Luca's patch ported
[cbs-scheduler.git] / kernel / timer.c
blob2c07eacdfd0c93d61173b8b4bcab2dda577410eb
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/kallsyms.h>
38 #include <linux/delay.h>
39 #include <linux/tick.h>
40 #include <linux/kallsyms.h>
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/div64.h>
45 #include <asm/timex.h>
46 #include <asm/io.h>
48 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
50 EXPORT_SYMBOL(jiffies_64);
53 * per-CPU timer vector definitions:
55 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
56 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
57 #define TVN_SIZE (1 << TVN_BITS)
58 #define TVR_SIZE (1 << TVR_BITS)
59 #define TVN_MASK (TVN_SIZE - 1)
60 #define TVR_MASK (TVR_SIZE - 1)
62 struct tvec {
63 struct list_head vec[TVN_SIZE];
66 struct tvec_root {
67 struct list_head vec[TVR_SIZE];
70 struct tvec_base {
71 spinlock_t lock;
72 struct timer_list *running_timer;
73 wait_queue_head_t wait_for_running_timer;
74 unsigned long timer_jiffies;
75 struct tvec_root tv1;
76 struct tvec tv2;
77 struct tvec tv3;
78 struct tvec tv4;
79 struct tvec tv5;
80 } ____cacheline_aligned;
82 struct tvec_base boot_tvec_bases;
83 EXPORT_SYMBOL(boot_tvec_bases);
84 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
87 * Note that all tvec_bases are 2 byte aligned and lower bit of
88 * base in timer_list is guaranteed to be zero. Use the LSB for
89 * the new flag to indicate whether the timer is deferrable
91 #define TBASE_DEFERRABLE_FLAG (0x1)
93 /* Functions below help us manage 'deferrable' flag */
94 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
96 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
99 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
101 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
104 static inline void timer_set_deferrable(struct timer_list *timer)
106 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
107 TBASE_DEFERRABLE_FLAG));
110 static inline void
111 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
113 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
114 tbase_get_deferrable(timer->base));
117 static unsigned long round_jiffies_common(unsigned long j, int cpu,
118 bool force_up)
120 int rem;
121 unsigned long original = j;
124 * We don't want all cpus firing their timers at once hitting the
125 * same lock or cachelines, so we skew each extra cpu with an extra
126 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
127 * already did this.
128 * The skew is done by adding 3*cpunr, then round, then subtract this
129 * extra offset again.
131 j += cpu * 3;
133 rem = j % HZ;
136 * If the target jiffie is just after a whole second (which can happen
137 * due to delays of the timer irq, long irq off times etc etc) then
138 * we should round down to the whole second, not up. Use 1/4th second
139 * as cutoff for this rounding as an extreme upper bound for this.
140 * But never round down if @force_up is set.
142 if (rem < HZ/4 && !force_up) /* round down */
143 j = j - rem;
144 else /* round up */
145 j = j - rem + HZ;
147 /* now that we have rounded, subtract the extra skew again */
148 j -= cpu * 3;
150 if (j <= jiffies) /* rounding ate our timeout entirely; */
151 return original;
152 return j;
156 * __round_jiffies - function to round jiffies to a full second
157 * @j: the time in (absolute) jiffies that should be rounded
158 * @cpu: the processor number on which the timeout will happen
160 * __round_jiffies() rounds an absolute time in the future (in jiffies)
161 * up or down to (approximately) full seconds. This is useful for timers
162 * for which the exact time they fire does not matter too much, as long as
163 * they fire approximately every X seconds.
165 * By rounding these timers to whole seconds, all such timers will fire
166 * at the same time, rather than at various times spread out. The goal
167 * of this is to have the CPU wake up less, which saves power.
169 * The exact rounding is skewed for each processor to avoid all
170 * processors firing at the exact same time, which could lead
171 * to lock contention or spurious cache line bouncing.
173 * The return value is the rounded version of the @j parameter.
175 unsigned long __round_jiffies(unsigned long j, int cpu)
177 return round_jiffies_common(j, cpu, false);
179 EXPORT_SYMBOL_GPL(__round_jiffies);
182 * __round_jiffies_relative - function to round jiffies to a full second
183 * @j: the time in (relative) jiffies that should be rounded
184 * @cpu: the processor number on which the timeout will happen
186 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
187 * up or down to (approximately) full seconds. This is useful for timers
188 * for which the exact time they fire does not matter too much, as long as
189 * they fire approximately every X seconds.
191 * By rounding these timers to whole seconds, all such timers will fire
192 * at the same time, rather than at various times spread out. The goal
193 * of this is to have the CPU wake up less, which saves power.
195 * The exact rounding is skewed for each processor to avoid all
196 * processors firing at the exact same time, which could lead
197 * to lock contention or spurious cache line bouncing.
199 * The return value is the rounded version of the @j parameter.
201 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
203 unsigned long j0 = jiffies;
205 /* Use j0 because jiffies might change while we run */
206 return round_jiffies_common(j + j0, cpu, false) - j0;
208 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
211 * round_jiffies - function to round jiffies to a full second
212 * @j: the time in (absolute) jiffies that should be rounded
214 * round_jiffies() rounds an absolute time in the future (in jiffies)
215 * up or down to (approximately) full seconds. This is useful for timers
216 * for which the exact time they fire does not matter too much, as long as
217 * they fire approximately every X seconds.
219 * By rounding these timers to whole seconds, all such timers will fire
220 * at the same time, rather than at various times spread out. The goal
221 * of this is to have the CPU wake up less, which saves power.
223 * The return value is the rounded version of the @j parameter.
