Luca's patch ported
[cbs-scheduler.git] / kernel / fork.c
blob1940009859a71a2d45e897be025355750f188254
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/interrupt.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/task_io_accounting_ops.h>
46 #include <linux/rcupdate.h>
47 #include <linux/ptrace.h>
48 #include <linux/mount.h>
49 #include <linux/audit.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/profile.h>
53 #include <linux/kthread.h>
54 #include <linux/notifier.h>
55 #include <linux/rmap.h>
56 #include <linux/acct.h>
57 #include <linux/tsacct_kern.h>
58 #include <linux/cn_proc.h>
59 #include <linux/freezer.h>
60 #include <linux/delayacct.h>
61 #include <linux/taskstats_kern.h>
62 #include <linux/random.h>
63 #include <linux/tty.h>
64 #include <linux/proc_fs.h>
65 #include <linux/blkdev.h>
66 #include <trace/sched.h>
67 #include <linux/magic.h>
69 #include <asm/pgtable.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/cacheflush.h>
74 #include <asm/tlbflush.h>
77 * Protected counters by write_lock_irq(&tasklist_lock)
79 unsigned long total_forks; /* Handle normal Linux uptimes. */
80 int nr_threads; /* The idle threads do not count.. */
82 int max_threads; /* tunable limit on nr_threads */
84 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
86 #ifdef CONFIG_PREEMPT_RT
87 DEFINE_RWLOCK(tasklist_lock); /* outer */
88 #else
89 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
90 #endif
92 DEFINE_TRACE(sched_process_fork);
95 * Delayed mmdrop. In the PREEMPT_RT case we
96 * dont want to do this from the scheduling
97 * context.
99 static DEFINE_PER_CPU(struct task_struct *, desched_task);
101 static DEFINE_PER_CPU(struct list_head, delayed_drop_list);
103 int nr_processes(void)
105 int cpu;
106 int total = 0;
108 for_each_online_cpu(cpu)
109 total += per_cpu(process_counts, cpu);
111 return total;
114 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
115 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
116 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
117 static struct kmem_cache *task_struct_cachep;
118 #endif
120 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
121 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
123 #ifdef CONFIG_DEBUG_STACK_USAGE
124 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
125 #else
126 gfp_t mask = GFP_KERNEL;
127 #endif
128 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
131 static inline void free_thread_info(struct thread_info *ti)
133 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
135 #endif
137 /* SLAB cache for signal_struct structures (tsk->signal) */
138 static struct kmem_cache *signal_cachep;
140 /* SLAB cache for sighand_struct structures (tsk->sighand) */
141 struct kmem_cache *sighand_cachep;
143 /* SLAB cache for files_struct structures (tsk->files) */
144 struct kmem_cache *files_cachep;
146 /* SLAB cache for fs_struct structures (tsk->fs) */
147 struct kmem_cache *fs_cachep;
149 /* SLAB cache for vm_area_struct structures */
150 struct kmem_cache *vm_area_cachep;
152 /* SLAB cache for mm_struct structures (tsk->mm) */
153 static struct kmem_cache *mm_cachep;
155 void free_task(struct task_struct *tsk)
157 prop_local_destroy_single(&tsk->dirties);
158 free_thread_info(tsk->stack);
159 rt_mutex_debug_task_free(tsk);
160 ftrace_graph_exit_task(tsk);
161 free_task_struct(tsk);
163 EXPORT_SYMBOL(free_task);
165 void __put_task_struct(struct task_struct *tsk)
167 WARN_ON(!tsk->exit_state);
168 WARN_ON(atomic_read(&tsk->usage));
169 WARN_ON(tsk == current);
171 put_cred(tsk->real_cred);
172 put_cred(tsk->cred);
173 delayacct_tsk_free(tsk);
175 if (!profile_handoff_task(tsk))
176 free_task(tsk);
179 #ifdef CONFIG_PREEMPT_RT
180 void __put_task_struct_cb(struct rcu_head *rhp)
182 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
184 __put_task_struct(tsk);
187 #endif
190 * macro override instead of weak attribute alias, to workaround
191 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
193 #ifndef arch_task_cache_init
194 #define arch_task_cache_init()
195 #endif
197 void __init fork_init(unsigned long mempages)
199 int i;
201 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
202 #ifndef ARCH_MIN_TASKALIGN
203 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
204 #endif
205 /* create a slab on which task_structs can be allocated */
206 task_struct_cachep =
207 kmem_cache_create("task_struct", sizeof(struct task_struct),
208 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
209 #endif
211 /* do the arch specific task caches init */
212 arch_task_cache_init();
215 * The default maximum number of threads is set to a safe
216 * value: the thread structures can take up at most half
217 * of memory.
219 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
222 * we need to allow at least 20 threads to boot a system
224 if(max_threads < 20)
225 max_threads = 20;
227 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
228 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
229 init_task.signal->rlim[RLIMIT_SIGPENDING] =
230 init_task.signal->rlim[RLIMIT_NPROC];
232 for (i = 0; i < NR_CPUS; i++)
233 INIT_LIST_HEAD(&per_cpu(delayed_drop_list, i));
236 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
237 struct task_struct *src)
239 *dst = *src;
240 return 0;
243 static struct task_struct *dup_task_struct(struct task_struct *orig)
245 struct task_struct *tsk;
246 struct thread_info *ti;
247 unsigned long *stackend;
249 int err;
251 prepare_to_copy(orig);
253 tsk = alloc_task_struct();
254 if (!tsk)
255 return NULL;
257 ti = alloc_thread_info(tsk);
258 if (!ti) {
259 free_task_struct(tsk);
260 return NULL;
263 err = arch_dup_task_struct(tsk, orig);
264 if (err)
265 goto out;
267 tsk->stack = ti;
269 err = prop_local_init_single(&tsk->dirties);
270 if (err)
271 goto out;
273 setup_thread_stack(tsk, orig);
274 stackend = end_of_stack(tsk);
