat;
228 * This checks not only the pgrp, but falls back on the pid if no
229 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
230 * without this...
232 * The caller must hold rcu lock or the tasklist lock.
234 struct pid *session_of_pgrp(struct pid *pgrp)
236 struct task_struct *p;
237 struct pid *sid = NULL;
239 p = pid_task(pgrp, PIDTYPE_PGID);
240 if (p == NULL)
241 p = pid_task(pgrp, PIDTYPE_PID);
242 if (p != NULL)
243 sid = task_session(p);
245 return sid;
249 * Determine if a process group is "orphaned", according to the POSIX
250 * definition in 2.2.2.52. Orphaned process groups are not to be affected
251 * by terminal-generated stop signals. Newly orphaned process groups are
252 * to receive a SIGHUP and a SIGCONT.
254 * "I ask you, have you ever known what it is to be an orphan?"
256 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
258 struct task_struct *p;
260 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
261 if ((p == ignored_task) ||
262 (p->exit_state && thread_group_empty(p)) ||
263 is_global_init(p->real_parent))
264 continue;
266 if (task_pgrp(p->real_parent) != pgrp &&
267 task_session(p->real_parent) == task_session(p))
268 return 0;
269 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
271 return 1;
274 int is_current_pgrp_orphaned(void)
276 int retval;
278 read_lock(&tasklist_lock);
279 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
280 read_unlock(&tasklist_lock);
282 return retval;
285 static int has_stopped_jobs(struct pid *pgrp)
287 int retval = 0;
288 struct task_struct *p;
290 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
291 if (!task_is_stopped(p))
292 continue;
293 retval = 1;
294 break;
295 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
296 return retval;
300 * Check to see if any process groups have become orphaned as
301 * a result of our exiting, and if they have any stopped jobs,
302 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
304 static void
305 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
307 struct pid *pgrp = task_pgrp(tsk);
308 struct task_struct *ignored_task = tsk;
310 if (!parent)
311 /* exit: our father is in a different pgrp than
312 * we are and we were the only connection outside.
314 parent = tsk->real_parent;
315 else
316 /* reparent: our child is in a different pgrp than
317 * we are, and it was the only connection outside.
319 ignored_task = NULL;
321 if (task_pgrp(parent) != pgrp &&
322 task_session(parent) == task_session(tsk) &&
323 will_become_orphaned_pgrp(pgrp, ignored_task) &&
324 has_stopped_jobs(pgrp)) {
325 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
326 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
331 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
333 * If a kernel thread is launched as a result of a system call, or if
334 * it ever exits, it should generally reparent itself to kthreadd so it
335 * isn't in the way of other processes and is correctly cleaned up on exit.
337 * The various task state such as scheduling policy and priority may have
338 * been inherited from a user process, so we reset them to sane values here.
340 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
342 static void reparent_to_kthreadd(void)
344 write_lock_irq(&tasklist_lock);
346 ptrace_unlink(current);
347 /* Reparent to init */
348 current->real_parent = current->parent = kthreadd_task;
349 list_move_tail(&current->sibling, &current->real_parent->children);
351 /* Set the exit signal to SIGCHLD so we signal init on exit */
352 current->exit_signal = SIGCHLD;
354 if (task_nice(current) < 0)
355 set_user_nice(current, 0);
356 /* cpus_allowed? */
357 /* rt_priority? */
358 /* signals? */
359 memcpy(current->signal->rlim, init_task.signal->rlim,
360 sizeof(current->signal->rlim));
362 atomic_inc(&init_cred.usage);
363 commit_creds(&init_cred);
364 write_unlock_irq(&tasklist_lock);
367 void __set_special_pids(struct pid *pid)
369 struct task_struct *curr = current->group_leader;
370 pid_t nr = pid_nr(pid);
372 if (task_session(curr) != pid) {
373 change_pid(curr, PIDTYPE_SID, pid);
374 set_task_session(curr, nr);
376 if (task_pgrp(curr) != pid) {
377 change_pid(curr, PIDTYPE_PGID, pid);
378 set_task_pgrp(curr, nr);
382 static void set_special_pids(struct pid *pid)
384 write_lock_irq(&tasklist_lock);
385 __set_special_pids(pid);
386 write_unlock_irq(&tasklist_lock);
390 * Let kernel threads use this to say that they
391 * allow a certain signal (since daemonize() will
392 * have disabled all of them by default).
394 int allow_signal(int sig)
396 if (!valid_signal(sig) || sig < 1)
397 return -EINVAL;
399 spin_lock_irq(&current->sighand->siglock);
400 sigdelset(&current->blocked, sig);
401 if (!current->mm) {
402 /* Kernel threads handle their own signals.
403 Let the signal code know it'll be handled, so
404 that they don't get converted to SIGKILL or
405 just silently dropped */
406 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
408 recalc_sigpending();
409 spin_unlock_irq(&current->sighand->siglock);
410 return 0;
413 EXPORT_SYMBOL(allow_signal);
415 int disallow_signal(int sig)
417 if (!valid_signal(sig) || sig < 1)
418 return -EINVAL;
420 spin_lock_irq(&current->sighand->siglock);
421 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
422 recalc_sigpending();
423 spin_unlock_irq(&current->sighand->siglock);
424 return 0;
427 EXPORT_SYMBOL(disallow_signal);
430 * Put all the gunge required to become a kernel thread without
431 * attached user resources in one place where it belongs.
434 void daemonize(const char *name, ...)