225 unsigned long round_jiffies(unsigned long j)
227 return round_jiffies_common(j, raw_smp_processor_id(), false);
229 EXPORT_SYMBOL_GPL(round_jiffies);
232 * round_jiffies_relative - function to round jiffies to a full second
233 * @j: the time in (relative) jiffies that should be rounded
235 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
236 * up or down to (approximately) full seconds. This is useful for timers
237 * for which the exact time they fire does not matter too much, as long as
238 * they fire approximately every X seconds.
240 * By rounding these timers to whole seconds, all such timers will fire
241 * at the same time, rather than at various times spread out. The goal
242 * of this is to have the CPU wake up less, which saves power.
244 * The return value is the rounded version of the @j parameter.
246 unsigned long round_jiffies_relative(unsigned long j)
248 return __round_jiffies_relative(j, raw_smp_processor_id());
250 EXPORT_SYMBOL_GPL(round_jiffies_relative);
253 * __round_jiffies_up - function to round jiffies up to a full second
254 * @j: the time in (absolute) jiffies that should be rounded
255 * @cpu: the processor number on which the timeout will happen
257 * This is the same as __round_jiffies() except that it will never
258 * round down. This is useful for timeouts for which the exact time
259 * of firing does not matter too much, as long as they don't fire too
260 * early.
262 unsigned long __round_jiffies_up(unsigned long j, int cpu)
264 return round_jiffies_common(j, cpu, true);
266 EXPORT_SYMBOL_GPL(__round_jiffies_up);
269 * __round_jiffies_up_relative - function to round jiffies up to a full second
270 * @j: the time in (relative) jiffies that should be rounded
271 * @cpu: the processor number on which the timeout will happen
273 * This is the same as __round_jiffies_relative() except that it will never
274 * round down. This is useful for timeouts for which the exact time
275 * of firing does not matter too much, as long as they don't fire too
276 * early.
278 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
280 unsigned long j0 = jiffies;
282 /* Use j0 because jiffies might change while we run */
283 return round_jiffies_common(j + j0, cpu, true) - j0;
285 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
288 * round_jiffies_up - function to round jiffies up to a full second
289 * @j: the time in (absolute) jiffies that should be rounded
291 * This is the same as round_jiffies() except that it will never
292 * round down. This is useful for timeouts for which the exact time
293 * of firing does not matter too much, as long as they don't fire too
294 * early.
296 unsigned long round_jiffies_up(unsigned long j)
298 return round_jiffies_common(j, raw_smp_processor_id(), true);
300 EXPORT_SYMBOL_GPL(round_jiffies_up);
303 * round_jiffies_up_relative - function to round jiffies up to a full second
304 * @j: the time in (relative) jiffies that should be rounded
306 * This is the same as round_jiffies_relative() except that it will never
307 * round down. This is useful for timeouts for which the exact time
308 * of firing does not matter too much, as long as they don't fire too
309 * early.
311 unsigned long round_jiffies_up_relative(unsigned long j)
313 return __round_jiffies_up_relative(j, raw_smp_processor_id());
315 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
318 static inline void set_running_timer(struct tvec_base *base,
319 struct timer_list *timer)
321 base->running_timer = timer;
324 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
326 unsigned long expires = timer->expires;
327 unsigned long idx = expires - base->timer_jiffies;
328 struct list_head *vec;
330 if (idx < TVR_SIZE) {
331 int i = expires & TVR_MASK;
332 vec = base->tv1.vec + i;
333 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
334 int i = (expires >> TVR_BITS) & TVN_MASK;
335 vec = base->tv2.vec + i;
336 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
337 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
338 vec = base->tv3.vec + i;
339 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
340 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
341 vec = base->tv4.vec + i;
342 } else if ((signed long) idx < 0) {
344 * Can happen if you add a timer with expires == jiffies,
345 * or you set a timer to go off in the past
347 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
348 } else {
349 int i;
350 /* If the timeout is larger than 0xffffffff on 64-bit
351 * architectures then we use the maximum timeout:
353 if (idx > 0xffffffffUL) {
354 idx = 0xffffffffUL;
355 expires = idx + base->timer_jiffies;
357 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
358 vec = base->tv5.vec + i;
361 * Timers are FIFO:
363 list_add_tail(&timer->entry, vec);
366 #ifdef CONFIG_TIMER_STATS
367 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
369 if (timer->start_site)
370 return;
372 timer->start_site = addr;
373 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
374 timer->start_pid = current->pid;
377 static void timer_stats_account_timer(struct timer_list *timer)
379 unsigned int flag = 0;
381 if (unlikely(tbase_get_deferrable(timer->base)))
382 flag |= TIMER_STATS_FLAG_DEFERRABLE;
384 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
385 timer->function, timer->start_comm, flag);
388 #else
389 static void timer_stats_account_timer(struct timer_list *timer) {}
390 #endif
392 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
394 static struct debug_obj_descr timer_debug_descr;
397 * fixup_init is called when:
398 * - an active object is initialized
400 static int timer_fixup_init(void *addr, enum debug_obj_state state)
402 struct timer_list *timer = addr;
404 switch (state) {
405 case ODEBUG_STATE_ACTIVE:
406 del_timer_sync(timer);
407 debug_object_init(timer, &timer_debug_descr);
408 return 1;
409 default:
410 return 0;
415 * fixup_activate is called when:
416 * - an active object is activated
417 * - an unknown object is activated (might be a statically initialized object)
419 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
421 struct timer_list *timer = addr;
423 switch (state) {
425 case ODEBUG_STATE_NOTAVAILABLE:
427 * This is not really a fixup. The timer was
428 * statically initialized. We just make sure that it
429 * is tracked in the object tracker.
