4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/interrupt.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/pagevec.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
48 #include <linux/swapops.h>
53 /* Incremented by the number of inactive pages that were scanned */
54 unsigned long nr_scanned
;
56 /* Number of pages freed so far during a call to shrink_zones() */
57 unsigned long nr_reclaimed
;
59 /* This context's GFP mask */
64 /* Can pages be swapped as part of reclaim? */
67 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
68 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
69 * In this context, it doesn't matter that we scan the
70 * whole list at once. */
75 int all_unreclaimable
;
79 /* Which cgroup do we reclaim from */
80 struct mem_cgroup
*mem_cgroup
;
82 /* Pluggable isolate pages callback */
83 unsigned long (*isolate_pages
)(unsigned long nr
, struct list_head
*dst
,
84 unsigned long *scanned
, int order
, int mode
,
85 struct zone
*z
, struct mem_cgroup
*mem_cont
,
86 int active
, int file
);
89 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
91 #ifdef ARCH_HAS_PREFETCH
92 #define prefetch_prev_lru_page(_page, _base, _field) \
94 if ((_page)->lru.prev != _base) { \
97 prev = lru_to_page(&(_page->lru)); \
98 prefetch(&prev->_field); \
102 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
105 #ifdef ARCH_HAS_PREFETCHW
106 #define prefetchw_prev_lru_page(_page, _base, _field) \
108 if ((_page)->lru.prev != _base) { \
111 prev = lru_to_page(&(_page->lru)); \
112 prefetchw(&prev->_field); \
116 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
120 * From 0 .. 100. Higher means more swappy.
122 int vm_swappiness
= 60;
123 long vm_total_pages
; /* The total number of pages which the VM controls */
125 static LIST_HEAD(shrinker_list
);
126 static DECLARE_RWSEM(shrinker_rwsem
);
128 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
129 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
131 #define scanning_global_lru(sc) (1)
134 static struct zone_reclaim_stat
*get_reclaim_stat(struct zone
*zone
,
135 struct scan_control
*sc
)
137 if (!scanning_global_lru(sc
))
138 return mem_cgroup_get_reclaim_stat(sc
->mem_cgroup
, zone
);
140 return &zone
->reclaim_stat
;
143 static unsigned long zone_nr_pages(struct zone
*zone
, struct scan_control
*sc
,
146 if (!scanning_global_lru(sc
))
147 return mem_cgroup_zone_nr_pages(sc
->mem_cgroup
, zone
, lru
);
149 return zone_page_state(zone
, NR_LRU_BASE
+ lru
);
154 * Add a shrinker callback to be called from the vm
156 void register_shrinker(struct shrinker
*shrinker
)
159 down_write(&shrinker_rwsem
);
160 list_add_tail(&shrinker
->list
, &shrinker_list
);
161 up_write(&shrinker_rwsem
);
163 EXPORT_SYMBOL(register_shrinker
);
168 void unregister_shrinker(struct shrinker
*shrinker
)
170 down_write(&shrinker_rwsem
);
171 list_del(&shrinker
->list
);
172 up_write(&shrinker_rwsem
);
174 EXPORT_SYMBOL(unregister_shrinker
);
176 #define SHRINK_BATCH 128
178 * Call the shrink functions to age shrinkable caches
180 * Here we assume it costs one seek to replace a lru page and that it also
181 * takes a seek to recreate a cache object. With this in mind we age equal
182 * percentages of the lru and ageable caches. This should balance the seeks
183 * generated by these structures.
185 * If the vm encountered mapped pages on the LRU it increase the pressure on
186 * slab to avoid swapping.
188 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
190 * `lru_pages' represents the number of on-LRU pages in all the zones which
191 * are eligible for the caller's allocation attempt. It is used for balancing
192 * slab reclaim versus page reclaim.
194 * Returns the number of slab objects which we shrunk.