436 va_list args;
437 sigset_t blocked;
439 va_start(args, name);
440 vsnprintf(current->comm, sizeof(current->comm), name, args);
441 va_end(args);
444 * If we were started as result of loading a module, close all of the
445 * user space pages. We don't need them, and if we didn't close them
446 * they would be locked into memory.
448 exit_mm(current);
450 * We don't want to have TIF_FREEZE set if the system-wide hibernation
451 * or suspend transition begins right now.
453 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
455 if (current->nsproxy != &init_nsproxy) {
456 get_nsproxy(&init_nsproxy);
457 switch_task_namespaces(current, &init_nsproxy);
459 set_special_pids(&init_struct_pid);
460 proc_clear_tty(current);
462 /* Block and flush all signals */
463 sigfillset(&blocked);
464 sigprocmask(SIG_BLOCK, &blocked, NULL);
465 flush_signals(current);
467 /* Become as one with the init task */
469 daemonize_fs_struct();
470 exit_files(current);
471 current->files = init_task.files;
472 atomic_inc(&current->files->count);
474 reparent_to_kthreadd();
477 EXPORT_SYMBOL(daemonize);
479 static void close_files(struct files_struct * files)
481 int i, j;
482 struct fdtable *fdt;
484 j = 0;
487 * It is safe to dereference the fd table without RCU or
488 * ->file_lock because this is the last reference to the
489 * files structure.
491 fdt = files_fdtable(files);
492 for (;;) {
493 unsigned long set;
494 i = j * __NFDBITS;
495 if (i >= fdt->max_fds)
496 break;
497 set = fdt->open_fds->fds_bits[j++];
498 while (set) {
499 if (set & 1) {
500 struct file * file = xchg(&fdt->fd[i], NULL);
501 if (file) {
502 filp_close(file, files);
503 cond_resched();
506 i++;
507 set >>= 1;
512 struct files_struct *get_files_struct(struct task_struct *task)
514 struct files_struct *files;
516 task_lock(task);
517 files = task->files;
518 if (files)
519 atomic_inc(&files->count);
520 task_unlock(task);
522 return files;
525 void put_files_struct(struct files_struct *files)
527 struct fdtable *fdt;
529 if (atomic_dec_and_test(&files->count)) {
530 close_files(files);
532 * Free the fd and fdset arrays if we expanded them.
533 * If the fdtable was embedded, pass files for freeing
534 * at the end of the RCU grace period. Otherwise,
535 * you can free files immediately.
537 fdt = files_fdtable(files);
538 if (fdt != &files->fdtab)
539 kmem_cache_free(files_cachep, files);
540 free_fdtable(fdt);
544 void reset_files_struct(struct files_struct *files)
546 struct task_struct *tsk = current;
547 struct files_struct *old;
549 old = tsk->files;
550 task_lock(tsk);
551 tsk->files = files;
552 task_unlock(tsk);
553 put_files_struct(old);
556 void exit_files(struct task_struct *tsk)
558 struct files_struct * files = tsk->files;
560 if (files) {
561 task_lock(tsk);
562 tsk->files = NULL;
563 task_unlock(tsk);
564 put_files_struct(files);
568 #ifdef CONFIG_MM_OWNER
570 * Task p is exiting and it owned mm, lets find a new owner for it
572 static inline int
573 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
576 * If there are other users of the mm and the owner (us) is exiting
577 * we need to find a new owner to take on the responsibility.
579 if (atomic_read(&mm->mm_users) <= 1)
580 return 0;
581 if (mm->owner != p)
582 return 0;
583 return 1;
586 void mm_update_next_owner(struct mm_struct *mm)
588 struct task_struct *c, *g, *p = current;
590 retry:
591 if (!mm_need_new_owner(mm, p))
592 return;
594 read_lock(&tasklist_lock);
596 * Search in the children
598 list_for_each_entry(c, &p->children, sibling) {
599 if (c->mm == mm)
600 goto assign_new_owner;
604 * Search in the siblings
606 list_for_each_entry(c, &p->parent->children, sibling) {
607 if (c->mm == mm)
608 goto assign_new_owner;
612 * Search through everything else. We should not get
613 * here often
615 do_each_thread(g, c) {
616 if (c->mm == mm)
617 goto assign_new_owner;
618 } while_each_thread(g, c);
620 read_unlock(&tasklist_lock);
622 * We found no owner yet mm_users > 1: this implies that we are
623 * most likely racing with swapoff (try_to_unuse()) or /proc or
624 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
626 mm->owner = NULL;
627 return;
629 assign_new_owner:
630 BUG_ON(c == p);
631 get_task_struct(c);
633 * The task_lock protects c->mm from changing.
634 * We always want mm->owner->mm == mm
636 task_lock(c);
638 * Delay read_unlock() till we have the task_lock()
639 * to ensure that c does not slip away underneath us
641 read_unlock(&tasklist_lock);
642 if (c->mm != mm) {
643 task_unlock(c);
644 put_task_struct(c);
645 goto retry;
647 mm->owner = c;
648 task_unlock(c);
649 put_task_struct(c);
651 #endif /* CONFIG_MM_OWNER */
654 * Turn us into a lazy TLB process if we
655 * aren't already..
657 static void exit_mm(struct task_struct * tsk)
659 struct mm_struct *mm = tsk->mm;
660 struct core_state *core_state;
662 mm_release(tsk, mm);
663 if (!mm)
664 return;
666 * Serialize with any possible pending coredump.
667 * We must hold mmap_sem around checking core_state
668 * and clearing tsk->mm. The core-inducing thread
669 * will increment ->nr_threads for each thread in the
670 * group with ->mm != NULL.