431 if (timer->entry.next == NULL &&
432 timer->entry.prev == TIMER_ENTRY_STATIC) {
433 debug_object_init(timer, &timer_debug_descr);
434 debug_object_activate(timer, &timer_debug_descr);
435 return 0;
436 } else {
437 WARN_ON_ONCE(1);
439 return 0;
441 case ODEBUG_STATE_ACTIVE:
442 WARN_ON(1);
444 default:
445 return 0;
450 * fixup_free is called when:
451 * - an active object is freed
453 static int timer_fixup_free(void *addr, enum debug_obj_state state)
455 struct timer_list *timer = addr;
457 switch (state) {
458 case ODEBUG_STATE_ACTIVE:
459 del_timer_sync(timer);
460 debug_object_free(timer, &timer_debug_descr);
461 return 1;
462 default:
463 return 0;
467 static struct debug_obj_descr timer_debug_descr = {
468 .name = "timer_list",
469 .fixup_init = timer_fixup_init,
470 .fixup_activate = timer_fixup_activate,
471 .fixup_free = timer_fixup_free,
474 static inline void debug_timer_init(struct timer_list *timer)
476 debug_object_init(timer, &timer_debug_descr);
479 static inline void debug_timer_activate(struct timer_list *timer)
481 debug_object_activate(timer, &timer_debug_descr);
484 static inline void debug_timer_deactivate(struct timer_list *timer)
486 debug_object_deactivate(timer, &timer_debug_descr);
489 static inline void debug_timer_free(struct timer_list *timer)
491 debug_object_free(timer, &timer_debug_descr);
494 static void __init_timer(struct timer_list *timer,
495 const char *name,
496 struct lock_class_key *key);
498 void init_timer_on_stack_key(struct timer_list *timer,
499 const char *name,
500 struct lock_class_key *key)
502 debug_object_init_on_stack(timer, &timer_debug_descr);
503 __init_timer(timer, name, key);
505 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
507 void destroy_timer_on_stack(struct timer_list *timer)
509 debug_object_free(timer, &timer_debug_descr);
511 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
513 #else
514 static inline void debug_timer_init(struct timer_list *timer) { }
515 static inline void debug_timer_activate(struct timer_list *timer) { }
516 static inline void debug_timer_deactivate(struct timer_list *timer) { }
517 #endif
519 static void __init_timer(struct timer_list *timer,
520 const char *name,
521 struct lock_class_key *key)
523 timer->entry.next = NULL;
524 timer->base = __raw_get_cpu_var(tvec_bases);
525 #ifdef CONFIG_TIMER_STATS
526 timer->start_site = NULL;
527 timer->start_pid = -1;
528 memset(timer->start_comm, 0, TASK_COMM_LEN);
529 #endif
530 lockdep_init_map(&timer->lockdep_map, name, key, 0);
534 * init_timer - initialize a timer.
535 * @timer: the timer to be initialized
537 * init_timer() must be done to a timer prior calling *any* of the
538 * other timer functions.
540 void init_timer_key(struct timer_list *timer,
541 const char *name,
542 struct lock_class_key *key)
544 debug_timer_init(timer);
545 __init_timer(timer, name, key);
547 EXPORT_SYMBOL(init_timer_key);
549 void init_timer_deferrable_key(struct timer_list *timer,
550 const char *name,
551 struct lock_class_key *key)
553 init_timer_key(timer, name, key);
554 timer_set_deferrable(timer);
556 EXPORT_SYMBOL(init_timer_deferrable_key);
558 static inline void detach_timer(struct timer_list *timer,
559 int clear_pending)
561 struct list_head *entry = &timer->entry;
563 debug_timer_deactivate(timer);
565 __list_del(entry->prev, entry->next);
566 if (clear_pending)
567 entry->next = NULL;
568 entry->prev = LIST_POISON2;
572 * We are using hashed locking: holding per_cpu(tvec_bases).lock
573 * means that all timers which are tied to this base via timer->base are
574 * locked, and the base itself is locked too.
576 * So __run_timers/migrate_timers can safely modify all timers which could
577 * be found on ->tvX lists.
579 * When the timer's base is locked, and the timer removed from list, it is
580 * possible to set timer->base = NULL and drop the lock: the timer remains
581 * locked.
583 static struct tvec_base *lock_timer_base(struct timer_list *timer,
584 unsigned long *flags)
585 __acquires(timer->base->lock)
587 struct tvec_base *base;
589 for (;;) {
590 struct tvec_base *prelock_base = timer->base;
591 base = tbase_get_base(prelock_base);
592 if (likely(base != NULL)) {
593 spin_lock_irqsave(&base->lock, *flags);
594 if (likely(prelock_base == timer->base))
595 return base;
596 /* The timer has migrated to another CPU */
597 spin_unlock_irqrestore(&base->lock, *flags);
599 cpu_relax();
603 static inline int
604 __mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
606 struct tvec_base *base, *new_base;
607 unsigned long flags;
608 int cpu, ret = 0;
610 timer_stats_timer_set_start_info(timer);
611 BUG_ON(!timer->function);
613 base = lock_timer_base(timer, &flags);
615 if (timer_pending(timer)) {
616 detach_timer(timer, 0);
617 ret = 1;
618 } else {
619 if (pending_only)
620 goto out_unlock;
623 debug_timer_activate(timer);
625 cpu = raw_smp_processor_id();
626 new_base = per_cpu(tvec_bases, cpu);
628 if (base != new_base) {
630 * We are trying to schedule the timer on the local CPU.
631 * However we can't change timer's base while it is running,
632 * otherwise del_timer_sync() can't detect that the timer's
633 * handler yet has not finished. This also guarantees that
634 * the timer is serialized wrt itself.
