4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/kallsyms.h>
38 #include <linux/delay.h>
39 #include <linux/tick.h>
40 #include <linux/kallsyms.h>
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/div64.h>
45 #include <asm/timex.h>
48 u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
50 EXPORT_SYMBOL(jiffies_64
);
53 * per-CPU timer vector definitions:
55 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
56 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
57 #define TVN_SIZE (1 << TVN_BITS)
58 #define TVR_SIZE (1 << TVR_BITS)
59 #define TVN_MASK (TVN_SIZE - 1)
60 #define TVR_MASK (TVR_SIZE - 1)
63 struct list_head vec
[TVN_SIZE
];
67 struct list_head vec
[TVR_SIZE
];
72 struct timer_list
*running_timer
;
73 wait_queue_head_t wait_for_running_timer
;
74 unsigned long timer_jiffies
;
80 } ____cacheline_aligned
;
82 struct tvec_base boot_tvec_bases
;
83 EXPORT_SYMBOL(boot_tvec_bases
);
84 static DEFINE_PER_CPU(struct tvec_base
*, tvec_bases
) = &boot_tvec_bases
;
87 * Note that all tvec_bases are 2 byte aligned and lower bit of
88 * base in timer_list is guaranteed to be zero. Use the LSB for
89 * the new flag to indicate whether the timer is deferrable
91 #define TBASE_DEFERRABLE_FLAG (0x1)
93 /* Functions below help us manage 'deferrable' flag */
94 static inline unsigned int tbase_get_deferrable(struct tvec_base
*base
)
96 return ((unsigned int)(unsigned long)base
& TBASE_DEFERRABLE_FLAG
);
99 static inline struct tvec_base
*tbase_get_base(struct tvec_base
*base
)
101 return ((struct tvec_base
*)((unsigned long)base
& ~TBASE_DEFERRABLE_FLAG
));
104 static inline void timer_set_deferrable(struct timer_list
*timer
)
106 timer
->base
= ((struct tvec_base
*)((unsigned long)(timer
->base
) |
107 TBASE_DEFERRABLE_FLAG
));
111 timer_set_base(struct timer_list
*timer
, struct tvec_base
*new_base
)
113 timer
->base
= (struct tvec_base
*)((unsigned long)(new_base
) |
114 tbase_get_deferrable(timer
->base
));
117 static unsigned long round_jiffies_common(unsigned long j
, int cpu
,
121 unsigned long original
= j
;
124 * We don't want all cpus firing their timers at once hitting the
125 * same lock or cachelines, so we skew each extra cpu with an extra
126 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
128 * The skew is done by adding 3*cpunr, then round, then subtract this
129 * extra offset again.
136 * If the target jiffie is just after a whole second (which can happen
137 * due to delays of the timer irq, long irq off times etc etc) then
138 * we should round down to the whole second, not up. Use 1/4th second
139 * as cutoff for this rounding as an extreme upper bound for this.
140 * But never round down if @force_up is set.
142 if (rem
< HZ
/4 && !force_up
) /* round down */
147 /* now that we have rounded, subtract the extra skew again */
150 if (j
<= jiffies
) /* rounding ate our timeout entirely; */
156 * __round_jiffies - function to round jiffies to a full second
157 * @j: the time in (absolute) jiffies that should be rounded
158 * @cpu: the processor number on which the timeout will happen
160 * __round_jiffies() rounds an absolute time in the future (in jiffies)
161 * up or down to (approximately) full seconds. This is useful for timers
162 * for which the exact time they fire does not matter too much, as long as
163 * they fire approximately every X seconds.
165 * By rounding these timers to whole seconds, all such timers will fire
166 * at the same time, rather than at various times spread out. The goal
167 * of this is to have the CPU wake up less, which saves power.
169 * The exact rounding is skewed for each processor to avoid all
170 * processors firing at the exact same time, which could lead
171 * to lock contention or spurious cache line bouncing.
173 * The return value is the rounded version of the @j parameter.
175 unsigned long __round_jiffies(unsigned long j
, int cpu
)
177 return round_jiffies_common(j
, cpu
, false);
179 EXPORT_SYMBOL_GPL(__round_jiffies
);
182 * __round_jiffies_relative - function to round jiffies to a full second
183 * @j: the time in (relative) jiffies that should be rounded
184 * @cpu: the processor number on which the timeout will happen
186 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
187 * up or down to (approximately) full seconds. This is useful for timers
188 * for which the exact time they fire does not matter too much, as long as
189 * they fire approximately every X seconds.
191 * By rounding these timers to whole seconds, all such timers will fire
192 * at the same time, rather than at various times spread out. The goal
193 * of this is to have the CPU wake up less, which saves power.
195 * The exact rounding is skewed for each processor to avoid all
196 * processors firing at the exact same time, which could lead
197 * to lock contention or spurious cache line bouncing.
199 * The return value is the rounded version of the @j parameter.
201 unsigned long __round_jiffies_relative(unsigned long j
, int cpu
)
203 unsigned long j0
= jiffies
;
205 /* Use j0 because jiffies might change while we run */
206 return round_jiffies_common(j
+ j0
, cpu
, false) - j0
;
208 EXPORT_SYMBOL_GPL(__round_jiffies_relative
);
211 * round_jiffies - function to round jiffies to a full second
212 * @j: the time in (absolute) jiffies that should be rounded
214 * round_jiffies() rounds an absolute time in the future (in jiffies)
215 * up or down to (approximately) full seconds. This is useful for timers
216 * for which the exact time they fire does not matter too much, as long as
217 * they fire approximately every X seconds.
219 * By rounding these timers to whole seconds, all such timers will fire
220 * at the same time, rather than at various times spread out. The goal
221 * of this is to have the CPU wake up less, which saves power.