672 down_read(&mm->mmap_sem);
673 core_state = mm->core_state;
674 if (core_state) {
675 struct core_thread self;
676 up_read(&mm->mmap_sem);
678 self.task = tsk;
679 self.next = xchg(&core_state->dumper.next, &self);
681 * Implies mb(), the result of xchg() must be visible
682 * to core_state->dumper.
684 if (atomic_dec_and_test(&core_state->nr_threads))
685 complete(&core_state->startup);
687 for (;;) {
688 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
689 if (!self.task) /* see coredump_finish() */
690 break;
691 schedule();
693 __set_task_state(tsk, TASK_RUNNING);
694 down_read(&mm->mmap_sem);
696 atomic_inc(&mm->mm_count);
697 BUG_ON(mm != tsk->active_mm);
698 /* more a memory barrier than a real lock */
699 task_lock(tsk);
700 tsk->mm = NULL;
701 up_read(&mm->mmap_sem);
702 preempt_disable(); // FIXME
703 enter_lazy_tlb(mm, current);
704 /* We don't want this task to be frozen prematurely */
705 clear_freeze_flag(tsk);
706 preempt_enable();
707 task_unlock(tsk);
708 mm_update_next_owner(mm);
709 mmput(mm);
713 * Called with irqs disabled, returns true if childs should reap themselves.
715 static int ignoring_children(struct sighand_struct *sigh)
717 int ret;
718 spin_lock(&sigh->siglock);
719 ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
720 (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
721 spin_unlock(&sigh->siglock);
722 return ret;
725 /* Returns nonzero if the tracee should be released. */
726 int __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
728 __ptrace_unlink(p);
730 if (p->exit_state != EXIT_ZOMBIE)
731 return 0;
733 * If it's a zombie, our attachedness prevented normal
734 * parent notification or self-reaping. Do notification
735 * now if it would have happened earlier. If it should
736 * reap itself we return true.
738 * If it's our own child, there is no notification to do.
739 * But if our normal children self-reap, then this child
740 * was prevented by ptrace and we must reap it now.
742 if (!task_detached(p) && thread_group_empty(p)) {
743 if (!same_thread_group(p->real_parent, tracer))
744 do_notify_parent(p, p->exit_signal);
745 else if (ignoring_children(tracer->sighand))
746 p->exit_signal = -1;
749 if (!task_detached(p))
750 return 0;
752 /* Mark it as in the process of being reaped. */
753 p->exit_state = EXIT_DEAD;
754 return 1;
758 * Detach all tasks we were using ptrace on.
759 * Any that need to be release_task'd are put on the @dead list.
761 * Called with write_lock(&tasklist_lock) held.
763 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
765 struct task_struct *p, *n;
767 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
768 if (__ptrace_detach(parent, p))
769 list_add(&p->ptrace_entry, dead);
774 * Finish up exit-time ptrace cleanup.
776 * Called without locks.
778 static void ptrace_exit_finish(struct task_struct *parent,
779 struct list_head *dead)
781 struct task_struct *p, *n;
783 BUG_ON(!list_empty(&parent->ptraced));
785 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
786 list_del_init(&p->ptrace_entry);
787 release_task(p);
791 static void reparent_thread(struct task_struct *p, struct task_struct *father)
793 if (p->pdeath_signal)
794 /* We already hold the tasklist_lock here. */
795 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
797 list_move_tail(&p->sibling, &p->real_parent->children);
799 /* If this is a threaded reparent there is no need to
800 * notify anyone anything has happened.
802 if (same_thread_group(p->real_parent, father))
803 return;
805 /* We don't want people slaying init. */
806 if (!task_detached(p))
807 p->exit_signal = SIGCHLD;
809 /* If we'd notified the old parent about this child's death,
810 * also notify the new parent.
812 if (!ptrace_reparented(p) &&
813 p->exit_state == EXIT_ZOMBIE &&
814 !task_detached(p) && thread_group_empty(p))
815 do_notify_parent(p, p->exit_signal);
817 kill_orphaned_pgrp(p, father);
821 * When we die, we re-parent all our children.
822 * Try to give them to another thread in our thread
823 * group, and if no such member exists, give it to
824 * the child reaper process (ie "init") in our pid
825 * space.
827 static struct task_struct *find_new_reaper(struct task_struct *father)
829 struct pid_namespace *pid_ns = task_active_pid_ns(father);
830 struct task_struct *thread;
832 thread = father;
833 while_each_thread(father, thread) {
834 if (thread->flags & PF_EXITING)
835 continue;
836 if (unlikely(pid_ns->child_reaper == father))
837 pid_ns->child_reaper = thread;
838 return thread;
841 if (unlikely(pid_ns->child_reaper == father)) {
842 write_unlock_irq(&tasklist_lock);
843 if (unlikely(pid_ns == &init_pid_ns))
844 panic("Attempted to kill init!");
846 zap_pid_ns_processes(pid_ns);
847 write_lock_irq(&tasklist_lock);
849 * We can not clear ->child_reaper or leave it alone.
850 * There may by stealth EXIT_DEAD tasks on ->children,
851 * forget_original_parent() must move them somewhere.
853 pid_ns->child_reaper = init_pid_ns.child_reaper;
856 return pid_ns->child_reaper;
859 static void forget_original_parent(struct task_struct *father)
861 struct task_struct *p, *n, *reaper;
862 LIST_HEAD(ptrace_dead);
864 write_lock_irq(&tasklist_lock);
865 reaper = find_new_reaper(father);
867 * First clean up ptrace if we were using it.