636 if (likely(base->running_timer != timer)) {
637 /* See the comment in lock_timer_base() */
638 timer_set_base(timer, NULL);
639 spin_unlock(&base->lock);
640 base = new_base;
641 spin_lock(&base->lock);
642 timer_set_base(timer, base);
646 timer->expires = expires;
647 internal_add_timer(base, timer);
649 out_unlock:
650 spin_unlock_irqrestore(&base->lock, flags);
652 return ret;
656 * mod_timer_pending - modify a pending timer's timeout
657 * @timer: the pending timer to be modified
658 * @expires: new timeout in jiffies
660 * mod_timer_pending() is the same for pending timers as mod_timer(),
661 * but will not re-activate and modify already deleted timers.
663 * It is useful for unserialized use of timers.
665 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
667 return __mod_timer(timer, expires, true);
669 EXPORT_SYMBOL(mod_timer_pending);
672 * mod_timer - modify a timer's timeout
673 * @timer: the timer to be modified
674 * @expires: new timeout in jiffies
676 * mod_timer() is a more efficient way to update the expire field of an
677 * active timer (if the timer is inactive it will be activated)
679 * mod_timer(timer, expires) is equivalent to:
681 * del_timer(timer); timer->expires = expires; add_timer(timer);
683 * Note that if there are multiple unserialized concurrent users of the
684 * same timer, then mod_timer() is the only safe way to modify the timeout,
685 * since add_timer() cannot modify an already running timer.
687 * The function returns whether it has modified a pending timer or not.
688 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
689 * active timer returns 1.)
691 int mod_timer(struct timer_list *timer, unsigned long expires)
694 * This is a common optimization triggered by the
695 * networking code - if the timer is re-modified
696 * to be the same thing then just return:
698 if (timer->expires == expires && timer_pending(timer))
699 return 1;
701 return __mod_timer(timer, expires, false);
703 EXPORT_SYMBOL(mod_timer);
706 * add_timer - start a timer
707 * @timer: the timer to be added
709 * The kernel will do a ->function(->data) callback from the
710 * timer interrupt at the ->expires point in the future. The
711 * current time is 'jiffies'.
713 * The timer's ->expires, ->function (and if the handler uses it, ->data)
714 * fields must be set prior calling this function.
716 * Timers with an ->expires field in the past will be executed in the next
717 * timer tick.
719 void add_timer(struct timer_list *timer)
721 BUG_ON(timer_pending(timer));
722 mod_timer(timer, timer->expires);
724 EXPORT_SYMBOL(add_timer);
727 * add_timer_on - start a timer on a particular CPU
728 * @timer: the timer to be added
729 * @cpu: the CPU to start it on
731 * This is not very scalable on SMP. Double adds are not possible.
733 void add_timer_on(struct timer_list *timer, int cpu)
735 struct tvec_base *base = per_cpu(tvec_bases, cpu);
736 unsigned long flags;
738 timer_stats_timer_set_start_info(timer);
739 BUG_ON(timer_pending(timer) || !timer->function);
740 spin_lock_irqsave(&base->lock, flags);
741 timer_set_base(timer, base);
742 debug_timer_activate(timer);
743 internal_add_timer(base, timer);
745 * Check whether the other CPU is idle and needs to be
746 * triggered to reevaluate the timer wheel when nohz is
747 * active. We are protected against the other CPU fiddling
748 * with the timer by holding the timer base lock. This also
749 * makes sure that a CPU on the way to idle can not evaluate
750 * the timer wheel.
752 wake_up_idle_cpu(cpu);
753 spin_unlock_irqrestore(&base->lock, flags);
757 * Wait for a running timer
759 void wait_for_running_timer(struct timer_list *timer)
761 struct tvec_base *base = timer->base;
763 if (base->running_timer == timer)
764 wait_event(base->wait_for_running_timer,
765 base->running_timer != timer);
769 * del_timer - deactive a timer.
770 * @timer: the timer to be deactivated
772 * del_timer() deactivates a timer - this works on both active and inactive
773 * timers.
775 * The function returns whether it has deactivated a pending timer or not.
776 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
777 * active timer returns 1.)
779 int del_timer(struct timer_list *timer)
781 struct tvec_base *base;
782 unsigned long flags;
783 int ret = 0;
785 timer_stats_timer_clear_start_info(timer);
786 if (timer_pending(timer)) {
787 base = lock_timer_base(timer, &flags);
788 if (timer_pending(timer)) {
789 detach_timer(timer, 1);
790 ret = 1;
792 spin_unlock_irqrestore(&base->lock, flags);
795 return ret;
797 EXPORT_SYMBOL(del_timer);
799 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_SOFTIRQS)
801 * This function checks whether a timer is active and not running on any
802 * CPU. Upon successful (ret >= 0) exit the timer is not queued and the
803 * handler is not running on any CPU.
805 * It must not be called from interrupt contexts.
807 int timer_pending_sync(struct timer_list *timer)
809 struct tvec_base *base;
810 unsigned long flags;
811 int ret = -1;
813 base = lock_timer_base(timer, &flags);
815 if (base->running_timer == timer)
816 goto out;
818 ret = 0;
819 if (timer_pending(timer))
820 ret = 1;
821 out:
822 spin_unlock_irqrestore(&base->lock, flags);
824 return ret;
828 * try_to_del_timer_sync - Try to deactivate a timer
829 * @timer: timer do del
831 * This function tries to deactivate a timer. Upon successful (ret >= 0)
832 * exit the timer is not queued and the handler is not running on any CPU.
834 * It must not be called from interrupt contexts.
836 int try_to_del_timer_sync(struct timer_list *timer)
838 struct tvec_base *base;
839 unsigned long flags;
840 int ret = -1;
842 base = lock_timer_base(timer, &flags);
844 if (base->running_timer == timer)
845 goto out;
847 ret = 0;
848 if (timer_pending(timer)) {
849 detach_timer(timer, 1);
850 ret = 1;
852 out:
853 spin_unlock_irqrestore(&base->lock, flags);
855 return ret;
857 EXPORT_SYMBOL(try_to_del_timer_sync);
860 * del_timer_sync - deactivate a timer and wait for the handler to finish.