223 * The return value is the rounded version of the @j parameter.
225 unsigned long round_jiffies(unsigned long j
)
227 return round_jiffies_common(j
, raw_smp_processor_id(), false);
229 EXPORT_SYMBOL_GPL(round_jiffies
);
232 * round_jiffies_relative - function to round jiffies to a full second
233 * @j: the time in (relative) jiffies that should be rounded
235 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
236 * up or down to (approximately) full seconds. This is useful for timers
237 * for which the exact time they fire does not matter too much, as long as
238 * they fire approximately every X seconds.
240 * By rounding these timers to whole seconds, all such timers will fire
241 * at the same time, rather than at various times spread out. The goal
242 * of this is to have the CPU wake up less, which saves power.
244 * The return value is the rounded version of the @j parameter.
246 unsigned long round_jiffies_relative(unsigned long j
)
248 return __round_jiffies_relative(j
, raw_smp_processor_id());
250 EXPORT_SYMBOL_GPL(round_jiffies_relative
);
253 * __round_jiffies_up - function to round jiffies up to a full second
254 * @j: the time in (absolute) jiffies that should be rounded
255 * @cpu: the processor number on which the timeout will happen
257 * This is the same as __round_jiffies() except that it will never
258 * round down. This is useful for timeouts for which the exact time
259 * of firing does not matter too much, as long as they don't fire too
262 unsigned long __round_jiffies_up(unsigned long j
, int cpu
)
264 return round_jiffies_common(j
, cpu
, true);
266 EXPORT_SYMBOL_GPL(__round_jiffies_up
);
269 * __round_jiffies_up_relative - function to round jiffies up to a full second
270 * @j: the time in (relative) jiffies that should be rounded
271 * @cpu: the processor number on which the timeout will happen
273 * This is the same as __round_jiffies_relative() except that it will never
274 * round down. This is useful for timeouts for which the exact time
275 * of firing does not matter too much, as long as they don't fire too
278 unsigned long __round_jiffies_up_relative(unsigned long j
, int cpu
)
280 unsigned long j0
= jiffies
;
282 /* Use j0 because jiffies might change while we run */
283 return round_jiffies_common(j
+ j0
, cpu
, true) - j0
;
285 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative
);
288 * round_jiffies_up - function to round jiffies up to a full second
289 * @j: the time in (absolute) jiffies that should be rounded
291 * This is the same as round_jiffies() except that it will never
292 * round down. This is useful for timeouts for which the exact time
293 * of firing does not matter too much, as long as they don't fire too
296 unsigned long round_jiffies_up(unsigned long j
)
298 return round_jiffies_common(j
, raw_smp_processor_id(), true);
300 EXPORT_SYMBOL_GPL(round_jiffies_up
);
303 * round_jiffies_up_relative - function to round jiffies up to a full second
304 * @j: the time in (relative) jiffies that should be rounded
306 * This is the same as round_jiffies_relative() except that it will never
307 * round down. This is useful for timeouts for which the exact time
308 * of firing does not matter too much, as long as they don't fire too
311 unsigned long round_jiffies_up_relative(unsigned long j
)
313 return __round_jiffies_up_relative(j
, raw_smp_processor_id());
315 EXPORT_SYMBOL_GPL(round_jiffies_up_relative
);
318 static inline void set_running_timer(struct tvec_base
*base
,
319 struct timer_list
*timer
)
321 base
->running_timer
= timer
;
324 static void internal_add_timer(struct tvec_base
*base
, struct timer_list
*timer
)
326 unsigned long expires
= timer
->expires
;
327 unsigned long idx
= expires
- base
->timer_jiffies
;
328 struct list_head
*vec
;
330 if (idx
< TVR_SIZE
) {
331 int i
= expires
& TVR_MASK
;
332 vec
= base
->tv1
.vec
+ i
;
333 } else if (idx
< 1 << (TVR_BITS
+ TVN_BITS
)) {
334 int i
= (expires
>> TVR_BITS
) & TVN_MASK
;
335 vec
= base
->tv2
.vec
+ i
;
336 } else if (idx
< 1 << (TVR_BITS
+ 2 * TVN_BITS
)) {
337 int i
= (expires
>> (TVR_BITS
+ TVN_BITS
)) & TVN_MASK
;
338 vec
= base
->tv3
.vec
+ i
;
339 } else if (idx
< 1 << (TVR_BITS
+ 3 * TVN_BITS
)) {
340 int i
= (expires
>> (TVR_BITS
+ 2 * TVN_BITS
)) & TVN_MASK
;
341 vec
= base
->tv4
.vec
+ i
;
342 } else if ((signed long) idx
< 0) {
344 * Can happen if you add a timer with expires == jiffies,
345 * or you set a timer to go off in the past
347 vec
= base
->tv1
.vec
+ (base
->timer_jiffies
& TVR_MASK
);
350 /* If the timeout is larger than 0xffffffff on 64-bit
351 * architectures then we use the maximum timeout:
353 if (idx
> 0xffffffffUL
) {
355 expires
= idx
+ base
->timer_jiffies
;
357 i
= (expires
>> (TVR_BITS
+ 3 * TVN_BITS
)) & TVN_MASK
;
358 vec
= base
->tv5
.vec
+ i
;
363 list_add_tail(&timer
->entry
, vec
);
366 #ifdef CONFIG_TIMER_STATS
367 void __timer_stats_timer_set_start_info(struct timer_list
*timer
, void *addr
)
369 if (timer
->start_site
)
372 timer
->start_site
= addr
;
373 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
374 timer
->start_pid
= current
->pid
;
377 static void timer_stats_account_timer(struct timer_list
*timer
)
379 unsigned int flag
= 0;
381 if (unlikely(tbase_get_deferrable(timer
->base
)))
382 flag
|= TIMER_STATS_FLAG_DEFERRABLE
;
384 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
385 timer
->function
, timer
->start_comm
, flag
);
389 static void timer_stats_account_timer(struct timer_list
*timer
) {}
392 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
394 static struct debug_obj_descr timer_debug_descr
;
397 * fixup_init is called when:
398 * - an active object is initialized
400 static int timer_fixup_init(void *addr
, enum debug_obj_state state
)
402 struct timer_list
*timer
= addr
;
405 case ODEBUG_STATE_ACTIVE
:
406 del_timer_sync(timer
);
407 debug_object_init(timer
, &timer_debug_descr
);
415 * fixup_activate is called when:
416 * - an active object is activated
417 * - an unknown object is activated (might be a statically initialized object)
419 static int timer_fixup_activate(void *addr
, enum debug_obj_state state
)
421 struct timer_list
*timer
= addr
;
425 case ODEBUG_STATE_NOTAVAILABLE
:
427 * This is not really a fixup. The timer was
428 * statically initialized. We just make sure that it
429 * is tracked in the object tracker.