196 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
197 unsigned long lru_pages
)
199 struct shrinker
*shrinker
;
200 unsigned long ret
= 0;
203 scanned
= SWAP_CLUSTER_MAX
;
205 if (!down_read_trylock(&shrinker_rwsem
))
206 return 1; /* Assume we'll be able to shrink next time */
208 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
209 unsigned long long delta
;
210 unsigned long total_scan
;
211 unsigned long max_pass
= (*shrinker
->shrink
)(0, gfp_mask
);
213 delta
= (4 * scanned
) / shrinker
->seeks
;
215 do_div(delta
, lru_pages
+ 1);
216 shrinker
->nr
+= delta
;
217 if (shrinker
->nr
< 0) {
218 printk(KERN_ERR
"%s: nr=%ld\n",
219 __func__
, shrinker
->nr
);
220 shrinker
->nr
= max_pass
;
224 * Avoid risking looping forever due to too large nr value:
225 * never try to free more than twice the estimate number of
228 if (shrinker
->nr
> max_pass
* 2)
229 shrinker
->nr
= max_pass
* 2;
231 total_scan
= shrinker
->nr
;
234 while (total_scan
>= SHRINK_BATCH
) {
235 long this_scan
= SHRINK_BATCH
;
239 nr_before
= (*shrinker
->shrink
)(0, gfp_mask
);
240 shrink_ret
= (*shrinker
->shrink
)(this_scan
, gfp_mask
);
241 if (shrink_ret
== -1)
243 if (shrink_ret
< nr_before
)
244 ret
+= nr_before
- shrink_ret
;
245 count_vm_events(SLABS_SCANNED
, this_scan
);
246 total_scan
-= this_scan
;
251 shrinker
->nr
+= total_scan
;
253 up_read(&shrinker_rwsem
);
257 /* Called without lock on whether page is mapped, so answer is unstable */
258 static inline int page_mapping_inuse(struct page
*page
)
260 struct address_space
*mapping
;
262 /* Page is in somebody's page tables. */
263 if (page_mapped(page
))
266 /* Be more reluctant to reclaim swapcache than pagecache */
267 if (PageSwapCache(page
))
270 mapping
= page_mapping(page
);
274 /* File is mmap'd by somebody? */
275 return mapping_mapped(mapping
);
278 static inline int is_page_cache_freeable(struct page
*page
)
280 return page_count(page
) - !!PagePrivate(page
) == 2;
283 static int may_write_to_queue(struct backing_dev_info
*bdi
)
285 if (current
->flags
& PF_SWAPWRITE
)
287 if (!bdi_write_congested(bdi
))
289 if (bdi
== current
->backing_dev_info
)
295 * We detected a synchronous write error writing a page out. Probably
296 * -ENOSPC. We need to propagate that into the address_space for a subsequent
297 * fsync(), msync() or close().
299 * The tricky part is that after writepage we cannot touch the mapping: nothing
300 * prevents it from being freed up. But we have a ref on the page and once
301 * that page is locked, the mapping is pinned.
303 * We're allowed to run sleeping lock_page() here because we know the caller has
306 static void handle_write_error(struct address_space
*mapping
,
307 struct page
*page
, int error
)
310 if (page_mapping(page
) == mapping
)
311 mapping_set_error(mapping
, error
);
315 /* Request for sync pageout. */
321 /* possible outcome of pageout() */
323 /* failed to write page out, page is locked */
325 /* move page to the active list, page is locked */
327 /* page has been sent to the disk successfully, page is unlocked */
329 /* page is clean and locked */
334 * pageout is called by shrink_page_list() for each dirty page.
335 * Calls ->writepage().
337 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
338 enum pageout_io sync_writeback
)
341 * If the page is dirty, only perform writeback if that write
342 * will be non-blocking. To prevent this allocation from being
343 * stalled by pagecache activity. But note that there may be
344 * stalls if we need to run get_block(). We could test
345 * PagePrivate for that.
347 * If this process is currently in generic_file_write() against
348 * this page's queue, we can perform writeback even if that
351 * If the page is swapcache, write it back even if that would
352 * block, for some throttling. This happens by accident, because
353 * swap_backing_dev_info is bust: it doesn't reflect the
354 * congestion state of the swapdevs. Easy to fix, if needed.