861 * @timer: the timer to be deactivated
863 * This function only differs from del_timer() on SMP: besides deactivating
864 * the timer it also makes sure the handler has finished executing on other
865 * CPUs.
867 * Synchronization rules: Callers must prevent restarting of the timer,
868 * otherwise this function is meaningless. It must not be called from
869 * interrupt contexts. The caller must not hold locks which would prevent
870 * completion of the timer's handler. The timer's handler must not call
871 * add_timer_on(). Upon exit the timer is not queued and the handler is
872 * not running on any CPU.
874 * The function returns whether it has deactivated a pending timer or not.
876 int del_timer_sync(struct timer_list *timer)
878 #ifdef CONFIG_LOCKDEP
879 unsigned long flags;
881 local_irq_save(flags);
882 lock_map_acquire(&timer->lockdep_map);
883 lock_map_release(&timer->lockdep_map);
884 local_irq_restore(flags);
885 #endif
887 for (;;) {
888 int ret = try_to_del_timer_sync(timer);
889 if (ret >= 0)
890 return ret;
891 wait_for_running_timer(timer);
894 EXPORT_SYMBOL(del_timer_sync);
895 #endif
897 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
899 /* cascade all the timers from tv up one level */
900 struct timer_list *timer, *tmp;
901 struct list_head tv_list;
903 list_replace_init(tv->vec + index, &tv_list);
906 * We are removing _all_ timers from the list, so we
907 * don't have to detach them individually.
909 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
910 BUG_ON(tbase_get_base(timer->base) != base);
911 internal_add_timer(base, timer);
914 return index;
917 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
920 * __run_timers - run all expired timers (if any) on this CPU.
921 * @base: the timer vector to be processed.
923 * This function cascades all vectors and executes all expired timer
924 * vectors.
926 static inline void __run_timers(struct tvec_base *base)
928 struct timer_list *timer;
930 spin_lock_irq(&base->lock);
931 while (time_after_eq(jiffies, base->timer_jiffies)) {
932 struct list_head work_list;
933 struct list_head *head = &work_list;
934 int index = base->timer_jiffies & TVR_MASK;
936 if (softirq_need_resched()) {
937 spin_unlock_irq(&base->lock);
938 wake_up(&base->wait_for_running_timer);
939 cond_resched_softirq_context();
940 cpu_relax();
941 spin_lock_irq(&base->lock);
943 * We can simply continue after preemption, nobody
944 * else can touch timer_jiffies so 'index' is still
945 * valid. Any new jiffy will be taken care of in
946 * subsequent loops:
951 * Cascade timers:
953 if (!index &&
954 (!cascade(base, &base->tv2, INDEX(0))) &&
955 (!cascade(base, &base->tv3, INDEX(1))) &&
956 !cascade(base, &base->tv4, INDEX(2)))
957 cascade(base, &base->tv5, INDEX(3));
958 ++base->timer_jiffies;
959 list_replace_init(base->tv1.vec + index, &work_list);
960 while (!list_empty(head)) {
961 void (*fn)(unsigned long);
962 unsigned long data;
964 timer = list_first_entry(head, struct timer_list,entry);
965 fn = timer->function;
966 data = timer->data;
968 timer_stats_account_timer(timer);
970 set_running_timer(base, timer);
971 detach_timer(timer, 1);
973 spin_unlock_irq(&base->lock);
975 int preempt_count = preempt_count();
977 #ifdef CONFIG_LOCKDEP
979 * It is permissible to free the timer from
980 * inside the function that is called from
981 * it, this we need to take into account for
982 * lockdep too. To avoid bogus "held lock
983 * freed" warnings as well as problems when
984 * looking into timer->lockdep_map, make a
985 * copy and use that here.
987 struct lockdep_map lockdep_map =
988 timer->lockdep_map;
989 #endif
991 * Couple the lock chain with the lock chain at
992 * del_timer_sync() by acquiring the lock_map
993 * around the fn() call here and in
994 * del_timer_sync().
996 lock_map_acquire(&lockdep_map);
998 fn(data);
1000 lock_map_release(&lockdep_map);
1002 if (preempt_count != preempt_count()) {
1003 print_symbol("BUG: unbalanced timer-handler preempt count in %s!\n", (unsigned long) fn);
1004 printk("entered with %08x, exited with %08x.\n", preempt_count, preempt_count());
1005 preempt_count() = preempt_count;
1008 set_running_timer(base, NULL);
1009 cond_resched_softirq_context();
1010 spin_lock_irq(&base->lock);
1013 wake_up(&base->wait_for_running_timer);
1014 spin_unlock_irq(&base->lock);
1017 #ifdef CONFIG_NO_HZ
1019 * Find out when the next timer event is due to happen. This
1020 * is used on S/390 to stop all activity when a cpus is idle.
1021 * This functions needs to be called disabled.