869 ptrace_exit(father, &ptrace_dead);
871 list_for_each_entry_safe(p, n, &father->children, sibling) {
872 p->real_parent = reaper;
873 if (p->parent == father) {
874 BUG_ON(p->ptrace);
875 p->parent = p->real_parent;
877 reparent_thread(p, father);
880 write_unlock_irq(&tasklist_lock);
881 BUG_ON(!list_empty(&father->children));
883 ptrace_exit_finish(father, &ptrace_dead);
887 * Send signals to all our closest relatives so that they know
888 * to properly mourn us..
890 static void exit_notify(struct task_struct *tsk, int group_dead)
892 int signal;
893 void *cookie;
896 * This does two things:
898 * A. Make init inherit all the child processes
899 * B. Check to see if any process groups have become orphaned
900 * as a result of our exiting, and if they have any stopped
901 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
903 forget_original_parent(tsk);
904 exit_task_namespaces(tsk);
906 write_lock_irq(&tasklist_lock);
907 if (group_dead)
908 kill_orphaned_pgrp(tsk->group_leader, NULL);
910 /* Let father know we died
912 * Thread signals are configurable, but you aren't going to use
913 * that to send signals to arbitary processes.
914 * That stops right now.
916 * If the parent exec id doesn't match the exec id we saved
917 * when we started then we know the parent has changed security
918 * domain.
920 * If our self_exec id doesn't match our parent_exec_id then
921 * we have changed execution domain as these two values started
922 * the same after a fork.
924 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
925 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
926 tsk->self_exec_id != tsk->parent_exec_id))
927 tsk->exit_signal = SIGCHLD;
929 signal = tracehook_notify_death(tsk, &cookie, group_dead);
930 if (signal >= 0)
931 signal = do_notify_parent(tsk, signal);
933 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
935 /* mt-exec, de_thread() is waiting for us */
936 if (thread_group_leader(tsk) &&
937 tsk->signal->group_exit_task &&
938 tsk->signal->notify_count < 0)
939 wake_up_process(tsk->signal->group_exit_task);
941 write_unlock_irq(&tasklist_lock);
943 tracehook_report_death(tsk, signal, cookie, group_dead);
945 /* If the process is dead, release it - nobody will wait for it */
946 if (signal == DEATH_REAP)
947 release_task(tsk);
950 #ifdef CONFIG_DEBUG_STACK_USAGE
951 static void check_stack_usage(void)
953 static DEFINE_SPINLOCK(low_water_lock);
954 static int lowest_to_date = THREAD_SIZE;
955 unsigned long free;
957 free = stack_not_used(current);
959 if (free >= lowest_to_date)
960 return;
962 spin_lock(&low_water_lock);
963 if (free < lowest_to_date) {
964 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
965 "left\n",
966 current->comm, free);
967 lowest_to_date = free;
969 spin_unlock(&low_water_lock);
971 #else
972 static inline void check_stack_usage(void) {}
973 #endif
975 NORET_TYPE void do_exit(long code)
977 struct task_struct *tsk = current;
978 int group_dead;
980 profile_task_exit(tsk);
982 WARN_ON(atomic_read(&tsk->fs_excl));
984 if (unlikely(in_interrupt()))
985 panic("Aiee, killing interrupt handler!");
986 if (unlikely(!tsk->pid))
987 panic("Attempted to kill the idle task!");
989 tracehook_report_exit(&code);
992 * We're taking recursive faults here in do_exit. Safest is to just
993 * leave this task alone and wait for reboot.
995 if (unlikely(tsk->flags & PF_EXITING)) {
996 printk(KERN_ALERT
997 "Fixing recursive fault but reboot is needed!\n");
999 * We can do this unlocked here. The futex code uses
1000 * this flag just to verify whether the pi state
1001 * cleanup has been done or not. In the worst case it
1002 * loops once more. We pretend that the cleanup was
1003 * done as there is no way to return. Either the
1004 * OWNER_DIED bit is set by now or we push the blocked
1005 * task into the wait for ever nirwana as well.
1007 tsk->flags |= PF_EXITPIDONE;
1008 set_current_state(TASK_UNINTERRUPTIBLE);
1009 schedule();
1012 exit_signals(tsk); /* sets PF_EXITING */
1014 * tsk->flags are checked in the futex code to protect against
1015 * an exiting task cleaning up the robust pi futexes.
1017 smp_mb();
1018 spin_unlock_wait(&tsk->pi_lock);
1020 if (unlikely(in_atomic()))
1021 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1022 current->comm, task_pid_nr(current),
1023 preempt_count());
1025 acct_update_integrals(tsk);
1027 group_dead = atomic_dec_and_test(&tsk->signal->live);
1028 if (group_dead) {
1029 hrtimer_cancel(&tsk->signal->real_timer);
1030 exit_itimers(tsk->signal);
1032 acct_collect(code, group_dead);
1033 if (group_dead)
1034 tty_audit_exit();
1035 if (unlikely(tsk->audit_context))
1036 audit_free(tsk);
1038 tsk->exit_code = code;
1039 taskstats_exit(tsk, group_dead);
1041 exit_mm(tsk);
1043 if (group_dead)
1044 acct_process();
1045 trace_sched_process_exit(tsk);
1047 exit_sem(tsk);
1048 exit_files(tsk);
1049 exit_fs(tsk);
1050 check_stack_usage();
1051 exit_thread();
1052 cgroup_exit(tsk, 1);
1054 if (group_dead && tsk->signal->leader)
1055 disassociate_ctty(1);
1057 module_put(task_thread_info(tsk)->exec_domain->module);
1058 if (tsk->binfmt)
1059 module_put(tsk->binfmt->module);
1061 proc_exit_connector(tsk);
1062 exit_notify(tsk, group_dead);
1063 #ifdef CONFIG_NUMA
1064 mpol_put(tsk->mempolicy);
1065 tsk->mempolicy = NULL;
1066 #endif
1067 #ifdef CONFIG_FUTEX
1068 if (unlikely(!list_empty(&tsk->pi_state_list)))
1069 exit_pi_state_list(tsk);
1070 if (unlikely(current->pi_state_cache))
1071 kfree(current->pi_state_cache);
1072 #endif
1074 * Make sure we are holding no locks:
1076 debug_check_no_locks_held(tsk);
1078 * We can do this unlocked here. The futex code uses this flag
1079 * just to verify whether the pi state cleanup has been done
1080 * or not. In the worst case it loops once more.