275 *stackend = STACK_END_MAGIC; /* for overflow detection */
277 #ifdef CONFIG_CC_STACKPROTECTOR
278 tsk->stack_canary = get_random_int();
279 #endif
281 /* One for us, one for whoever does the "release_task()" (usually parent) */
282 atomic_set(&tsk->usage,2);
283 atomic_set(&tsk->fs_excl, 0);
284 #ifdef CONFIG_BLK_DEV_IO_TRACE
285 tsk->btrace_seq = 0;
286 #endif
287 tsk->splice_pipe = NULL;
288 return tsk;
290 out:
291 free_thread_info(ti);
292 free_task_struct(tsk);
293 return NULL;
296 #ifdef CONFIG_MMU
297 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
299 struct vm_area_struct *mpnt, *tmp, **pprev;
300 struct rb_node **rb_link, *rb_parent;
301 int retval;
302 unsigned long charge;
303 struct mempolicy *pol;
305 down_write(&oldmm->mmap_sem);
306 flush_cache_dup_mm(oldmm);
308 * Not linked in yet - no deadlock potential:
310 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
312 mm->locked_vm = 0;
313 mm->mmap = NULL;
314 mm->mmap_cache = NULL;
315 INIT_LIST_HEAD(&mm->delayed_drop);
316 mm->free_area_cache = oldmm->mmap_base;
317 mm->cached_hole_size = ~0UL;
318 mm->map_count = 0;
319 cpus_clear(mm->cpu_vm_mask);
320 mm->mm_rb = RB_ROOT;
321 rb_link = &mm->mm_rb.rb_node;
322 rb_parent = NULL;
323 pprev = &mm->mmap;
325 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
326 struct file *file;
328 if (mpnt->vm_flags & VM_DONTCOPY) {
329 long pages = vma_pages(mpnt);
330 mm->total_vm -= pages;
331 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
332 -pages);
333 continue;
335 charge = 0;
336 if (mpnt->vm_flags & VM_ACCOUNT) {
337 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
338 if (security_vm_enough_memory(len))
339 goto fail_nomem;
340 charge = len;
342 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
343 if (!tmp)
344 goto fail_nomem;
345 *tmp = *mpnt;
346 pol = mpol_dup(vma_policy(mpnt));
347 retval = PTR_ERR(pol);
348 if (IS_ERR(pol))
349 goto fail_nomem_policy;
350 vma_set_policy(tmp, pol);
351 tmp->vm_flags &= ~VM_LOCKED;
352 tmp->vm_mm = mm;
353 tmp->vm_next = NULL;
354 anon_vma_link(tmp);
355 file = tmp->vm_file;
356 if (file) {
357 struct inode *inode = file->f_path.dentry->d_inode;
358 struct address_space *mapping = file->f_mapping;
360 get_file(file);
361 if (tmp->vm_flags & VM_DENYWRITE)
362 atomic_dec(&inode->i_writecount);
363 spin_lock(&mapping->i_mmap_lock);
364 if (tmp->vm_flags & VM_SHARED)
365 mapping->i_mmap_writable++;
366 tmp->vm_truncate_count = mpnt->vm_truncate_count;
367 flush_dcache_mmap_lock(mapping);
368 /* insert tmp into the share list, just after mpnt */
369 vma_prio_tree_add(tmp, mpnt);
370 flush_dcache_mmap_unlock(mapping);
371 spin_unlock(&mapping->i_mmap_lock);
375 * Clear hugetlb-related page reserves for children. This only
376 * affects MAP_PRIVATE mappings. Faults generated by the child
377 * are not guaranteed to succeed, even if read-only
379 if (is_vm_hugetlb_page(tmp))
380 reset_vma_resv_huge_pages(tmp);
383 * Link in the new vma and copy the page table entries.
385 *pprev = tmp;
386 pprev = &tmp->vm_next;
388 __vma_link_rb(mm, tmp, rb_link, rb_parent);
389 rb_link = &tmp->vm_rb.rb_right;
390 rb_parent = &tmp->vm_rb;
392 mm->map_count++;
393 retval = copy_page_range(mm, oldmm, mpnt);
395 if (tmp->vm_ops && tmp->vm_ops->open)
396 tmp->vm_ops->open(tmp);
398 if (retval)
399 goto out;
401 /* a new mm has just been created */
402 arch_dup_mmap(oldmm, mm);
403 retval = 0;
404 out:
405 up_write(&mm->mmap_sem);
406 flush_tlb_mm(oldmm);
407 up_write(&oldmm->mmap_sem);
408 return retval;
409 fail_nomem_policy:
410 kmem_cache_free(vm_area_cachep, tmp);
411 fail_nomem:
412 retval = -ENOMEM;
413 vm_unacct_memory(charge);
414 goto out;
417 static inline int mm_alloc_pgd(struct mm_struct * mm)
419 mm->pgd = pgd_alloc(mm);
420 if (unlikely(!mm->pgd))
421 return -ENOMEM;
422 return 0;
425 static inline void mm_free_pgd(struct mm_struct * mm)
427 pgd_free(mm, mm->pgd);
429 #else
430 #define dup_mmap(mm, oldmm) (0)
431 #define mm_alloc_pgd(mm) (0)
432 #define mm_free_pgd(mm)
433 #endif /* CONFIG_MMU */
435 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
437 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
438 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
440 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
442 static int __init coredump_filter_setup(char *s)
444 default_dump_filter =
445 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
446 MMF_DUMP_FILTER_MASK;
447 return 1;
450 __setup("coredump_filter=", coredump_filter_setup);
452 #include <linux/init_task.h>
454 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
456 atomic_set(&mm->mm_users, 1);
457 atomic_set(&mm->mm_count, 1);
458 init_rwsem(&mm->mmap_sem);
459 INIT_LIST_HEAD(&mm->mmlist);
460 mm->flags = (current->mm) ? current->mm->flags : default_dump_filter;
461 mm->core_state = NULL;
462 mm->nr_ptes = 0;
463 set_mm_counter(mm, file_rss, 0);
464 set_mm_counter(mm, anon_rss, 0);
465 spin_lock_init(&mm->page_table_lock);
466 spin_lock_init(&mm->ioctx_lock);
467 INIT_HLIST_HEAD(&mm->ioctx_list);
468 mm->free_area_cache = TASK_UNMAPPED_BASE;
469 mm->cached_hole_size = ~0UL;
470 mm_init_owner(mm, p);
472 if (likely(!mm_alloc_pgd(mm))) {
473 mm->def_flags = 0;
474 mmu_notifier_mm_init(mm);
475 return mm;
478 free_mm(mm);
479 return NULL;
483 * Allocate and initialize an mm_struct.
485 struct mm_struct * mm_alloc(void)
487 struct mm_struct * mm;
489 mm = allocate_mm();
490 if (mm) {
491 memset(mm, 0, sizeof(*mm));
492 mm = mm_init(mm, current);
494 return mm;
498 * Called when the last reference to the mm
499 * is dropped: either by a lazy thread or by
500 * mmput. Free the page directory and the mm.
502 void __mmdrop(struct mm_struct *mm)
504 BUG_ON(mm == &init_mm);
505 mm_free_pgd(mm);
506 destroy_context(mm);
507 mmu_notifier_mm_destroy(mm);
508 free_mm(mm);
510 EXPORT_SYMBOL_GPL(__mmdrop);
513 * Decrement the use count and release all resources for an mm.