431 if (timer
->entry
.next
== NULL
&&
432 timer
->entry
.prev
== TIMER_ENTRY_STATIC
) {
433 debug_object_init(timer
, &timer_debug_descr
);
434 debug_object_activate(timer
, &timer_debug_descr
);
441 case ODEBUG_STATE_ACTIVE
:
450 * fixup_free is called when:
451 * - an active object is freed
453 static int timer_fixup_free(void *addr
, enum debug_obj_state state
)
455 struct timer_list
*timer
= addr
;
458 case ODEBUG_STATE_ACTIVE
:
459 del_timer_sync(timer
);
460 debug_object_free(timer
, &timer_debug_descr
);
467 static struct debug_obj_descr timer_debug_descr
= {
468 .name
= "timer_list",
469 .fixup_init
= timer_fixup_init
,
470 .fixup_activate
= timer_fixup_activate
,
471 .fixup_free
= timer_fixup_free
,
474 static inline void debug_timer_init(struct timer_list
*timer
)
476 debug_object_init(timer
, &timer_debug_descr
);
479 static inline void debug_timer_activate(struct timer_list
*timer
)
481 debug_object_activate(timer
, &timer_debug_descr
);
484 static inline void debug_timer_deactivate(struct timer_list
*timer
)
486 debug_object_deactivate(timer
, &timer_debug_descr
);
489 static inline void debug_timer_free(struct timer_list
*timer
)
491 debug_object_free(timer
, &timer_debug_descr
);
494 static void __init_timer(struct timer_list
*timer
,
496 struct lock_class_key
*key
);
498 void init_timer_on_stack_key(struct timer_list
*timer
,
500 struct lock_class_key
*key
)
502 debug_object_init_on_stack(timer
, &timer_debug_descr
);
503 __init_timer(timer
, name
, key
);
505 EXPORT_SYMBOL_GPL(init_timer_on_stack_key
);
507 void destroy_timer_on_stack(struct timer_list
*timer
)
509 debug_object_free(timer
, &timer_debug_descr
);
511 EXPORT_SYMBOL_GPL(destroy_timer_on_stack
);
514 static inline void debug_timer_init(struct timer_list
*timer
) { }
515 static inline void debug_timer_activate(struct timer_list
*timer
) { }
516 static inline void debug_timer_deactivate(struct timer_list
*timer
) { }
519 static void __init_timer(struct timer_list
*timer
,
521 struct lock_class_key
*key
)
523 timer
->entry
.next
= NULL
;
524 timer
->base
= __raw_get_cpu_var(tvec_bases
);
525 #ifdef CONFIG_TIMER_STATS
526 timer
->start_site
= NULL
;
527 timer
->start_pid
= -1;
528 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
530 lockdep_init_map(&timer
->lockdep_map
, name
, key
, 0);
534 * init_timer - initialize a timer.
535 * @timer: the timer to be initialized
537 * init_timer() must be done to a timer prior calling *any* of the
538 * other timer functions.
540 void init_timer_key(struct timer_list
*timer
,
542 struct lock_class_key
*key
)
544 debug_timer_init(timer
);
545 __init_timer(timer
, name
, key
);
547 EXPORT_SYMBOL(init_timer_key
);
549 void init_timer_deferrable_key(struct timer_list
*timer
,
551 struct lock_class_key
*key
)
553 init_timer_key(timer
, name
, key
);
554 timer_set_deferrable(timer
);
556 EXPORT_SYMBOL(init_timer_deferrable_key
);
558 static inline void detach_timer(struct timer_list
*timer
,
561 struct list_head
*entry
= &timer
->entry
;
563 debug_timer_deactivate(timer
);
565 __list_del(entry
->prev
, entry
->next
);
568 entry
->prev
= LIST_POISON2
;
572 * We are using hashed locking: holding per_cpu(tvec_bases).lock
573 * means that all timers which are tied to this base via timer->base are
574 * locked, and the base itself is locked too.
576 * So __run_timers/migrate_timers can safely modify all timers which could
577 * be found on ->tvX lists.