1023 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1025 unsigned long timer_jiffies = base->timer_jiffies;
1026 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1027 int index, slot, array, found = 0;
1028 struct timer_list *nte;
1029 struct tvec *varray[4];
1031 /* Look for timer events in tv1. */
1032 index = slot = timer_jiffies & TVR_MASK;
1033 do {
1034 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1035 if (tbase_get_deferrable(nte->base))
1036 continue;
1038 found = 1;
1039 expires = nte->expires;
1040 /* Look at the cascade bucket(s)? */
1041 if (!index || slot < index)
1042 goto cascade;
1043 return expires;
1045 slot = (slot + 1) & TVR_MASK;
1046 } while (slot != index);
1048 cascade:
1049 /* Calculate the next cascade event */
1050 if (index)
1051 timer_jiffies += TVR_SIZE - index;
1052 timer_jiffies >>= TVR_BITS;
1054 /* Check tv2-tv5. */
1055 varray[0] = &base->tv2;
1056 varray[1] = &base->tv3;
1057 varray[2] = &base->tv4;
1058 varray[3] = &base->tv5;
1060 for (array = 0; array < 4; array++) {
1061 struct tvec *varp = varray[array];
1063 index = slot = timer_jiffies & TVN_MASK;
1064 do {
1065 list_for_each_entry(nte, varp->vec + slot, entry) {
1066 found = 1;
1067 if (time_before(nte->expires, expires))
1068 expires = nte->expires;
1071 * Do we still search for the first timer or are
1072 * we looking up the cascade buckets ?
1074 if (found) {
1075 /* Look at the cascade bucket(s)? */
1076 if (!index || slot < index)
1077 break;
1078 return expires;
1080 slot = (slot + 1) & TVN_MASK;
1081 } while (slot != index);
1083 if (index)
1084 timer_jiffies += TVN_SIZE - index;
1085 timer_jiffies >>= TVN_BITS;
1087 return expires;
1091 * Check, if the next hrtimer event is before the next timer wheel
1092 * event:
1094 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1095 unsigned long expires)
1097 ktime_t hr_delta = hrtimer_get_next_event();
1098 struct timespec tsdelta;
1099 unsigned long delta;
1101 if (hr_delta.tv64 == KTIME_MAX)
1102 return expires;
1105 * Expired timer available, let it expire in the next tick
1107 if (hr_delta.tv64 <= 0)
1108 return now + 1;
1110 tsdelta = ktime_to_timespec(hr_delta);
1111 delta = timespec_to_jiffies(&tsdelta);
1114 * Limit the delta to the max value, which is checked in
1115 * tick_nohz_stop_sched_tick():
1117 if (delta > NEXT_TIMER_MAX_DELTA)
1118 delta = NEXT_TIMER_MAX_DELTA;
1121 * Take rounding errors in to account and make sure, that it
1122 * expires in the next tick. Otherwise we go into an endless
1123 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1124 * the timer softirq
1126 if (delta < 1)
1127 delta = 1;
1128 now += delta;
1129 if (time_before(now, expires))
1130 return now;
1131 return expires;
1135 * get_next_timer_interrupt - return the jiffy of the next pending timer
1136 * @now: current time (in jiffies)
1138 unsigned long get_next_timer_interrupt(unsigned long now)
1140 struct tvec_base *base = __get_cpu_var(tvec_bases);
1141 unsigned long expires;
1143 #ifdef CONFIG_PREEMPT_RT
1145 * On PREEMPT_RT we cannot sleep here. If the trylock does not
1146 * succeed then we return the worst-case 'expires in 1 tick'
1147 * value:
1149 if (spin_trylock(&base->lock)) {
1150 expires = __next_timer_interrupt(base);
1151 spin_unlock(&base->lock);
1152 } else
1153 expires = now + 1;
1154 #else
1155 spin_lock(&base->lock);
1156 expires = __next_timer_interrupt(base);
1157 spin_unlock(&base->lock);
1158 #endif
1160 if (time_before_eq(expires, now))
1161 return now;
1163 return cmp_next_hrtimer_event(now, expires);
1165 #endif
1168 * Called from the timer interrupt handler to charge one tick to the current
1169 * process. user_tick is 1 if the tick is user time, 0 for system.
1171 void update_process_times(int user_tick)
1173 struct task_struct *p = current;
1174 int cpu = smp_processor_id();
1176 /* Note: this timer irq context must be accounted for as well. */
1177 account_process_tick(p, user_tick);
1178 scheduler_tick();
1179 run_local_timers();
1180 if (rcu_pending(cpu))
1181 rcu_check_callbacks(cpu, user_tick);
1182 run_posix_cpu_timers(p);
1186 * This function runs timers and the timer-tq in bottom half context.
1188 static void run_timer_softirq(struct softirq_action *h)
1190 struct tvec_base *base = per_cpu(tvec_bases, raw_smp_processor_id());
1192 printk_tick();
1193 hrtimer_run_pending();
1195 if (time_after_eq(jiffies, base->timer_jiffies))
1196 __run_timers(base);
1200 * Called by the local, per-CPU timer interrupt on SMP.
1202 void run_local_timers(void)
1204 hrtimer_run_queues();
1205 raise_softirq(TIMER_SOFTIRQ);
1206 softlockup_tick();
1210 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1211 * without sampling the sequence number in xtime_lock.
1212 * jiffies is defined in the linker script...
1215 void do_timer(unsigned long ticks)
1217 jiffies_64 += ticks;
1218 update_wall_time();
1219 calc_global_load();
1222 #ifdef __ARCH_WANT_SYS_ALARM
1225 * For backwards compatibility? This can be done in libc so Alpha
1226 * and all newer ports shouldn't need it.
1228 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1230 return alarm_setitimer(seconds);
1233 #endif
1235 #ifndef __alpha__
1238 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1239 * should be moved into arch/i386 instead?
1243 * sys_getpid - return the thread group id of the current process
1245 * Note, despite the name, this returns the tgid not the pid. The tgid and
1246 * the pid are identical unless CLONE_THREAD was specified on clone() in
1247 * which case the tgid is the same in all threads of the same group.
1249 * This is SMP safe as current->tgid does not change.
1251 SYSCALL_DEFINE0(getpid)
1253 return task_tgid_vnr(current);
1257 * Accessing ->real_parent is not SMP-safe, it could
1258 * change from under us. However, we can use a stale
1259 * value of ->real_parent under rcu_read_lock(), see
1260 * release_task()->call_rcu(delayed_put_task_struct).