515 void mmput(struct mm_struct *mm)
517 might_sleep();
519 if (atomic_dec_and_test(&mm->mm_users)) {
520 exit_aio(mm);
521 exit_mmap(mm);
522 set_mm_exe_file(mm, NULL);
523 if (!list_empty(&mm->mmlist)) {
524 spin_lock(&mmlist_lock);
525 list_del(&mm->mmlist);
526 spin_unlock(&mmlist_lock);
528 put_swap_token(mm);
529 mmdrop(mm);
532 EXPORT_SYMBOL_GPL(mmput);
535 * get_task_mm - acquire a reference to the task's mm
537 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
538 * this kernel workthread has transiently adopted a user mm with use_mm,
539 * to do its AIO) is not set and if so returns a reference to it, after
540 * bumping up the use count. User must release the mm via mmput()
541 * after use. Typically used by /proc and ptrace.
543 struct mm_struct *get_task_mm(struct task_struct *task)
545 struct mm_struct *mm;
547 task_lock(task);
548 mm = task->mm;
549 if (mm) {
550 if (task->flags & PF_KTHREAD)
551 mm = NULL;
552 else
553 atomic_inc(&mm->mm_users);
555 task_unlock(task);
556 return mm;
558 EXPORT_SYMBOL_GPL(get_task_mm);
560 /* Please note the differences between mmput and mm_release.
561 * mmput is called whenever we stop holding onto a mm_struct,
562 * error success whatever.
564 * mm_release is called after a mm_struct has been removed
565 * from the current process.
567 * This difference is important for error handling, when we
568 * only half set up a mm_struct for a new process and need to restore
569 * the old one. Because we mmput the new mm_struct before
570 * restoring the old one. . .
571 * Eric Biederman 10 January 1998
573 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
575 struct completion *vfork_done = tsk->vfork_done;
577 /* Get rid of any futexes when releasing the mm */
578 #ifdef CONFIG_FUTEX
579 if (unlikely(tsk->robust_list))
580 exit_robust_list(tsk);
581 #ifdef CONFIG_COMPAT
582 if (unlikely(tsk->compat_robust_list))
583 compat_exit_robust_list(tsk);
584 #endif
585 #endif
587 /* Get rid of any cached register state */
588 deactivate_mm(tsk, mm);
590 /* notify parent sleeping on vfork() */
591 if (vfork_done) {
592 tsk->vfork_done = NULL;
593 complete(vfork_done);
597 * If we're exiting normally, clear a user-space tid field if
598 * requested. We leave this alone when dying by signal, to leave
599 * the value intact in a core dump, and to save the unnecessary
600 * trouble otherwise. Userland only wants this done for a sys_exit.
602 if (tsk->clear_child_tid
603 && !(tsk->flags & PF_SIGNALED)
604 && atomic_read(&mm->mm_users) > 1) {
605 u32 __user * tidptr = tsk->clear_child_tid;
606 tsk->clear_child_tid = NULL;
609 * We don't check the error code - if userspace has
610 * not set up a proper pointer then tough luck.
612 put_user(0, tidptr);
613 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
618 * Allocate a new mm structure and copy contents from the
619 * mm structure of the passed in task structure.
621 struct mm_struct *dup_mm(struct task_struct *tsk)
623 struct mm_struct *mm, *oldmm = current->mm;
624 int err;
626 if (!oldmm)
627 return NULL;
629 mm = allocate_mm();
630 if (!mm)
631 goto fail_nomem;
633 memcpy(mm, oldmm, sizeof(*mm));
635 /* Initializing for Swap token stuff */
636 mm->token_priority = 0;
637 mm->last_interval = 0;
639 if (!mm_init(mm, tsk))
640 goto fail_nomem;
642 if (init_new_context(tsk, mm))
643 goto fail_nocontext;
645 dup_mm_exe_file(oldmm, mm);
647 err = dup_mmap(mm, oldmm);
648 if (err)
649 goto free_pt;
651 mm->hiwater_rss = get_mm_rss(mm);
652 mm->hiwater_vm = mm->total_vm;
654 return mm;
656 free_pt:
657 mmput(mm);
659 fail_nomem:
660 return NULL;
662 fail_nocontext:
664 * If init_new_context() failed, we cannot use mmput() to free the mm
665 * because it calls destroy_context()
667 mm_free_pgd(mm);
668 free_mm(mm);
669 return NULL;
672 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
674 struct mm_struct * mm, *oldmm;
675 int retval;
677 tsk->min_flt = tsk->maj_flt = 0;
678 tsk->nvcsw = tsk->nivcsw = 0;
679 #ifdef CONFIG_DETECT_HUNG_TASK
680 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
681 #endif
683 tsk->mm = NULL;
684 tsk->active_mm = NULL;
687 * Are we cloning a kernel thread?
689 * We need to steal a active VM for that..
691 oldmm = current->mm;
692 if (!oldmm)
693 return 0;
695 if (clone_flags & CLONE_VM) {
696 atomic_inc(&oldmm->mm_users);
697 mm = oldmm;
698 goto good_mm;
701 retval = -ENOMEM;
702 mm = dup_mm(tsk);
703 if (!mm)
704 goto fail_nomem;
706 good_mm:
707 /* Initializing for Swap token stuff */
708 mm->token_priority = 0;
709 mm->last_interval = 0;
711 tsk->mm = mm;
712 tsk->active_mm = mm;
713 return 0;
715 fail_nomem:
716 return retval;
719 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
721 struct fs_struct *fs = current->fs;
722 if (clone_flags & CLONE_FS) {
723 /* tsk->fs is already what we want */
724 write_lock(&fs->lock);
725 if (fs->in_exec) {
726 write_unlock(&fs->lock);
727 return -EAGAIN;
729 fs->users++;
730 write_unlock(&fs->lock);
731 return 0;
733 tsk->fs = copy_fs_struct(fs);
734 if (!tsk->fs)
735 return -ENOMEM;
736 return 0;
739 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
741 struct files_struct *oldf, *newf;
742 int error = 0;
745 * A background process may not have any files ...
747 oldf = current->files;
748 if (!oldf)
749 goto out;
751 if (clone_flags & CLONE_FILES) {
752 atomic_inc(&oldf->count);
753 goto out;
756 newf = dup_fd(oldf, &error);
757 if (!newf)
758 goto out;
760 tsk->files = newf;
761 error = 0;
762 out:
763 return error;
766 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
768 #ifdef CONFIG_BLOCK
769 struct io_context *ioc = current->io_context;
771 if (!ioc)
772 return 0;
774 * Share io context with parent, if CLONE_IO is set
776 if (clone_flags & CLONE_IO) {
777 tsk->io_context = ioc_task_link(ioc);
778 if (unlikely(!tsk->io_context))
779 return -ENOMEM;
780 } else if (ioprio_valid(ioc->ioprio)) {
781 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
782 if (unlikely(!tsk->io_context))
783 return -ENOMEM;
785 tsk->io_context->ioprio = ioc->ioprio;
787 #endif
788 return 0;
791 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
793 struct sighand_struct *sig;
795 if (clone_flags & CLONE_SIGHAND) {
796 atomic_inc(&current->sighand->count);
797 return 0;
799 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
800 rcu_assign_pointer(tsk->sighand, sig);
801 if (!sig)
802 return -ENOMEM;
803 atomic_set(&sig->count, 1);
804 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
805 return 0;
808 void __cleanup_sighand(struct sighand_struct *sighand)
810 if (atomic_dec_and_test(&sighand->count))
811 kmem_cache_free(sighand_cachep, sighand);
816 * Initialize POSIX timer handling for a thread group.