579 * When the timer's base is locked, and the timer removed from list, it is
580 * possible to set timer->base = NULL and drop the lock: the timer remains
583 static struct tvec_base
*lock_timer_base(struct timer_list
*timer
,
584 unsigned long *flags
)
585 __acquires(timer
->base
->lock
)
587 struct tvec_base
*base
;
590 struct tvec_base
*prelock_base
= timer
->base
;
591 base
= tbase_get_base(prelock_base
);
592 if (likely(base
!= NULL
)) {
593 spin_lock_irqsave(&base
->lock
, *flags
);
594 if (likely(prelock_base
== timer
->base
))
596 /* The timer has migrated to another CPU */
597 spin_unlock_irqrestore(&base
->lock
, *flags
);
604 __mod_timer(struct timer_list
*timer
, unsigned long expires
, bool pending_only
)
606 struct tvec_base
*base
, *new_base
;
610 timer_stats_timer_set_start_info(timer
);
611 BUG_ON(!timer
->function
);
613 base
= lock_timer_base(timer
, &flags
);
615 if (timer_pending(timer
)) {
616 detach_timer(timer
, 0);
623 debug_timer_activate(timer
);
625 cpu
= raw_smp_processor_id();
626 new_base
= per_cpu(tvec_bases
, cpu
);
628 if (base
!= new_base
) {
630 * We are trying to schedule the timer on the local CPU.
631 * However we can't change timer's base while it is running,
632 * otherwise del_timer_sync() can't detect that the timer's
633 * handler yet has not finished. This also guarantees that
634 * the timer is serialized wrt itself.
636 if (likely(base
->running_timer
!= timer
)) {
637 /* See the comment in lock_timer_base() */
638 timer_set_base(timer
, NULL
);
639 spin_unlock(&base
->lock
);
641 spin_lock(&base
->lock
);
642 timer_set_base(timer
, base
);
646 timer
->expires
= expires
;
647 internal_add_timer(base
, timer
);
650 spin_unlock_irqrestore(&base
->lock
, flags
);
656 * mod_timer_pending - modify a pending timer's timeout
657 * @timer: the pending timer to be modified
658 * @expires: new timeout in jiffies
660 * mod_timer_pending() is the same for pending timers as mod_timer(),
661 * but will not re-activate and modify already deleted timers.
663 * It is useful for unserialized use of timers.
665 int mod_timer_pending(struct timer_list
*timer
, unsigned long expires
)
667 return __mod_timer(timer
, expires
, true);
669 EXPORT_SYMBOL(mod_timer_pending
);
672 * mod_timer - modify a timer's timeout
673 * @timer: the timer to be modified
674 * @expires: new timeout in jiffies
676 * mod_timer() is a more efficient way to update the expire field of an
677 * active timer (if the timer is inactive it will be activated)
679 * mod_timer(timer, expires) is equivalent to:
681 * del_timer(timer); timer->expires = expires; add_timer(timer);
683 * Note that if there are multiple unserialized concurrent users of the
684 * same timer, then mod_timer() is the only safe way to modify the timeout,
685 * since add_timer() cannot modify an already running timer.
687 * The function returns whether it has modified a pending timer or not.
688 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
689 * active timer returns 1.)
691 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
694 * This is a common optimization triggered by the
695 * networking code - if the timer is re-modified
696 * to be the same thing then just return:
698 if (timer
->expires
== expires
&& timer_pending(timer
))
701 return __mod_timer(timer
, expires
, false);
703 EXPORT_SYMBOL(mod_timer
);
706 * add_timer - start a timer
707 * @timer: the timer to be added
709 * The kernel will do a ->function(->data) callback from the
710 * timer interrupt at the ->expires point in the future. The
711 * current time is 'jiffies'.
713 * The timer's ->expires, ->function (and if the handler uses it, ->data)
714 * fields must be set prior calling this function.
716 * Timers with an ->expires field in the past will be executed in the next
719 void add_timer(struct timer_list
*timer
)
721 BUG_ON(timer_pending(timer
));
722 mod_timer(timer
, timer
->expires
);
724 EXPORT_SYMBOL(add_timer
);
727 * add_timer_on - start a timer on a particular CPU
728 * @timer: the timer to be added
729 * @cpu: the CPU to start it on
731 * This is not very scalable on SMP. Double adds are not possible.
733 void add_timer_on(struct timer_list
*timer
, int cpu
)
735 struct tvec_base
*base
= per_cpu(tvec_bases
, cpu
);
738 timer_stats_timer_set_start_info(timer
);
739 BUG_ON(timer_pending(timer
) || !timer
->function
);
740 spin_lock_irqsave(&base
->lock
, flags
);
741 timer_set_base(timer
, base
);
742 debug_timer_activate(timer
);
743 internal_add_timer(base
, timer
);
745 * Check whether the other CPU is idle and needs to be
746 * triggered to reevaluate the timer wheel when nohz is
747 * active. We are protected against the other CPU fiddling
748 * with the timer by holding the timer base lock. This also
749 * makes sure that a CPU on the way to idle can not evaluate
752 wake_up_idle_cpu(cpu
);
753 spin_unlock_irqrestore(&base
->lock
, flags
);
757 * Wait for a running timer
759 void wait_for_running_timer(struct timer_list
*timer
)
761 struct tvec_base
*base
= timer
->base
;
763 if (base
->running_timer
== timer
)
764 wait_event(base
->wait_for_running_timer
,
765 base
->running_timer
!= timer
);
769 * del_timer - deactive a timer.
770 * @timer: the timer to be deactivated
772 * del_timer() deactivates a timer - this works on both active and inactive
775 * The function returns whether it has deactivated a pending timer or not.
776 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
777 * active timer returns 1.)
779 int del_timer(struct timer_list
*timer
)
781 struct tvec_base
*base
;
785 timer_stats_timer_clear_start_info(timer
);
786 if (timer_pending(timer
)) {
787 base
= lock_timer_base(timer
, &flags
);
788 if (timer_pending(timer
)) {
789 detach_timer(timer
, 1);
792 spin_unlock_irqrestore(&base
->lock
, flags
);
797 EXPORT_SYMBOL(del_timer
);
799 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_SOFTIRQS)
801 * This function checks whether a timer is active and not running on any
802 * CPU. Upon successful (ret >= 0) exit the timer is not queued and the
803 * handler is not running on any CPU.
805 * It must not be called from interrupt contexts.