1082 tsk->flags |= PF_EXITPIDONE;
1084 if (tsk->io_context)
1085 exit_io_context();
1087 if (tsk->splice_pipe)
1088 __free_pipe_info(tsk->splice_pipe);
1090 again:
1091 local_irq_disable();
1092 /* causes final put_task_struct in finish_task_switch(). */
1093 tsk->state = TASK_DEAD;
1094 __schedule();
1095 printk(KERN_ERR "BUG: dead task %s:%d back from the grave!\n",
1096 current->comm, current->pid);
1097 printk(KERN_ERR ".... flags: %08x, count: %d, state: %08lx\n",
1098 current->flags, atomic_read(&current->usage), current->state);
1099 printk(KERN_ERR ".... trying again ...\n");
1100 goto again;
1103 EXPORT_SYMBOL_GPL(do_exit);
1105 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1107 if (comp)
1108 complete(comp);
1110 do_exit(code);
1113 EXPORT_SYMBOL(complete_and_exit);
1115 SYSCALL_DEFINE1(exit, int, error_code)
1117 do_exit((error_code&0xff)<<8);
1121 * Take down every thread in the group. This is called by fatal signals
1122 * as well as by sys_exit_group (below).
1124 NORET_TYPE void
1125 do_group_exit(int exit_code)
1127 struct signal_struct *sig = current->signal;
1129 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1131 if (signal_group_exit(sig))
1132 exit_code = sig->group_exit_code;
1133 else if (!thread_group_empty(current)) {
1134 struct sighand_struct *const sighand = current->sighand;
1135 spin_lock_irq(&sighand->siglock);
1136 if (signal_group_exit(sig))
1137 /* Another thread got here before we took the lock. */
1138 exit_code = sig->group_exit_code;
1139 else {
1140 sig->group_exit_code = exit_code;
1141 sig->flags = SIGNAL_GROUP_EXIT;
1142 zap_other_threads(current);
1144 spin_unlock_irq(&sighand->siglock);
1147 do_exit(exit_code);
1148 /* NOTREACHED */
1152 * this kills every thread in the thread group. Note that any externally
1153 * wait4()-ing process will get the correct exit code - even if this
1154 * thread is not the thread group leader.
1156 SYSCALL_DEFINE1(exit_group, int, error_code)
1158 do_group_exit((error_code & 0xff) << 8);
1159 /* NOTREACHED */
1160 return 0;
1163 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1165 struct pid *pid = NULL;
1166 if (type == PIDTYPE_PID)
1167 pid = task->pids[type].pid;
1168 else if (type < PIDTYPE_MAX)
1169 pid = task->group_leader->pids[type].pid;
1170 return pid;
1173 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1174 struct task_struct *p)
1176 int err;
1178 if (type < PIDTYPE_MAX) {
1179 if (task_pid_type(p, type) != pid)
1180 return 0;
1183 /* Wait for all children (clone and not) if __WALL is set;
1184 * otherwise, wait for clone children *only* if __WCLONE is
1185 * set; otherwise, wait for non-clone children *only*. (Note:
1186 * A "clone" child here is one that reports to its parent
1187 * using a signal other than SIGCHLD.) */
1188 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1189 && !(options & __WALL))
1190 return 0;
1192 err = security_task_wait(p);
1193 if (err)
1194 return err;
1196 return 1;
1199 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1200 int why, int status,
1201 struct siginfo __user *infop,
1202 struct rusage __user *rusagep)
1204 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1206 put_task_struct(p);
1207 if (!retval)
1208 retval = put_user(SIGCHLD, &infop->si_signo);
1209 if (!retval)
1210 retval = put_user(0, &infop->si_errno);
1211 if (!retval)
1212 retval = put_user((short)why, &infop->si_code);
1213 if (!retval)
1214 retval = put_user(pid, &infop->si_pid);
1215 if (!retval)
1216 retval = put_user(uid, &infop->si_uid);
1217 if (!retval)
1218 retval = put_user(status, &infop->si_status);
1219 if (!retval)
1220 retval = pid;
1221 return retval;
1225 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1226 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1227 * the lock and this task is uninteresting. If we return nonzero, we have
1228 * released the lock and the system call should return.