818 static void posix_cpu_timers_init_group(struct signal_struct *sig)
820 /* Thread group counters. */
821 thread_group_cputime_init(sig);
823 /* Expiration times and increments. */
824 sig->it_virt_expires = cputime_zero;
825 sig->it_virt_incr = cputime_zero;
826 sig->it_prof_expires = cputime_zero;
827 sig->it_prof_incr = cputime_zero;
829 /* Cached expiration times. */
830 sig->cputime_expires.prof_exp = cputime_zero;
831 sig->cputime_expires.virt_exp = cputime_zero;
832 sig->cputime_expires.sched_exp = 0;
834 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
835 sig->cputime_expires.prof_exp =
836 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
837 sig->cputimer.running = 1;
840 /* The timer lists. */
841 INIT_LIST_HEAD(&sig->cpu_timers[0]);
842 INIT_LIST_HEAD(&sig->cpu_timers[1]);
843 INIT_LIST_HEAD(&sig->cpu_timers[2]);
846 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
848 struct signal_struct *sig;
850 if (clone_flags & CLONE_THREAD) {
851 atomic_inc(&current->signal->count);
852 atomic_inc(&current->signal->live);
853 return 0;
856 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
857 tsk->signal = sig;
858 if (!sig)
859 return -ENOMEM;
861 atomic_set(&sig->count, 1);
862 atomic_set(&sig->live, 1);
863 init_waitqueue_head(&sig->wait_chldexit);
864 sig->flags = 0;
865 sig->group_exit_code = 0;
866 sig->group_exit_task = NULL;
867 sig->group_stop_count = 0;
868 sig->curr_target = tsk;
869 init_sigpending(&sig->shared_pending);
870 INIT_LIST_HEAD(&sig->posix_timers);
872 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
873 sig->it_real_incr.tv64 = 0;
874 sig->real_timer.function = it_real_fn;
876 sig->leader = 0; /* session leadership doesn't inherit */
877 sig->tty_old_pgrp = NULL;
878 sig->tty = NULL;
880 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
881 sig->gtime = cputime_zero;
882 sig->cgtime = cputime_zero;
883 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
884 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
885 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
886 task_io_accounting_init(&sig->ioac);
887 sig->sum_sched_runtime = 0;
888 taskstats_tgid_init(sig);
890 task_lock(current->group_leader);
891 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
892 task_unlock(current->group_leader);
894 posix_cpu_timers_init_group(sig);
896 acct_init_pacct(&sig->pacct);
898 tty_audit_fork(sig);
900 return 0;
903 void __cleanup_signal(struct signal_struct *sig)
905 thread_group_cputime_free(sig);
906 tty_kref_put(sig->tty);
907 kmem_cache_free(signal_cachep, sig);
910 static void cleanup_signal(struct task_struct *tsk)
912 struct signal_struct *sig = tsk->signal;
914 atomic_dec(&sig->live);
916 if (atomic_dec_and_test(&sig->count))
917 __cleanup_signal(sig);
920 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
922 unsigned long new_flags = p->flags;
924 new_flags &= ~PF_SUPERPRIV;
925 new_flags |= PF_FORKNOEXEC;
926 new_flags |= PF_STARTING;
927 p->flags = new_flags;
928 clear_freeze_flag(p);
931 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
933 current->clear_child_tid = tidptr;
935 return task_pid_vnr(current);
938 static void rt_mutex_init_task(struct task_struct *p)
940 spin_lock_init(&p->pi_lock);
941 #ifdef CONFIG_RT_MUTEXES
942 plist_head_init(&p->pi_waiters, &p->pi_lock);
943 p->pi_blocked_on = NULL;
944 # ifdef CONFIG_DEBUG_RT_MUTEXES
945 p->last_kernel_lock = NULL;
946 # endif
947 #endif
950 #ifdef CONFIG_MM_OWNER
951 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
953 mm->owner = p;
955 #endif /* CONFIG_MM_OWNER */
958 * Initialize POSIX timer handling for a single task.
960 static void posix_cpu_timers_init(struct task_struct *tsk)
962 tsk->cputime_expires.prof_exp = cputime_zero;
963 tsk->cputime_expires.virt_exp = cputime_zero;
964 tsk->cputime_expires.sched_exp = 0;
965 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
966 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
967 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
971 * This creates a new process as a copy of the old one,
972 * but does not actually start it yet.
974 * It copies the registers, and all the appropriate
975 * parts of the process environment (as per the clone
976 * flags). The actual kick-off is left to the caller.
978 static struct task_struct *copy_process(unsigned long clone_flags,
979 unsigned long stack_start,
980 struct pt_regs *regs,
981 unsigned long stack_size,
982 int __user *child_tidptr,
983 struct pid *pid,
984 int trace)
986 int retval;
987 struct task_struct *p;
988 int cgroup_callbacks_done = 0;
990 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
991 return ERR_PTR(-EINVAL);
994 * Thread groups must share signals as well, and detached threads
995 * can only be started up within the thread group.
997 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
998 return ERR_PTR(-EINVAL);
1001 * Shared signal handlers imply shared VM. By way of the above,
1002 * thread groups also imply shared VM. Blocking this case allows
1003 * for various simplifications in other code.
1005 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1006 return ERR_PTR(-EINVAL);
1008 retval = security_task_create(clone_flags);
1009 if (retval)
1010 goto fork_out;
1012 retval = -ENOMEM;
1013 p = dup_task_struct(current);
1014 if (!p)
1015 goto fork_out;
1017 rt_mutex_init_task(p);
1018 perf_counter_init_task(p);
1020 #ifdef CONFIG_PROVE_LOCKING
1021 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1022 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1023 #endif
1024 retval = -EAGAIN;
1025 if (atomic_read(&p->real_cred->user->processes) >=
1026 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1027 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1028 p->real_cred->user != INIT_USER)
1029 goto bad_fork_free;
1032 retval = copy_creds(p, clone_flags);
1033 if (retval < 0)
1034 goto bad_fork_free;
1037 * If multiple threads are within copy_process(), then this check
1038 * triggers too late. This doesn't hurt, the check is only there
1039 * to stop root fork bombs.