807 int timer_pending_sync(struct timer_list
*timer
)
809 struct tvec_base
*base
;
813 base
= lock_timer_base(timer
, &flags
);
815 if (base
->running_timer
== timer
)
819 if (timer_pending(timer
))
822 spin_unlock_irqrestore(&base
->lock
, flags
);
828 * try_to_del_timer_sync - Try to deactivate a timer
829 * @timer: timer do del
831 * This function tries to deactivate a timer. Upon successful (ret >= 0)
832 * exit the timer is not queued and the handler is not running on any CPU.
834 * It must not be called from interrupt contexts.
836 int try_to_del_timer_sync(struct timer_list
*timer
)
838 struct tvec_base
*base
;
842 base
= lock_timer_base(timer
, &flags
);
844 if (base
->running_timer
== timer
)
848 if (timer_pending(timer
)) {
849 detach_timer(timer
, 1);
853 spin_unlock_irqrestore(&base
->lock
, flags
);
857 EXPORT_SYMBOL(try_to_del_timer_sync
);
860 * del_timer_sync - deactivate a timer and wait for the handler to finish.
861 * @timer: the timer to be deactivated
863 * This function only differs from del_timer() on SMP: besides deactivating
864 * the timer it also makes sure the handler has finished executing on other
867 * Synchronization rules: Callers must prevent restarting of the timer,
868 * otherwise this function is meaningless. It must not be called from
869 * interrupt contexts. The caller must not hold locks which would prevent
870 * completion of the timer's handler. The timer's handler must not call
871 * add_timer_on(). Upon exit the timer is not queued and the handler is
872 * not running on any CPU.
874 * The function returns whether it has deactivated a pending timer or not.
876 int del_timer_sync(struct timer_list
*timer
)
878 #ifdef CONFIG_LOCKDEP
881 local_irq_save(flags
);
882 lock_map_acquire(&timer
->lockdep_map
);
883 lock_map_release(&timer
->lockdep_map
);
884 local_irq_restore(flags
);
888 int ret
= try_to_del_timer_sync(timer
);
891 wait_for_running_timer(timer
);
894 EXPORT_SYMBOL(del_timer_sync
);
897 static int cascade(struct tvec_base
*base
, struct tvec
*tv
, int index
)
899 /* cascade all the timers from tv up one level */
900 struct timer_list
*timer
, *tmp
;
901 struct list_head tv_list
;
903 list_replace_init(tv
->vec
+ index
, &tv_list
);
906 * We are removing _all_ timers from the list, so we
907 * don't have to detach them individually.
909 list_for_each_entry_safe(timer
, tmp
, &tv_list
, entry
) {
910 BUG_ON(tbase_get_base(timer
->base
) != base
);
911 internal_add_timer(base
, timer
);
917 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
920 * __run_timers - run all expired timers (if any) on this CPU.
921 * @base: the timer vector to be processed.
923 * This function cascades all vectors and executes all expired timer
926 static inline void __run_timers(struct tvec_base
*base
)
928 struct timer_list
*timer
;
930 spin_lock_irq(&base
->lock
);
931 while (time_after_eq(jiffies
, base
->timer_jiffies
)) {
932 struct list_head work_list
;
933 struct list_head
*head
= &work_list
;
934 int index
= base
->timer_jiffies
& TVR_MASK
;
936 if (softirq_need_resched()) {
937 spin_unlock_irq(&base
->lock
);
938 wake_up(&base
->wait_for_running_timer
);
939 cond_resched_softirq_context();
941 spin_lock_irq(&base
->lock
);
943 * We can simply continue after preemption, nobody
944 * else can touch timer_jiffies so 'index' is still
945 * valid. Any new jiffy will be taken care of in
954 (!cascade(base
, &base
->tv2
, INDEX(0))) &&
955 (!cascade(base
, &base
->tv3
, INDEX(1))) &&
956 !cascade(base
, &base
->tv4
, INDEX(2)))
957 cascade(base
, &base
->tv5
, INDEX(3));
958 ++base
->timer_jiffies
;
959 list_replace_init(base
->tv1
.vec
+ index
, &work_list
);
960 while (!list_empty(head
)) {
961 void (*fn
)(unsigned long);
964 timer
= list_first_entry(head
, struct timer_list
,entry
);
965 fn
= timer
->function
;
968 timer_stats_account_timer(timer
);
970 set_running_timer(base
, timer
);
971 detach_timer(timer
, 1);
973 spin_unlock_irq(&base
->lock
);
975 int preempt_count
= preempt_count();
977 #ifdef CONFIG_LOCKDEP
979 * It is permissible to free the timer from
980 * inside the function that is called from
981 * it, this we need to take into account for
982 * lockdep too. To avoid bogus "held lock
983 * freed" warnings as well as problems when
984 * looking into timer->lockdep_map, make a
985 * copy and use that here.
987 struct lockdep_map lockdep_map
=
991 * Couple the lock chain with the lock chain at
992 * del_timer_sync() by acquiring the lock_map
993 * around the fn() call here and in
996 lock_map_acquire(&lockdep_map
);
1000 lock_map_release(&lockdep_map
);
1002 if (preempt_count
!= preempt_count()) {
1003 print_symbol("BUG: unbalanced timer-handler preempt count in %s!\n", (unsigned long) fn
);
1004 printk("entered with %08x, exited with %08x.\n", preempt_count
, preempt_count());
1005 preempt_count() = preempt_count
;
1008 set_running_timer(base
, NULL
);
1009 cond_resched_softirq_context();
1010 spin_lock_irq(&base
->lock
);
1013 wake_up(&base
->wait_for_running_timer
);
1014 spin_unlock_irq(&base
->lock
);
1019 * Find out when the next timer event is due to happen. This
1020 * is used on S/390 to stop all activity when a cpus is idle.