1262 SYSCALL_DEFINE0(getppid)
1264 int pid;
1266 rcu_read_lock();
1267 pid = task_tgid_vnr(current->real_parent);
1268 rcu_read_unlock();
1270 return pid;
1273 SYSCALL_DEFINE0(getuid)
1275 /* Only we change this so SMP safe */
1276 return current_uid();
1279 SYSCALL_DEFINE0(geteuid)
1281 /* Only we change this so SMP safe */
1282 return current_euid();
1285 SYSCALL_DEFINE0(getgid)
1287 /* Only we change this so SMP safe */
1288 return current_gid();
1291 SYSCALL_DEFINE0(getegid)
1293 /* Only we change this so SMP safe */
1294 return current_egid();
1297 #endif
1299 static void process_timeout(unsigned long __data)
1301 wake_up_process((struct task_struct *)__data);
1305 * schedule_timeout - sleep until timeout
1306 * @timeout: timeout value in jiffies
1308 * Make the current task sleep until @timeout jiffies have
1309 * elapsed. The routine will return immediately unless
1310 * the current task state has been set (see set_current_state()).
1312 * You can set the task state as follows -
1314 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1315 * pass before the routine returns. The routine will return 0
1317 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1318 * delivered to the current task. In this case the remaining time
1319 * in jiffies will be returned, or 0 if the timer expired in time
1321 * The current task state is guaranteed to be TASK_RUNNING when this
1322 * routine returns.
1324 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1325 * the CPU away without a bound on the timeout. In this case the return
1326 * value will be %MAX_SCHEDULE_TIMEOUT.
1328 * In all cases the return value is guaranteed to be non-negative.
1330 signed long __sched schedule_timeout(signed long timeout)
1332 struct timer_list timer;
1333 unsigned long expire;
1335 switch (timeout)
1337 case MAX_SCHEDULE_TIMEOUT:
1339 * These two special cases are useful to be comfortable
1340 * in the caller. Nothing more. We could take
1341 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1342 * but I' d like to return a valid offset (>=0) to allow
1343 * the caller to do everything it want with the retval.
1345 schedule();
1346 goto out;
1347 default:
1349 * Another bit of PARANOID. Note that the retval will be
1350 * 0 since no piece of kernel is supposed to do a check
1351 * for a negative retval of schedule_timeout() (since it
1352 * should never happens anyway). You just have the printk()
1353 * that will tell you if something is gone wrong and where.
1355 if (timeout < 0) {
1356 printk(KERN_ERR "schedule_timeout: wrong timeout "
1357 "value %lx\n", timeout);
1358 dump_stack();
1359 current->state = TASK_RUNNING;
1360 goto out;
1364 expire = timeout + jiffies;
1366 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1367 __mod_timer(&timer, expire, false);
1368 schedule();
1369 del_singleshot_timer_sync(&timer);
1371 /* Remove the timer from the object tracker */
1372 destroy_timer_on_stack(&timer);
1374 timeout = expire - jiffies;
1376 out:
1377 return timeout < 0 ? 0 : timeout;
1379 EXPORT_SYMBOL(schedule_timeout);
1382 * We can use __set_current_state() here because schedule_timeout() calls
1383 * schedule() unconditionally.
1385 signed long __sched schedule_timeout_interruptible(signed long timeout)
1387 __set_current_state(TASK_INTERRUPTIBLE);
1388 return schedule_timeout(timeout);
1390 EXPORT_SYMBOL(schedule_timeout_interruptible);
1392 signed long __sched schedule_timeout_killable(signed long timeout)
1394 __set_current_state(TASK_KILLABLE);
1395 return schedule_timeout(timeout);
1397 EXPORT_SYMBOL(schedule_timeout_killable);
1399 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1401 __set_current_state(TASK_UNINTERRUPTIBLE);
1402 return schedule_timeout(timeout);
1404 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1406 /* Thread ID - the internal kernel "pid" */
1407 SYSCALL_DEFINE0(gettid)
1409 return task_pid_vnr(current);
1413 * do_sysinfo - fill in sysinfo struct
1414 * @info: pointer to buffer to fill
1416 int do_sysinfo(struct sysinfo *info)
1418 unsigned long mem_total, sav_total;
1419 unsigned int mem_unit, bitcount;
1420 struct timespec tp;
1422 memset(info, 0, sizeof(struct sysinfo));
1424 ktime_get_ts(&tp);
1425 monotonic_to_bootbased(&tp);
1426 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1428 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1430 info->procs = nr_threads;
1432 si_meminfo(info);
1433 si_swapinfo(info);
1436 * If the sum of all the available memory (i.e. ram + swap)
1437 * is less than can be stored in a 32 bit unsigned long then
1438 * we can be binary compatible with 2.2.x kernels. If not,
1439 * well, in that case 2.2.x was broken anyways...
1441 * -Erik Andersen <andersee@debian.org>
1444 mem_total = info->totalram + info->totalswap;
1445 if (mem_total < info->totalram || mem_total < info->totalswap)
1446 goto out;
1447 bitcount = 0;
1448 mem_unit = info->mem_unit;
1449 while (mem_unit > 1) {
1450 bitcount++;
1451 mem_unit >>= 1;
1452 sav_total = mem_total;
1453 mem_total <<= 1;
1454 if (mem_total < sav_total)
1455 goto out;
1459 * If mem_total did not overflow, multiply all memory values by
1460 * info->mem_unit and set it to 1. This leaves things compatible
1461 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1462 * kernels...