1041 retval = -EAGAIN;
1042 if (nr_threads >= max_threads)
1043 goto bad_fork_cleanup_count;
1045 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1046 goto bad_fork_cleanup_count;
1048 if (p->binfmt && !try_module_get(p->binfmt->module))
1049 goto bad_fork_cleanup_put_domain;
1051 p->did_exec = 0;
1052 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1053 copy_flags(clone_flags, p);
1054 INIT_LIST_HEAD(&p->children);
1055 INIT_LIST_HEAD(&p->sibling);
1056 #ifdef CONFIG_PREEMPT_RCU
1057 p->rcu_read_lock_nesting = 0;
1058 p->rcu_flipctr_idx = 0;
1059 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1060 p->vfork_done = NULL;
1061 spin_lock_init(&p->alloc_lock);
1063 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1064 init_sigpending(&p->pending);
1065 p->sigqueue_cache = NULL;
1067 p->utime = cputime_zero;
1068 p->stime = cputime_zero;
1069 p->gtime = cputime_zero;
1070 p->utimescaled = cputime_zero;
1071 p->stimescaled = cputime_zero;
1072 p->prev_utime = cputime_zero;
1073 p->prev_stime = cputime_zero;
1075 p->default_timer_slack_ns = current->timer_slack_ns;
1077 task_io_accounting_init(&p->ioac);
1078 acct_clear_integrals(p);
1080 posix_cpu_timers_init(p);
1081 p->posix_timer_list = NULL;
1082 p->lock_depth = -1; /* -1 = no lock */
1083 do_posix_clock_monotonic_gettime(&p->start_time);
1084 p->real_start_time = p->start_time;
1085 monotonic_to_bootbased(&p->real_start_time);
1086 p->io_context = NULL;
1087 p->audit_context = NULL;
1088 cgroup_fork(p);
1089 #ifdef CONFIG_NUMA
1090 p->mempolicy = mpol_dup(p->mempolicy);
1091 if (IS_ERR(p->mempolicy)) {
1092 retval = PTR_ERR(p->mempolicy);
1093 p->mempolicy = NULL;
1094 goto bad_fork_cleanup_cgroup;
1096 mpol_fix_fork_child_flag(p);
1097 #endif
1098 #ifdef CONFIG_TRACE_IRQFLAGS
1099 p->irq_events = 0;
1100 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1101 p->hardirqs_enabled = 1;
1102 #else
1103 p->hardirqs_enabled = 0;
1104 #endif
1105 p->hardirq_enable_ip = 0;
1106 p->hardirq_enable_event = 0;
1107 p->hardirq_disable_ip = _THIS_IP_;
1108 p->hardirq_disable_event = 0;
1109 p->softirqs_enabled = 1;
1110 p->softirq_enable_ip = _THIS_IP_;
1111 p->softirq_enable_event = 0;
1112 p->softirq_disable_ip = 0;
1113 p->softirq_disable_event = 0;
1114 p->hardirq_context = 0;
1115 p->softirq_context = 0;
1116 #endif
1117 p->pagefault_disabled = 0;
1118 #ifdef CONFIG_LOCKDEP
1119 p->lockdep_depth = 0; /* no locks held yet */
1120 p->curr_chain_key = 0;
1121 p->lockdep_recursion = 0;
1122 #endif
1124 #ifdef CONFIG_DEBUG_MUTEXES
1125 p->blocked_on = NULL; /* not blocked yet */
1126 #endif
1127 if (unlikely(current->ptrace))
1128 ptrace_fork(p, clone_flags);
1130 /* Perform scheduler related setup. Assign this task to a CPU. */
1131 sched_fork(p, clone_flags);
1133 if ((retval = audit_alloc(p)))
1134 goto bad_fork_cleanup_policy;
1135 /* copy all the process information */
1136 if ((retval = copy_semundo(clone_flags, p)))
1137 goto bad_fork_cleanup_audit;
1138 if ((retval = copy_files(clone_flags, p)))
1139 goto bad_fork_cleanup_semundo;
1140 if ((retval = copy_fs(clone_flags, p)))
1141 goto bad_fork_cleanup_files;
1142 if ((retval = copy_sighand(clone_flags, p)))
1143 goto bad_fork_cleanup_fs;
1144 if ((retval = copy_signal(clone_flags, p)))
1145 goto bad_fork_cleanup_sighand;
1146 if ((retval = copy_mm(clone_flags, p)))
1147 goto bad_fork_cleanup_signal;
1148 if ((retval = copy_namespaces(clone_flags, p)))
1149 goto bad_fork_cleanup_mm;
1150 if ((retval = copy_io(clone_flags, p)))
1151 goto bad_fork_cleanup_namespaces;
1152 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1153 if (retval)
1154 goto bad_fork_cleanup_io;
1155 #ifdef CONFIG_DEBUG_PREEMPT
1156 atomic_set(&p->lock_count, 0);
1157 #endif
1159 if (pid != &init_struct_pid) {
1160 retval = -ENOMEM;
1161 pid = alloc_pid(p->nsproxy->pid_ns);
1162 if (!pid)
1163 goto bad_fork_cleanup_io;
1165 if (clone_flags & CLONE_NEWPID) {
1166 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1167 if (retval < 0)
1168 goto bad_fork_free_pid;
1172 ftrace_graph_init_task(p);
1174 p->pid = pid_nr(pid);
1175 p->tgid = p->pid;
1176 if (clone_flags & CLONE_THREAD)
1177 p->tgid = current->tgid;
1179 if (current->nsproxy != p->nsproxy) {
1180 retval = ns_cgroup_clone(p, pid);
1181 if (retval)
1182 goto bad_fork_free_graph;
1185 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1187 * Clear TID on mm_release()?
1189 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1190 #ifdef CONFIG_FUTEX
1191 p->robust_list = NULL;
1192 #ifdef CONFIG_COMPAT
1193 p->compat_robust_list = NULL;
1194 #endif
1195 INIT_LIST_HEAD(&p->pi_state_list);
1196 p->pi_state_cache = NULL;
1197 p->futex_wakeup = NULL;
1198 #endif
1200 * sigaltstack should be cleared when sharing the same VM
1202 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1203 p->sas_ss_sp = p->sas_ss_size = 0;
1206 * Syscall tracing should be turned off in the child regardless
1207 * of CLONE_PTRACE.
1209 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1210 #ifdef TIF_SYSCALL_EMU
1211 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1212 #endif
1213 clear_all_latency_tracing(p);
1215 /* ok, now we should be set up.. */
1216 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1217 p->pdeath_signal = 0;
1218 p->exit_state = 0;
1221 * Ok, make it visible to the rest of the system.
1222 * We dont wake it up yet.