1230 static int wait_task_zombie(struct task_struct *p, int options,
1231 struct siginfo __user *infop,
1232 int __user *stat_addr, struct rusage __user *ru)
1234 unsigned long state;
1235 int retval, status, traced;
1236 pid_t pid = task_pid_vnr(p);
1237 uid_t uid = __task_cred(p)->uid;
1239 if (!likely(options & WEXITED))
1240 return 0;
1242 if (unlikely(options & WNOWAIT)) {
1243 int exit_code = p->exit_code;
1244 int why, status;
1246 get_task_struct(p);
1247 read_unlock(&tasklist_lock);
1248 if ((exit_code & 0x7f) == 0) {
1249 why = CLD_EXITED;
1250 status = exit_code >> 8;
1251 } else {
1252 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1253 status = exit_code & 0x7f;
1255 return wait_noreap_copyout(p, pid, uid, why,
1256 status, infop, ru);
1260 * Try to move the task's state to DEAD
1261 * only one thread is allowed to do this:
1263 state = xchg(&p->exit_state, EXIT_DEAD);
1264 if (state != EXIT_ZOMBIE) {
1265 BUG_ON(state != EXIT_DEAD);
1266 return 0;
1269 traced = ptrace_reparented(p);
1271 if (likely(!traced)) {
1272 struct signal_struct *psig;
1273 struct signal_struct *sig;
1274 struct task_cputime cputime;
1277 * The resource counters for the group leader are in its
1278 * own task_struct. Those for dead threads in the group
1279 * are in its signal_struct, as are those for the child
1280 * processes it has previously reaped. All these
1281 * accumulate in the parent's signal_struct c* fields.
1283 * We don't bother to take a lock here to protect these
1284 * p->signal fields, because they are only touched by
1285 * __exit_signal, which runs with tasklist_lock
1286 * write-locked anyway, and so is excluded here. We do
1287 * need to protect the access to p->parent->signal fields,
1288 * as other threads in the parent group can be right
1289 * here reaping other children at the same time.
1291 * We use thread_group_cputime() to get times for the thread
1292 * group, which consolidates times for all threads in the
1293 * group including the group leader.
1295 thread_group_cputime(p, &cputime);
1296 spin_lock_irq(&p->parent->sighand->siglock);
1297 psig = p->parent->signal;
1298 sig = p->signal;
1299 psig->cutime =
1300 cputime_add(psig->cutime,
1301 cputime_add(cputime.utime,
1302 sig->cutime));
1303 psig->cstime =
1304 cputime_add(psig->cstime,
1305 cputime_add(cputime.stime,
1306 sig->cstime));
1307 psig->cgtime =
1308 cputime_add(psig->cgtime,
1309 cputime_add(p->gtime,
1310 cputime_add(sig->gtime,
1311 sig->cgtime)));
1312 psig->cmin_flt +=
1313 p->min_flt + sig->min_flt + sig->cmin_flt;
1314 psig->cmaj_flt +=
1315 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1316 psig->cnvcsw +=
1317 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1318 psig->cnivcsw +=
1319 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1320 psig->cinblock +=
1321 task_io_get_inblock(p) +
1322 sig->inblock + sig->cinblock;
1323 psig->coublock +=
1324 task_io_get_oublock(p) +
1325 sig->oublock + sig->coublock;
1326 task_io_accounting_add(&psig->ioac, &p->ioac);
1327 task_io_accounting_add(&psig->ioac, &sig->ioac);
1328 spin_unlock_irq(&p->parent->sighand->siglock);
1332 * Now we are sure this task is interesting, and no other
1333 * thread can reap it because we set its state to EXIT_DEAD.
1335 read_unlock(&tasklist_lock);
1338 * Flush inherited counters to the parent - before the parent
1339 * gets woken up by child-exit notifications.
1341 perf_counter_exit_task(p);
1343 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1344 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1345 ? p->signal->group_exit_code : p->exit_code;
1346 if (!retval && stat_addr)
1347 retval = put_user(status, stat_addr);
1348 if (!retval && infop)
1349 retval = put_user(SIGCHLD, &infop->si_signo);
1350 if (!retval && infop)
1351 retval = put_user(0, &infop->si_errno);
1352 if (!retval && infop) {
1353 int why;
1355 if ((status & 0x7f) == 0) {
1356 why = CLD_EXITED;
1357 status >>= 8;
1358 } else {
1359 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1360 status &= 0x7f;
1362 retval = put_user((short)why, &infop->si_code);
1363 if (!retval)
1364 retval = put_user(status, &infop->si_status);
1366 if (!retval && infop)
1367 retval = put_user(pid, &infop->si_pid);
1368 if (!retval && infop)
1369 retval = put_user(uid, &infop->si_uid);
1370 if (!retval)
1371 retval = pid;
1373 if (traced) {
1374 write_lock_irq(&tasklist_lock);
1375 /* We dropped tasklist, ptracer could die and untrace */
1376 ptrace_unlink(p);
1378 * If this is not a detached task, notify the parent.
1379 * If it's still not detached after that, don't release
1380 * it now.
1382 if (!task_detached(p)) {
1383 do_notify_parent(p, p->exit_signal);
1384 if (!task_detached(p)) {
1385 p->exit_state = EXIT_ZOMBIE;
1386 p = NULL;
1389 write_unlock_irq(&tasklist_lock);
1391 if (p != NULL)
1392 release_task(p);
1394 return retval;
1398 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1399 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1400 * the lock and this task is uninteresting. If we return nonzero, we have
1401 * released the lock and the system call should return.
1403 static int wait_task_stopped(int ptrace, struct task_struct *p,
1404 int options, struct siginfo __user *infop,
1405 int __user *stat_addr, struct rusage __user *ru)
1407 int retval, exit_code, why;
1408 uid_t uid = 0; /* unneeded, required by compiler */
1409 pid_t pid;
1411 if (!(options & WUNTRACED))
1412 return 0;
1414 exit_code = 0;
1415 spin_lock_irq(&p->sighand->siglock);
1417 if (unlikely(!task_is_stopped_or_traced(p)))
1418 goto unlock_sig;
1420 if (!ptrace && p->signal->group_stop_count > 0)
1422 * A group stop is in progress and this is the group leader.