1021 * This functions needs to be called disabled.
1023 static unsigned long __next_timer_interrupt(struct tvec_base
*base
)
1025 unsigned long timer_jiffies
= base
->timer_jiffies
;
1026 unsigned long expires
= timer_jiffies
+ NEXT_TIMER_MAX_DELTA
;
1027 int index
, slot
, array
, found
= 0;
1028 struct timer_list
*nte
;
1029 struct tvec
*varray
[4];
1031 /* Look for timer events in tv1. */
1032 index
= slot
= timer_jiffies
& TVR_MASK
;
1034 list_for_each_entry(nte
, base
->tv1
.vec
+ slot
, entry
) {
1035 if (tbase_get_deferrable(nte
->base
))
1039 expires
= nte
->expires
;
1040 /* Look at the cascade bucket(s)? */
1041 if (!index
|| slot
< index
)
1045 slot
= (slot
+ 1) & TVR_MASK
;
1046 } while (slot
!= index
);
1049 /* Calculate the next cascade event */
1051 timer_jiffies
+= TVR_SIZE
- index
;
1052 timer_jiffies
>>= TVR_BITS
;
1054 /* Check tv2-tv5. */
1055 varray
[0] = &base
->tv2
;
1056 varray
[1] = &base
->tv3
;
1057 varray
[2] = &base
->tv4
;
1058 varray
[3] = &base
->tv5
;
1060 for (array
= 0; array
< 4; array
++) {
1061 struct tvec
*varp
= varray
[array
];
1063 index
= slot
= timer_jiffies
& TVN_MASK
;
1065 list_for_each_entry(nte
, varp
->vec
+ slot
, entry
) {
1067 if (time_before(nte
->expires
, expires
))
1068 expires
= nte
->expires
;
1071 * Do we still search for the first timer or are
1072 * we looking up the cascade buckets ?
1075 /* Look at the cascade bucket(s)? */
1076 if (!index
|| slot
< index
)
1080 slot
= (slot
+ 1) & TVN_MASK
;
1081 } while (slot
!= index
);
1084 timer_jiffies
+= TVN_SIZE
- index
;
1085 timer_jiffies
>>= TVN_BITS
;
1091 * Check, if the next hrtimer event is before the next timer wheel
1094 static unsigned long cmp_next_hrtimer_event(unsigned long now
,
1095 unsigned long expires
)
1097 ktime_t hr_delta
= hrtimer_get_next_event();
1098 struct timespec tsdelta
;
1099 unsigned long delta
;
1101 if (hr_delta
.tv64
== KTIME_MAX
)
1105 * Expired timer available, let it expire in the next tick
1107 if (hr_delta
.tv64
<= 0)
1110 tsdelta
= ktime_to_timespec(hr_delta
);
1111 delta
= timespec_to_jiffies(&tsdelta
);
1114 * Limit the delta to the max value, which is checked in
1115 * tick_nohz_stop_sched_tick():
1117 if (delta
> NEXT_TIMER_MAX_DELTA
)
1118 delta
= NEXT_TIMER_MAX_DELTA
;
1121 * Take rounding errors in to account and make sure, that it
1122 * expires in the next tick. Otherwise we go into an endless
1123 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1129 if (time_before(now
, expires
))
1135 * get_next_timer_interrupt - return the jiffy of the next pending timer
1136 * @now: current time (in jiffies)
1138 unsigned long get_next_timer_interrupt(unsigned long now
)
1140 struct tvec_base
*base
= __get_cpu_var(tvec_bases
);
1141 unsigned long expires
;
1143 #ifdef CONFIG_PREEMPT_RT
1145 * On PREEMPT_RT we cannot sleep here. If the trylock does not
1146 * succeed then we return the worst-case 'expires in 1 tick'
1149 if (spin_trylock(&base
->lock
)) {
1150 expires
= __next_timer_interrupt(base
);
1151 spin_unlock(&base
->lock
);
1155 spin_lock(&base
->lock
);
1156 expires
= __next_timer_interrupt(base
);
1157 spin_unlock(&base
->lock
);
1160 if (time_before_eq(expires
, now
))
1163 return cmp_next_hrtimer_event(now
, expires
);
1168 * Called from the timer interrupt handler to charge one tick to the current
1169 * process. user_tick is 1 if the tick is user time, 0 for system.
1171 void update_process_times(int user_tick
)
1173 struct task_struct
*p
= current
;
1174 int cpu
= smp_processor_id();
1176 /* Note: this timer irq context must be accounted for as well. */
1177 account_process_tick(p
, user_tick
);
1180 if (rcu_pending(cpu
))
1181 rcu_check_callbacks(cpu
, user_tick
);
1182 run_posix_cpu_timers(p
);
1186 * This function runs timers and the timer-tq in bottom half context.
1188 static void run_timer_softirq(struct softirq_action
*h
)
1190 struct tvec_base
*base
= per_cpu(tvec_bases
, raw_smp_processor_id());
1193 hrtimer_run_pending();
1195 if (time_after_eq(jiffies
, base
->timer_jiffies
))
1200 * Called by the local, per-CPU timer interrupt on SMP.
1202 void run_local_timers(void)
1204 hrtimer_run_queues();
1205 raise_softirq(TIMER_SOFTIRQ
);
1210 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1211 * without sampling the sequence number in xtime_lock.
1212 * jiffies is defined in the linker script...
1215 void do_timer(unsigned long ticks
)
1217 jiffies_64
+= ticks
;
1222 #ifdef __ARCH_WANT_SYS_ALARM
1225 * For backwards compatibility? This can be done in libc so Alpha
1226 * and all newer ports shouldn't need it.