1224 p->group_leader = p;
1225 INIT_LIST_HEAD(&p->thread_group);
1227 /* Now that the task is set up, run cgroup callbacks if
1228 * necessary. We need to run them before the task is visible
1229 * on the tasklist. */
1230 cgroup_fork_callbacks(p);
1231 cgroup_callbacks_done = 1;
1233 /* Need tasklist lock for parent etc handling! */
1234 write_lock_irq(&tasklist_lock);
1237 * The task hasn't been attached yet, so its cpus_allowed mask will
1238 * not be changed, nor will its assigned CPU.
1240 * The cpus_allowed mask of the parent may have changed after it was
1241 * copied first time - so re-copy it here, then check the child's CPU
1242 * to ensure it is on a valid CPU (and if not, just force it back to
1243 * parent's CPU). This avoids alot of nasty races.
1245 preempt_disable();
1246 p->cpus_allowed = current->cpus_allowed;
1247 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1248 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1249 !cpu_online(task_cpu(p))))
1250 set_task_cpu(p, smp_processor_id());
1251 preempt_enable();
1253 /* CLONE_PARENT re-uses the old parent */
1254 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1255 p->real_parent = current->real_parent;
1256 p->parent_exec_id = current->parent_exec_id;
1257 } else {
1258 p->real_parent = current;
1259 p->parent_exec_id = current->self_exec_id;
1262 spin_lock(&current->sighand->siglock);
1265 * Process group and session signals need to be delivered to just the
1266 * parent before the fork or both the parent and the child after the
1267 * fork. Restart if a signal comes in before we add the new process to
1268 * it's process group.
1269 * A fatal signal pending means that current will exit, so the new
1270 * thread can't slip out of an OOM kill (or normal SIGKILL).
1272 recalc_sigpending();
1273 if (signal_pending(current)) {
1274 spin_unlock(&current->sighand->siglock);
1275 write_unlock_irq(&tasklist_lock);
1276 retval = -ERESTARTNOINTR;
1277 goto bad_fork_free_graph;
1280 if (clone_flags & CLONE_THREAD) {
1281 p->group_leader = current->group_leader;
1282 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1285 if (likely(p->pid)) {
1286 list_add_tail(&p->sibling, &p->real_parent->children);
1287 tracehook_finish_clone(p, clone_flags, trace);
1289 if (thread_group_leader(p)) {
1290 if (clone_flags & CLONE_NEWPID)
1291 p->nsproxy->pid_ns->child_reaper = p;
1293 p->signal->leader_pid = pid;
1294 tty_kref_put(p->signal->tty);
1295 p->signal->tty = tty_kref_get(current->signal->tty);
1296 set_task_pgrp(p, task_pgrp_nr(current));
1297 set_task_session(p, task_session_nr(current));
1298 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1299 attach_pid(p, PIDTYPE_SID, task_session(current));
1300 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1301 preempt_disable();
1302 __get_cpu_var(process_counts)++;
1303 preempt_enable();
1305 attach_pid(p, PIDTYPE_PID, pid);
1306 nr_threads++;
1309 total_forks++;
1310 spin_unlock(&current->sighand->siglock);
1311 write_unlock_irq(&tasklist_lock);
1312 proc_fork_connector(p);
1313 cgroup_post_fork(p);
1314 return p;
1316 bad_fork_free_graph:
1317 ftrace_graph_exit_task(p);
1318 bad_fork_free_pid:
1319 if (pid != &init_struct_pid)
1320 free_pid(pid);
1321 bad_fork_cleanup_io:
1322 put_io_context(p->io_context);
1323 bad_fork_cleanup_namespaces:
1324 exit_task_namespaces(p);
1325 bad_fork_cleanup_mm:
1326 if (p->mm)
1327 mmput(p->mm);
1328 bad_fork_cleanup_signal:
1329 cleanup_signal(p);
1330 bad_fork_cleanup_sighand:
1331 __cleanup_sighand(p->sighand);
1332 bad_fork_cleanup_fs:
1333 exit_fs(p); /* blocking */
1334 bad_fork_cleanup_files:
1335 exit_files(p); /* blocking */
1336 bad_fork_cleanup_semundo:
1337 exit_sem(p);
1338 bad_fork_cleanup_audit:
1339 audit_free(p);
1340 bad_fork_cleanup_policy:
1341 #ifdef CONFIG_NUMA
1342 mpol_put(p->mempolicy);
1343 bad_fork_cleanup_cgroup:
1344 #endif
1345 cgroup_exit(p, cgroup_callbacks_done);
1346 delayacct_tsk_free(p);
1347 if (p->binfmt)
1348 module_put(p->binfmt->module);
1349 bad_fork_cleanup_put_domain:
1350 module_put(task_thread_info(p)->exec_domain->module);
1351 bad_fork_cleanup_count:
1352 atomic_dec(&p->cred->user->processes);
1353 put_cred(p->real_cred);
1354 put_cred(p->cred);
1355 bad_fork_free:
1356 free_task(p);
1357 fork_out:
1358 return ERR_PTR(retval);
1361 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1363 memset(regs, 0, sizeof(struct pt_regs));
1364 return regs;
1367 struct task_struct * __cpuinit fork_idle(int cpu)
1369 struct task_struct *task;
1370 struct pt_regs regs;
1372 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1373 &init_struct_pid, 0);
1374 if (!IS_ERR(task))
1375 init_idle(task, cpu);
1377 return task;
1381 * Ok, this is the main fork-routine.
1383 * It copies the process, and if successful kick-starts
1384 * it and waits for it to finish using the VM if required.
1386 long do_fork(unsigned long clone_flags,
1387 unsigned long stack_start,
1388 struct pt_regs *regs,
1389 unsigned long stack_size,
1390 int __user *parent_tidptr,
1391 int __user *child_tidptr)
1393 struct task_struct *p;
1394 int trace = 0;
1395 long nr;
1398 * Do some preliminary argument and permissions checking before we
1399 * actually start allocating stuff
1401 if (clone_flags & CLONE_NEWUSER) {
1402 if (clone_flags & CLONE_THREAD)
1403 return -EINVAL;
1404 /* hopefully this check will go away when userns support is
1405 * complete
1407 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1408 !capable(CAP_SETGID))
1409 return -EPERM;
1413 * We hope to recycle these flags after 2.6.26
1415 if (unlikely(clone_flags & CLONE_STOPPED)) {
1416 static int __read_mostly count = 100;
1418 if (count > 0 && printk_ratelimit()) {
1419 char comm[TASK_COMM_LEN];
1421 count--;
1422 printk(KERN_INFO "fork(): process `%s' used deprecated "
1423 "clone flags 0x%lx\n",
1424 get_task_comm(comm, current),
1425 clone_flags & CLONE_STOPPED);
1430 * When called from kernel_thread, don't do user tracing stuff.