1423 * We won't report until all threads have stopped.
1425 goto unlock_sig;
1427 exit_code = p->exit_code;
1428 if (!exit_code)
1429 goto unlock_sig;
1431 if (!unlikely(options & WNOWAIT))
1432 p->exit_code = 0;
1434 /* don't need the RCU readlock here as we're holding a spinlock */
1435 uid = __task_cred(p)->uid;
1436 unlock_sig:
1437 spin_unlock_irq(&p->sighand->siglock);
1438 if (!exit_code)
1439 return 0;
1442 * Now we are pretty sure this task is interesting.
1443 * Make sure it doesn't get reaped out from under us while we
1444 * give up the lock and then examine it below. We don't want to
1445 * keep holding onto the tasklist_lock while we call getrusage and
1446 * possibly take page faults for user memory.
1448 get_task_struct(p);
1449 pid = task_pid_vnr(p);
1450 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1451 read_unlock(&tasklist_lock);
1453 if (unlikely(options & WNOWAIT))
1454 return wait_noreap_copyout(p, pid, uid,
1455 why, exit_code,
1456 infop, ru);
1458 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1459 if (!retval && stat_addr)
1460 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1461 if (!retval && infop)
1462 retval = put_user(SIGCHLD, &infop->si_signo);
1463 if (!retval && infop)
1464 retval = put_user(0, &infop->si_errno);
1465 if (!retval && infop)
1466 retval = put_user((short)why, &infop->si_code);
1467 if (!retval && infop)
1468 retval = put_user(exit_code, &infop->si_status);
1469 if (!retval && infop)
1470 retval = put_user(pid, &infop->si_pid);
1471 if (!retval && infop)
1472 retval = put_user(uid, &infop->si_uid);
1473 if (!retval)
1474 retval = pid;
1475 put_task_struct(p);
1477 BUG_ON(!retval);
1478 return retval;
1482 * Handle do_wait work for one task in a live, non-stopped state.
1483 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1484 * the lock and this task is uninteresting. If we return nonzero, we have
1485 * released the lock and the system call should return.
1487 static int wait_task_continued(struct task_struct *p, int options,
1488 struct siginfo __user *infop,
1489 int __user *stat_addr, struct rusage __user *ru)
1491 int retval;
1492 pid_t pid;
1493 uid_t uid;
1495 if (!unlikely(options & WCONTINUED))
1496 return 0;
1498 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1499 return 0;
1501 spin_lock_irq(&p->sighand->siglock);
1502 /* Re-check with the lock held. */
1503 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1504 spin_unlock_irq(&p->sighand->siglock);
1505 return 0;
1507 if (!unlikely(options & WNOWAIT))
1508 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1509 uid = __task_cred(p)->uid;
1510 spin_unlock_irq(&p->sighand->siglock);
1512 pid = task_pid_vnr(p);
1513 get_task_struct(p);
1514 read_unlock(&tasklist_lock);
1516 if (!infop) {
1517 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1518 put_task_struct(p);
1519 if (!retval && stat_addr)
1520 retval = put_user(0xffff, stat_addr);
1521 if (!retval)
1522 retval = pid;
1523 } else {
1524 retval = wait_noreap_copyout(p, pid, uid,
1525 CLD_CONTINUED, SIGCONT,
1526 infop, ru);
1527 BUG_ON(retval == 0);
1530 return retval;
1534 * Consider @p for a wait by @parent.
1536 * -ECHILD should be in *@notask_error before the first call.
1537 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1538 * Returns zero if the search for a child should continue;
1539 * then *@notask_error is 0 if @p is an eligible child,
1540 * or another error from security_task_wait(), or still -ECHILD.
1542 static int wait_consider_task(struct task_struct *parent, int ptrace,
1543 struct task_struct *p, int *notask_error,
1544 enum pid_type type, struct pid *pid, int options,
1545 struct siginfo __user *infop,
1546 int __user *stat_addr, struct rusage __user *ru)
1548 int ret = eligible_child(type, pid, options, p);
1549 BUG_ON(!atomic_read(&p->usage));
1550 if (!ret)
1551 return ret;
1553 if (unlikely(ret < 0)) {
1555 * If we have not yet seen any eligible child,
1556 * then let this error code replace -ECHILD.
1557 * A permission error will give the user a clue
1558 * to look for security policy problems, rather
1559 * than for mysterious wait bugs.
1561 if (*notask_error)
1562 *notask_error = ret;
1565 if (likely(!ptrace) && unlikely(p->ptrace)) {
1567 * This child is hidden by ptrace.
1568 * We aren't allowed to see it now, but eventually we will.
1570 *notask_error = 0;
1571 return 0;
1574 if (p->exit_state == EXIT_DEAD)
1575 return 0;
1578 * We don't reap group leaders with subthreads.
1580 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1581 return wait_task_zombie(p, options, infop, stat_addr, ru);
1584 * It's stopped or running now, so it might
1585 * later continue, exit, or stop again.
1587 *notask_error = 0;
1589 if (task_is_stopped_or_traced(p))
1590 return wait_task_stopped(ptrace, p, options,
1591 infop, stat_addr, ru);
1593 return wait_task_continued(p, options, infop, stat_addr, ru);
1597 * Do the work of do_wait() for one thread in the group, @tsk.
1599 * -ECHILD should be in *@notask_error before the first call.
1600 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1601 * Returns zero if the search for a child should continue; then
1602 * *@notask_error is 0 if there were any eligible children,
1603 * or another error from security_task_wait(), or still -ECHILD.