1465 info->mem_unit = 1;
1466 info->totalram <<= bitcount;
1467 info->freeram <<= bitcount;
1468 info->sharedram <<= bitcount;
1469 info->bufferram <<= bitcount;
1470 info->totalswap <<= bitcount;
1471 info->freeswap <<= bitcount;
1472 info->totalhigh <<= bitcount;
1473 info->freehigh <<= bitcount;
1475 out:
1476 return 0;
1479 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1481 struct sysinfo val;
1483 do_sysinfo(&val);
1485 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1486 return -EFAULT;
1488 return 0;
1491 static int __cpuinit init_timers_cpu(int cpu)
1493 int j;
1494 struct tvec_base *base;
1495 static char __cpuinitdata tvec_base_done[NR_CPUS];
1497 if (!tvec_base_done[cpu]) {
1498 static char boot_done;
1500 if (boot_done) {
1502 * The APs use this path later in boot
1504 base = kmalloc_node(sizeof(*base),
1505 GFP_KERNEL | __GFP_ZERO,
1506 cpu_to_node(cpu));
1507 if (!base)
1508 return -ENOMEM;
1510 /* Make sure that tvec_base is 2 byte aligned */
1511 if (tbase_get_deferrable(base)) {
1512 WARN_ON(1);
1513 kfree(base);
1514 return -ENOMEM;
1516 per_cpu(tvec_bases, cpu) = base;
1517 } else {
1519 * This is for the boot CPU - we use compile-time
1520 * static initialisation because per-cpu memory isn't
1521 * ready yet and because the memory allocators are not
1522 * initialised either.
1524 boot_done = 1;
1525 base = &boot_tvec_bases;
1527 tvec_base_done[cpu] = 1;
1528 } else {
1529 base = per_cpu(tvec_bases, cpu);
1532 spin_lock_init(&base->lock);
1533 init_waitqueue_head(&base->wait_for_running_timer);
1535 for (j = 0; j < TVN_SIZE; j++) {
1536 INIT_LIST_HEAD(base->tv5.vec + j);
1537 INIT_LIST_HEAD(base->tv4.vec + j);
1538 INIT_LIST_HEAD(base->tv3.vec + j);
1539 INIT_LIST_HEAD(base->tv2.vec + j);
1541 for (j = 0; j < TVR_SIZE; j++)
1542 INIT_LIST_HEAD(base->tv1.vec + j);
1544 base->timer_jiffies = jiffies;
1545 return 0;
1548 #ifdef CONFIG_HOTPLUG_CPU
1549 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1551 struct timer_list *timer;
1553 while (!list_empty(head)) {
1554 timer = list_first_entry(head, struct timer_list, entry);
1555 detach_timer(timer, 0);
1556 timer_set_base(timer, new_base);
1557 internal_add_timer(new_base, timer);
1561 static void __cpuinit migrate_timers(int cpu)
1563 struct tvec_base *old_base;
1564 struct tvec_base *new_base;
1565 unsigned long flags;
1566 int i;
1568 BUG_ON(cpu_online(cpu));
1569 old_base = per_cpu(tvec_bases, cpu);
1570 new_base = get_cpu_var(tvec_bases);
1572 * The caller is globally serialized and nobody else
1573 * takes two locks at once, deadlock is not possible.
1575 local_irq_save(flags);
1576 while (!spin_trylock(&new_base->lock))
1577 cpu_relax();
1578 while (!spin_trylock(&old_base->lock))
1579 cpu_relax();
1581 BUG_ON(old_base->running_timer);
1583 for (i = 0; i < TVR_SIZE; i++)
1584 migrate_timer_list(new_base, old_base->tv1.vec + i);
1585 for (i = 0; i < TVN_SIZE; i++) {
1586 migrate_timer_list(new_base, old_base->tv2.vec + i);
1587 migrate_timer_list(new_base, old_base->tv3.vec + i);
1588 migrate_timer_list(new_base, old_base->tv4.vec + i);
1589 migrate_timer_list(new_base, old_base->tv5.vec + i);
1592 spin_unlock(&old_base->lock);
1593 spin_unlock(&new_base->lock);
1594 local_irq_restore(flags);
1596 put_cpu_var(tvec_bases);
1598 #endif /* CONFIG_HOTPLUG_CPU */
1600 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1601 unsigned long action, void *hcpu)
1603 long cpu = (long)hcpu;
1604 switch(action) {
1605 case CPU_UP_PREPARE:
1606 case CPU_UP_PREPARE_FROZEN:
1607 if (init_timers_cpu(cpu) < 0)
1608 return NOTIFY_BAD;
1609 break;
1610 #ifdef CONFIG_HOTPLUG_CPU
1611 case CPU_DEAD:
1612 case CPU_DEAD_FROZEN:
1613 migrate_timers(cpu);
1614 break;
1615 #endif
1616 default:
1617 break;
1619 return NOTIFY_OK;
1622 static struct notifier_block __cpuinitdata timers_nb = {
1623 .notifier_call = timer_cpu_notify,
1627 void __init init_timers(void)
1629 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1630 (void *)(long)smp_processor_id());
1632 init_timer_stats();
1634 BUG_ON(err == NOTIFY_BAD);
1635 register_cpu_notifier(&timers_nb);
1636 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1640 * msleep - sleep safely even with waitqueue interruptions
1641 * @msecs: Time in milliseconds to sleep for
1643 void msleep(unsigned int msecs)
1645 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1647 while (timeout)
1648 timeout = schedule_timeout_uninterruptible(timeout);
1651 EXPORT_SYMBOL(msleep);
1654 * msleep_interruptible - sleep waiting for signals
1655 * @msecs: Time in milliseconds to sleep for
1657 unsigned long msleep_interruptible(unsigned int msecs)
1659 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1661 while (timeout && !signal_pending(current))
1662 timeout = schedule_timeout_interruptible(timeout);
1663 return jiffies_to_msecs(timeout);
1666 EXPORT_SYMBOL(msleep_interruptible);