1228 SYSCALL_DEFINE1(alarm
, unsigned int, seconds
)
1230 return alarm_setitimer(seconds
);
1238 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1239 * should be moved into arch/i386 instead?
1243 * sys_getpid - return the thread group id of the current process
1245 * Note, despite the name, this returns the tgid not the pid. The tgid and
1246 * the pid are identical unless CLONE_THREAD was specified on clone() in
1247 * which case the tgid is the same in all threads of the same group.
1249 * This is SMP safe as current->tgid does not change.
1251 SYSCALL_DEFINE0(getpid
)
1253 return task_tgid_vnr(current
);
1257 * Accessing ->real_parent is not SMP-safe, it could
1258 * change from under us. However, we can use a stale
1259 * value of ->real_parent under rcu_read_lock(), see
1260 * release_task()->call_rcu(delayed_put_task_struct).
1262 SYSCALL_DEFINE0(getppid
)
1267 pid
= task_tgid_vnr(current
->real_parent
);
1273 SYSCALL_DEFINE0(getuid
)
1275 /* Only we change this so SMP safe */
1276 return current_uid();
1279 SYSCALL_DEFINE0(geteuid
)
1281 /* Only we change this so SMP safe */
1282 return current_euid();
1285 SYSCALL_DEFINE0(getgid
)
1287 /* Only we change this so SMP safe */
1288 return current_gid();
1291 SYSCALL_DEFINE0(getegid
)
1293 /* Only we change this so SMP safe */
1294 return current_egid();
1299 static void process_timeout(unsigned long __data
)
1301 wake_up_process((struct task_struct
*)__data
);
1305 * schedule_timeout - sleep until timeout
1306 * @timeout: timeout value in jiffies
1308 * Make the current task sleep until @timeout jiffies have
1309 * elapsed. The routine will return immediately unless
1310 * the current task state has been set (see set_current_state()).
1312 * You can set the task state as follows -
1314 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1315 * pass before the routine returns. The routine will return 0
1317 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1318 * delivered to the current task. In this case the remaining time
1319 * in jiffies will be returned, or 0 if the timer expired in time
1321 * The current task state is guaranteed to be TASK_RUNNING when this
1324 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1325 * the CPU away without a bound on the timeout. In this case the return
1326 * value will be %MAX_SCHEDULE_TIMEOUT.
1328 * In all cases the return value is guaranteed to be non-negative.
1330 signed long __sched
schedule_timeout(signed long timeout
)
1332 struct timer_list timer
;
1333 unsigned long expire
;
1337 case MAX_SCHEDULE_TIMEOUT
:
1339 * These two special cases are useful to be comfortable
1340 * in the caller. Nothing more. We could take
1341 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1342 * but I' d like to return a valid offset (>=0) to allow
1343 * the caller to do everything it want with the retval.
1349 * Another bit of PARANOID. Note that the retval will be
1350 * 0 since no piece of kernel is supposed to do a check
1351 * for a negative retval of schedule_timeout() (since it
1352 * should never happens anyway). You just have the printk()
1353 * that will tell you if something is gone wrong and where.
1356 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1357 "value %lx\n", timeout
);
1359 current
->state
= TASK_RUNNING
;
1364 expire
= timeout
+ jiffies
;
1366 setup_timer_on_stack(&timer
, process_timeout
, (unsigned long)current
);
1367 __mod_timer(&timer
, expire
, false);
1369 del_singleshot_timer_sync(&timer
);
1371 /* Remove the timer from the object tracker */
1372 destroy_timer_on_stack(&timer
);
1374 timeout
= expire
- jiffies
;
1377 return timeout
< 0 ? 0 : timeout
;
1379 EXPORT_SYMBOL(schedule_timeout
);
1382 * We can use __set_current_state() here because schedule_timeout() calls
1383 * schedule() unconditionally.
1385 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1387 __set_current_state(TASK_INTERRUPTIBLE
);
1388 return schedule_timeout(timeout
);
1390 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1392 signed long __sched
schedule_timeout_killable(signed long timeout
)
1394 __set_current_state(TASK_KILLABLE
);
1395 return schedule_timeout(timeout
);
1397 EXPORT_SYMBOL(schedule_timeout_killable
);
1399 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1401 __set_current_state(TASK_UNINTERRUPTIBLE
);
1402 return schedule_timeout(timeout
);
1404 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1406 /* Thread ID - the internal kernel "pid" */
1407 SYSCALL_DEFINE0(gettid
)
1409 return task_pid_vnr(current
);
1413 * do_sysinfo - fill in sysinfo struct
1414 * @info: pointer to buffer to fill
1416 int do_sysinfo(struct sysinfo
*info
)
1418 unsigned long mem_total
, sav_total
;
1419 unsigned int mem_unit
, bitcount
;
1422 memset(info
, 0, sizeof(struct sysinfo
));
1425 monotonic_to_bootbased(&tp
);
1426 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
1428 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
1430 info
->procs
= nr_threads
;
1436 * If the sum of all the available memory (i.e. ram + swap)
1437 * is less than can be stored in a 32 bit unsigned long then
1438 * we can be binary compatible with 2.2.x kernels. If not,
1439 * well, in that case 2.2.x was broken anyways...