1605 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1606 enum pid_type type, struct pid *pid, int options,
1607 struct siginfo __user *infop, int __user *stat_addr,
1608 struct rusage __user *ru)
1610 struct task_struct *p;
1612 list_for_each_entry(p, &tsk->children, sibling) {
1614 * Do not consider detached threads.
1616 if (!task_detached(p)) {
1617 int ret = wait_consider_task(tsk, 0, p, notask_error,
1618 type, pid, options,
1619 infop, stat_addr, ru);
1620 if (ret)
1621 return ret;
1625 return 0;
1628 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1629 enum pid_type type, struct pid *pid, int options,
1630 struct siginfo __user *infop, int __user *stat_addr,
1631 struct rusage __user *ru)
1633 struct task_struct *p;
1636 * Traditionally we see ptrace'd stopped tasks regardless of options.
1638 options |= WUNTRACED;
1640 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1641 int ret = wait_consider_task(tsk, 1, p, notask_error,
1642 type, pid, options,
1643 infop, stat_addr, ru);
1644 if (ret)
1645 return ret;
1648 return 0;
1651 static long do_wait(enum pid_type type, struct pid *pid, int options,
1652 struct siginfo __user *infop, int __user *stat_addr,
1653 struct rusage __user *ru)
1655 DECLARE_WAITQUEUE(wait, current);
1656 struct task_struct *tsk;
1657 int retval;
1659 trace_sched_process_wait(pid);
1661 add_wait_queue(&current->signal->wait_chldexit,&wait);
1662 repeat:
1664 * If there is nothing that can match our critiera just get out.
1665 * We will clear @retval to zero if we see any child that might later
1666 * match our criteria, even if we are not able to reap it yet.
1668 retval = -ECHILD;
1669 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1670 goto end;
1672 current->state = TASK_INTERRUPTIBLE;
1673 read_lock(&tasklist_lock);
1674 tsk = current;
1675 do {
1676 int tsk_result = do_wait_thread(tsk, &retval,
1677 type, pid, options,
1678 infop, stat_addr, ru);
1679 if (!tsk_result)
1680 tsk_result = ptrace_do_wait(tsk, &retval,
1681 type, pid, options,
1682 infop, stat_addr, ru);
1683 if (tsk_result) {
1685 * tasklist_lock is unlocked and we have a final result.
1687 retval = tsk_result;
1688 goto end;
1691 if (options & __WNOTHREAD)
1692 break;
1693 tsk = next_thread(tsk);
1694 BUG_ON(tsk->signal != current->signal);
1695 } while (tsk != current);
1696 read_unlock(&tasklist_lock);
1698 if (!retval && !(options & WNOHANG)) {
1699 retval = -ERESTARTSYS;
1700 if (!signal_pending(current)) {
1701 schedule();
1702 goto repeat;
1706 end:
1707 current->state = TASK_RUNNING;
1708 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1709 if (infop) {
1710 if (retval > 0)
1711 retval = 0;
1712 else {
1714 * For a WNOHANG return, clear out all the fields
1715 * we would set so the user can easily tell the
1716 * difference.
1718 if (!retval)
1719 retval = put_user(0, &infop->si_signo);
1720 if (!retval)
1721 retval = put_user(0, &infop->si_errno);
1722 if (!retval)
1723 retval = put_user(0, &infop->si_code);
1724 if (!retval)
1725 retval = put_user(0, &infop->si_pid);
1726 if (!retval)
1727 retval = put_user(0, &infop->si_uid);
1728 if (!retval)
1729 retval = put_user(0, &infop->si_status);
1732 return retval;
1735 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1736 infop, int, options, struct rusage __user *, ru)
1738 struct pid *pid = NULL;
1739 enum pid_type type;
1740 long ret;
1742 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1743 return -EINVAL;
1744 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1745 return -EINVAL;
1747 switch (which) {
1748 case P_ALL:
1749 type = PIDTYPE_MAX;
1750 break;
1751 case P_PID:
1752 type = PIDTYPE_PID;
1753 if (upid <= 0)
1754 return -EINVAL;
1755 break;
1756 case P_PGID:
1757 type = PIDTYPE_PGID;
1758 if (upid <= 0)
1759 return -EINVAL;
1760 break;
1761 default:
1762 return -EINVAL;
1765 if (type < PIDTYPE_MAX)
1766 pid = find_get_pid(upid);
1767 ret = do_wait(type, pid, options, infop, NULL, ru);
1768 put_pid(pid);
1770 /* avoid REGPARM breakage on x86: */
1771 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1772 return ret;
1775 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1776 int, options, struct rusage __user *, ru)
1778 struct pid *pid = NULL;
1779 enum pid_type type;
1780 long ret;
1782 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1783 __WNOTHREAD|__WCLONE|__WALL))
1784 return -EINVAL;
1786 if (upid == -1)
1787 type = PIDTYPE_MAX;
1788 else if (upid < 0) {
1789 type = PIDTYPE_PGID;
1790 pid = find_get_pid(-upid);
1791 } else if (upid == 0) {
1792 type = PIDTYPE_PGID;
1793 pid = get_pid(task_pgrp(current));
1794 } else /* upid > 0 */ {
1795 type = PIDTYPE_PID;
1796 pid = find_get_pid(upid);
1799 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1800 put_pid(pid);
1802 /* avoid REGPARM breakage on x86: */
1803 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1804 return ret;
1807 #ifdef __ARCH_WANT_SYS_WAITPID
1810 * sys_waitpid() remains for compatibility. waitpid() should be
1811 * implemented by calling sys_wait4() from libc.a.
1813 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1815 return sys_wait4(pid, stat_addr, options, NULL);
1818 #endif