1432 if (likely(user_mode(regs)))
1433 trace = tracehook_prepare_clone(clone_flags);
1435 p = copy_process(clone_flags, stack_start, regs, stack_size,
1436 child_tidptr, NULL, trace);
1438 * Do this prior waking up the new thread - the thread pointer
1439 * might get invalid after that point, if the thread exits quickly.
1441 if (!IS_ERR(p)) {
1442 struct completion vfork;
1444 trace_sched_process_fork(current, p);
1446 nr = task_pid_vnr(p);
1448 if (clone_flags & CLONE_PARENT_SETTID)
1449 put_user(nr, parent_tidptr);
1451 if (clone_flags & CLONE_VFORK) {
1452 p->vfork_done = &vfork;
1453 init_completion(&vfork);
1456 audit_finish_fork(p);
1457 tracehook_report_clone(trace, regs, clone_flags, nr, p);
1460 * We set PF_STARTING at creation in case tracing wants to
1461 * use this to distinguish a fully live task from one that
1462 * hasn't gotten to tracehook_report_clone() yet. Now we
1463 * clear it and set the child going.
1465 p->flags &= ~PF_STARTING;
1467 if (unlikely(clone_flags & CLONE_STOPPED)) {
1469 * We'll start up with an immediate SIGSTOP.
1471 sigaddset(&p->pending.signal, SIGSTOP);
1472 set_tsk_thread_flag(p, TIF_SIGPENDING);
1473 __set_task_state(p, TASK_STOPPED);
1474 } else {
1475 wake_up_new_task(p, clone_flags);
1478 tracehook_report_clone_complete(trace, regs,
1479 clone_flags, nr, p);
1481 if (clone_flags & CLONE_VFORK) {
1482 freezer_do_not_count();
1483 wait_for_completion(&vfork);
1484 freezer_count();
1485 tracehook_report_vfork_done(p, nr);
1487 } else {
1488 nr = PTR_ERR(p);
1490 return nr;
1493 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1494 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1495 #endif
1497 static void sighand_ctor(void *data)
1499 struct sighand_struct *sighand = data;
1501 spin_lock_init(&sighand->siglock);
1502 init_waitqueue_head(&sighand->signalfd_wqh);
1505 void __init proc_caches_init(void)
1507 sighand_cachep = kmem_cache_create("sighand_cache",
1508 sizeof(struct sighand_struct), 0,
1509 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1510 SLAB_NOTRACK, sighand_ctor);
1511 signal_cachep = kmem_cache_create("signal_cache",
1512 sizeof(struct signal_struct), 0,
1513 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1514 files_cachep = kmem_cache_create("files_cache",
1515 sizeof(struct files_struct), 0,
1516 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1517 fs_cachep = kmem_cache_create("fs_cache",
1518 sizeof(struct fs_struct), 0,
1519 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1520 mm_cachep = kmem_cache_create("mm_struct",
1521 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1522 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1523 mmap_init();
1527 * Check constraints on flags passed to the unshare system call and
1528 * force unsharing of additional process context as appropriate.
1530 static void check_unshare_flags(unsigned long *flags_ptr)
1533 * If unsharing a thread from a thread group, must also
1534 * unshare vm.
1536 if (*flags_ptr & CLONE_THREAD)
1537 *flags_ptr |= CLONE_VM;
1540 * If unsharing vm, must also unshare signal handlers.
1542 if (*flags_ptr & CLONE_VM)
1543 *flags_ptr |= CLONE_SIGHAND;
1546 * If unsharing signal handlers and the task was created
1547 * using CLONE_THREAD, then must unshare the thread
1549 if ((*flags_ptr & CLONE_SIGHAND) &&
1550 (atomic_read(&current->signal->count) > 1))
1551 *flags_ptr |= CLONE_THREAD;
1554 * If unsharing namespace, must also unshare filesystem information.
1556 if (*flags_ptr & CLONE_NEWNS)
1557 *flags_ptr |= CLONE_FS;
1561 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1563 static int unshare_thread(unsigned long unshare_flags)
1565 if (unshare_flags & CLONE_THREAD)
1566 return -EINVAL;
1568 return 0;
1572 * Unshare the filesystem structure if it is being shared
1574 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1576 struct fs_struct *fs = current->fs;
1578 if (!(unshare_flags & CLONE_FS) || !fs)
1579 return 0;
1581 /* don't need lock here; in the worst case we'll do useless copy */
1582 if (fs->users == 1)
1583 return 0;
1585 *new_fsp = copy_fs_struct(fs);
1586 if (!*new_fsp)
1587 return -ENOMEM;
1589 return 0;
1593 * Unsharing of sighand is not supported yet
1595 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1597 struct sighand_struct *sigh = current->sighand;
1599 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1600 return -EINVAL;
1601 else
1602 return 0;
1606 * Unshare vm if it is being shared
1608 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1610 struct mm_struct *mm = current->mm;
1612 if ((unshare_flags & CLONE_VM) &&
1613 (mm && atomic_read(&mm->mm_users) > 1)) {
1614 return -EINVAL;
1617 return 0;
1621 * Unshare file descriptor table if it is being shared
1623 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1625 struct files_struct *fd = current->files;
1626 int error = 0;
1628 if ((unshare_flags & CLONE_FILES) &&
1629 (fd && atomic_read(&fd->count) > 1)) {
1630 *new_fdp = dup_fd(fd, &error);
1631 if (!*new_fdp)
1632 return error;
1635 return 0;
1639 * unshare allows a process to 'unshare' part of the process
1640 * context which was originally shared using clone. copy_*
1641 * functions used by do_fork() cannot be used here directly
1642 * because they modify an inactive task_struct that is being
1643 * constructed. Here we are modifying the current, active,
1644 * task_struct.
1646 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1648 int err = 0;
1649 struct fs_struct *fs, *new_fs = NULL;
1650 struct sighand_struct *new_sigh = NULL;
1651 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1652 struct files_struct *fd, *new_fd = NULL;
1653 struct nsproxy *new_nsproxy = NULL;
1654 int do_sysvsem = 0;
1656 check_unshare_flags(&unshare_flags);
1658 /* Return -EINVAL for all unsupported flags */
1659 err = -EINVAL;
1660 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1661 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1662 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1663 goto bad_unshare_out;
1666 * CLONE_NEWIPC must also detach from the undolist: after switching
1667 * to a new ipc namespace, the semaphore arrays from the old
1668 * namespace are unreachable.
1670 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1671 do_sysvsem = 1;
1672 if ((err = unshare_thread(unshare_flags)))
1673 goto bad_unshare_out;
1674 if ((err = unshare_fs(unshare_flags, &new_fs)))
1675 goto bad_unshare_cleanup_thread;
1676 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1677 goto bad_unshare_cleanup_fs;
1678 if ((err = unshare_vm(unshare_flags, &new_mm)))
1679 goto bad_unshare_cleanup_sigh;
1680 if ((err = unshare_fd(unshare_flags, &new_fd)))
1681 goto bad_unshare_cleanup_vm;
1682 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1683 new_fs)))
1684 goto bad_unshare_cleanup_fd;
1686 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1687 if (do_sysvsem) {
1689 * CLONE_SYSVSEM is equivalent to sys_exit().