1441 * -Erik Andersen <andersee@debian.org>
1444 mem_total
= info
->totalram
+ info
->totalswap
;
1445 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
1448 mem_unit
= info
->mem_unit
;
1449 while (mem_unit
> 1) {
1452 sav_total
= mem_total
;
1454 if (mem_total
< sav_total
)
1459 * If mem_total did not overflow, multiply all memory values by
1460 * info->mem_unit and set it to 1. This leaves things compatible
1461 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1466 info
->totalram
<<= bitcount
;
1467 info
->freeram
<<= bitcount
;
1468 info
->sharedram
<<= bitcount
;
1469 info
->bufferram
<<= bitcount
;
1470 info
->totalswap
<<= bitcount
;
1471 info
->freeswap
<<= bitcount
;
1472 info
->totalhigh
<<= bitcount
;
1473 info
->freehigh
<<= bitcount
;
1479 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
1485 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
1491 static int __cpuinit
init_timers_cpu(int cpu
)
1494 struct tvec_base
*base
;
1495 static char __cpuinitdata tvec_base_done
[NR_CPUS
];
1497 if (!tvec_base_done
[cpu
]) {
1498 static char boot_done
;
1502 * The APs use this path later in boot
1504 base
= kmalloc_node(sizeof(*base
),
1505 GFP_KERNEL
| __GFP_ZERO
,
1510 /* Make sure that tvec_base is 2 byte aligned */
1511 if (tbase_get_deferrable(base
)) {
1516 per_cpu(tvec_bases
, cpu
) = base
;
1519 * This is for the boot CPU - we use compile-time
1520 * static initialisation because per-cpu memory isn't
1521 * ready yet and because the memory allocators are not
1522 * initialised either.
1525 base
= &boot_tvec_bases
;
1527 tvec_base_done
[cpu
] = 1;
1529 base
= per_cpu(tvec_bases
, cpu
);
1532 spin_lock_init(&base
->lock
);
1533 init_waitqueue_head(&base
->wait_for_running_timer
);
1535 for (j
= 0; j
< TVN_SIZE
; j
++) {
1536 INIT_LIST_HEAD(base
->tv5
.vec
+ j
);
1537 INIT_LIST_HEAD(base
->tv4
.vec
+ j
);
1538 INIT_LIST_HEAD(base
->tv3
.vec
+ j
);
1539 INIT_LIST_HEAD(base
->tv2
.vec
+ j
);
1541 for (j
= 0; j
< TVR_SIZE
; j
++)
1542 INIT_LIST_HEAD(base
->tv1
.vec
+ j
);
1544 base
->timer_jiffies
= jiffies
;
1548 #ifdef CONFIG_HOTPLUG_CPU
1549 static void migrate_timer_list(struct tvec_base
*new_base
, struct list_head
*head
)
1551 struct timer_list
*timer
;
1553 while (!list_empty(head
)) {
1554 timer
= list_first_entry(head
, struct timer_list
, entry
);
1555 detach_timer(timer
, 0);
1556 timer_set_base(timer
, new_base
);
1557 internal_add_timer(new_base
, timer
);
1561 static void __cpuinit
migrate_timers(int cpu
)
1563 struct tvec_base
*old_base
;
1564 struct tvec_base
*new_base
;
1565 unsigned long flags
;
1568 BUG_ON(cpu_online(cpu
));
1569 old_base
= per_cpu(tvec_bases
, cpu
);
1570 new_base
= get_cpu_var(tvec_bases
);
1572 * The caller is globally serialized and nobody else
1573 * takes two locks at once, deadlock is not possible.
1575 local_irq_save(flags
);
1576 while (!spin_trylock(&new_base
->lock
))
1578 while (!spin_trylock(&old_base
->lock
))
1581 BUG_ON(old_base
->running_timer
);
1583 for (i
= 0; i
< TVR_SIZE
; i
++)
1584 migrate_timer_list(new_base
, old_base
->tv1
.vec
+ i
);
1585 for (i
= 0; i
< TVN_SIZE
; i
++) {
1586 migrate_timer_list(new_base
, old_base
->tv2
.vec
+ i
);
1587 migrate_timer_list(new_base
, old_base
->tv3
.vec
+ i
);
1588 migrate_timer_list(new_base
, old_base
->tv4
.vec
+ i
);
1589 migrate_timer_list(new_base
, old_base
->tv5
.vec
+ i
);
1592 spin_unlock(&old_base
->lock
);
1593 spin_unlock(&new_base
->lock
);
1594 local_irq_restore(flags
);
1596 put_cpu_var(tvec_bases
);
1598 #endif /* CONFIG_HOTPLUG_CPU */
1600 static int __cpuinit
timer_cpu_notify(struct notifier_block
*self
,
1601 unsigned long action
, void *hcpu
)
1603 long cpu
= (long)hcpu
;
1605 case CPU_UP_PREPARE
:
1606 case CPU_UP_PREPARE_FROZEN
:
1607 if (init_timers_cpu(cpu
) < 0)
1610 #ifdef CONFIG_HOTPLUG_CPU
1612 case CPU_DEAD_FROZEN
:
1613 migrate_timers(cpu
);
1622 static struct notifier_block __cpuinitdata timers_nb
= {
1623 .notifier_call
= timer_cpu_notify
,
1627 void __init
init_timers(void)
1629 int err
= timer_cpu_notify(&timers_nb
, (unsigned long)CPU_UP_PREPARE
,
1630 (void *)(long)smp_processor_id());
1634 BUG_ON(err
== NOTIFY_BAD
);
1635 register_cpu_notifier(&timers_nb
);
1636 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
);
1640 * msleep - sleep safely even with waitqueue interruptions
1641 * @msecs: Time in milliseconds to sleep for
1643 void msleep(unsigned int msecs
)
1645 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1648 timeout
= schedule_timeout_uninterruptible(timeout
);
1651 EXPORT_SYMBOL(msleep
);
1654 * msleep_interruptible - sleep waiting for signals
1655 * @msecs: Time in milliseconds to sleep for
1657 unsigned long msleep_interruptible(unsigned int msecs
)
1659 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1661 while (timeout
&& !signal_pending(current
))
1662 timeout
= schedule_timeout_interruptible(timeout
);
1663 return jiffies_to_msecs(timeout
);
1666 EXPORT_SYMBOL(msleep_interruptible
);