1691 exit_sem(current);
1694 if (new_nsproxy) {
1695 switch_task_namespaces(current, new_nsproxy);
1696 new_nsproxy = NULL;
1699 task_lock(current);
1701 if (new_fs) {
1702 fs = current->fs;
1703 write_lock(&fs->lock);
1704 current->fs = new_fs;
1705 if (--fs->users)
1706 new_fs = NULL;
1707 else
1708 new_fs = fs;
1709 write_unlock(&fs->lock);
1712 if (new_mm) {
1713 mm = current->mm;
1714 active_mm = current->active_mm;
1715 current->mm = new_mm;
1716 current->active_mm = new_mm;
1717 activate_mm(active_mm, new_mm);
1718 new_mm = mm;
1721 if (new_fd) {
1722 fd = current->files;
1723 current->files = new_fd;
1724 new_fd = fd;
1727 task_unlock(current);
1730 if (new_nsproxy)
1731 put_nsproxy(new_nsproxy);
1733 bad_unshare_cleanup_fd:
1734 if (new_fd)
1735 put_files_struct(new_fd);
1737 bad_unshare_cleanup_vm:
1738 if (new_mm)
1739 mmput(new_mm);
1741 bad_unshare_cleanup_sigh:
1742 if (new_sigh)
1743 if (atomic_dec_and_test(&new_sigh->count))
1744 kmem_cache_free(sighand_cachep, new_sigh);
1746 bad_unshare_cleanup_fs:
1747 if (new_fs)
1748 free_fs_struct(new_fs);
1750 bad_unshare_cleanup_thread:
1751 bad_unshare_out:
1752 return err;
1756 * Helper to unshare the files of the current task.
1757 * We don't want to expose copy_files internals to
1758 * the exec layer of the kernel.
1761 int unshare_files(struct files_struct **displaced)
1763 struct task_struct *task = current;
1764 struct files_struct *copy = NULL;
1765 int error;
1767 error = unshare_fd(CLONE_FILES, &copy);
1768 if (error || !copy) {
1769 *displaced = NULL;
1770 return error;
1772 *displaced = task->files;
1773 task_lock(task);
1774 task->files = copy;
1775 task_unlock(task);
1776 return 0;
1779 static int mmdrop_complete(void)
1781 struct list_head *head;
1782 int ret = 0;
1784 head = &get_cpu_var(delayed_drop_list);
1785 while (!list_empty(head)) {
1786 struct mm_struct *mm = list_entry(head->next,
1787 struct mm_struct, delayed_drop);
1788 list_del(&mm->delayed_drop);
1789 put_cpu_var(delayed_drop_list);
1791 __mmdrop(mm);
1792 ret = 1;
1794 head = &get_cpu_var(delayed_drop_list);
1796 put_cpu_var(delayed_drop_list);
1798 return ret;
1802 * We dont want to do complex work from the scheduler, thus
1803 * we delay the work to a per-CPU worker thread:
1805 void __mmdrop_delayed(struct mm_struct *mm)
1807 struct task_struct *desched_task;
1808 struct list_head *head;
1810 head = &get_cpu_var(delayed_drop_list);
1811 list_add_tail(&mm->delayed_drop, head);
1812 desched_task = __get_cpu_var(desched_task);
1813 if (desched_task)
1814 wake_up_process(desched_task);
1815 put_cpu_var(delayed_drop_list);
1818 static void takeover_delayed_drop(int hotcpu)
1820 struct list_head *head = &per_cpu(delayed_drop_list, hotcpu);
1822 while (!list_empty(head)) {
1823 struct mm_struct *mm = list_entry(head->next,
1824 struct mm_struct, delayed_drop);
1826 list_del(&mm->delayed_drop);
1827 __mmdrop_delayed(mm);
1831 static int desched_thread(void * __bind_cpu)
1833 set_user_nice(current, -10);
1834 current->flags |= PF_NOFREEZE | PF_SOFTIRQ;
1836 set_current_state(TASK_INTERRUPTIBLE);
1838 while (!kthread_should_stop()) {
1840 if (mmdrop_complete())
1841 continue;
1842 schedule();
1845 * This must be called from time to time on ia64, and is a
1846 * no-op on other archs. Used to be in cpu_idle(), but with
1847 * the new -rt semantics it can't stay there.
1849 check_pgt_cache();
1851 set_current_state(TASK_INTERRUPTIBLE);
1853 __set_current_state(TASK_RUNNING);
1854 return 0;
1857 static int __devinit cpu_callback(struct notifier_block *nfb,
1858 unsigned long action,
1859 void *hcpu)
1861 int hotcpu = (unsigned long)hcpu;
1862 struct task_struct *p;
1864 switch (action) {
1865 case CPU_UP_PREPARE:
1867 BUG_ON(per_cpu(desched_task, hotcpu));
1868 INIT_LIST_HEAD(&per_cpu(delayed_drop_list, hotcpu));
1869 p = kthread_create(desched_thread, hcpu, "desched/%d", hotcpu);
1870 if (IS_ERR(p)) {
1871 printk("desched_thread for %i failed\n", hotcpu);
1872 return NOTIFY_BAD;
1874 per_cpu(desched_task, hotcpu) = p;
1875 kthread_bind(p, hotcpu);
1876 break;
1877 case CPU_ONLINE:
1879 wake_up_process(per_cpu(desched_task, hotcpu));
1880 break;
1881 #ifdef CONFIG_HOTPLUG_CPU
1882 case CPU_UP_CANCELED:
1884 /* Unbind so it can run. Fall thru. */
1885 kthread_bind(per_cpu(desched_task, hotcpu), smp_processor_id());
1886 case CPU_DEAD:
1888 p = per_cpu(desched_task, hotcpu);
1889 per_cpu(desched_task, hotcpu) = NULL;
1890 kthread_stop(p);
1891 takeover_delayed_drop(hotcpu);
1892 takeover_tasklets(hotcpu);
1893 break;
1894 #endif /* CONFIG_HOTPLUG_CPU */
1896 return NOTIFY_OK;
1899 static struct notifier_block __devinitdata cpu_nfb = {
1900 .notifier_call = cpu_callback
1903 __init int spawn_desched_task(void)
1905 void *cpu = (void *)(long)smp_processor_id();
1907 cpu_callback(&cpu_nfb, CPU_UP_PREPARE, cpu);
1908 cpu_callback(&cpu_nfb, CPU_ONLINE, cpu);
1909 register_cpu_notifier(&cpu_nfb);
1910 return 0;