355 * See swapfile.c:page_queue_congested().
357 if (!is_page_cache_freeable(page
))
361 * Some data journaling orphaned pages can have
362 * page->mapping == NULL while being dirty with clean buffers.
364 if (PagePrivate(page
)) {
365 if (try_to_free_buffers(page
)) {
366 ClearPageDirty(page
);
367 printk("%s: orphaned page\n", __func__
);
373 if (mapping
->a_ops
->writepage
== NULL
)
374 return PAGE_ACTIVATE
;
375 if (!may_write_to_queue(mapping
->backing_dev_info
))
378 if (clear_page_dirty_for_io(page
)) {
380 struct writeback_control wbc
= {
381 .sync_mode
= WB_SYNC_NONE
,
382 .nr_to_write
= SWAP_CLUSTER_MAX
,
384 .range_end
= LLONG_MAX
,
389 SetPageReclaim(page
);
390 res
= mapping
->a_ops
->writepage(page
, &wbc
);
392 handle_write_error(mapping
, page
, res
);
393 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
394 ClearPageReclaim(page
);
395 return PAGE_ACTIVATE
;
399 * Wait on writeback if requested to. This happens when
400 * direct reclaiming a large contiguous area and the
401 * first attempt to free a range of pages fails.
403 if (PageWriteback(page
) && sync_writeback
== PAGEOUT_IO_SYNC
)
404 wait_on_page_writeback(page
);
406 if (!PageWriteback(page
)) {
407 /* synchronous write or broken a_ops? */
408 ClearPageReclaim(page
);
410 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
418 * Same as remove_mapping, but if the page is removed from the mapping, it
419 * gets returned with a refcount of 0.
421 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
423 BUG_ON(!PageLocked(page
));
424 BUG_ON(mapping
!= page_mapping(page
));
426 spin_lock_irq(&mapping
->tree_lock
);
428 * The non racy check for a busy page.
430 * Must be careful with the order of the tests. When someone has
431 * a ref to the page, it may be possible that they dirty it then
432 * drop the reference. So if PageDirty is tested before page_count
433 * here, then the following race may occur:
435 * get_user_pages(&page);
436 * [user mapping goes away]
438 * !PageDirty(page) [good]
439 * SetPageDirty(page);
441 * !page_count(page) [good, discard it]
443 * [oops, our write_to data is lost]
445 * Reversing the order of the tests ensures such a situation cannot
446 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
447 * load is not satisfied before that of page->_count.
449 * Note that if SetPageDirty is always performed via set_page_dirty,
450 * and thus under tree_lock, then this ordering is not required.
452 if (!page_freeze_refs(page
, 2))
454 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
455 if (unlikely(PageDirty(page
))) {
456 page_unfreeze_refs(page
, 2);
460 if (PageSwapCache(page
)) {
461 swp_entry_t swap
= { .val
= page_private(page
) };
462 __delete_from_swap_cache(page
);
463 spin_unlock_irq(&mapping
->tree_lock
);
466 __remove_from_page_cache(page
);
467 spin_unlock_irq(&mapping
->tree_lock
);
473 spin_unlock_irq(&mapping
->tree_lock
);
478 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
479 * someone else has a ref on the page, abort and return 0. If it was
480 * successfully detached, return 1. Assumes the caller has a single ref on
483 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
485 if (__remove_mapping(mapping
, page
)) {
487 * Unfreezing the refcount with 1 rather than 2 effectively
488 * drops the pagecache ref for us without requiring another
491 page_unfreeze_refs(page
, 1);
498 * putback_lru_page - put previously isolated page onto appropriate LRU list
499 * @page: page to be put back to appropriate lru list
501 * Add previously isolated @page to appropriate LRU list.
502 * Page may still be unevictable for other reasons.
504 * lru_lock must not be held, interrupts must be enabled.
506 #ifdef CONFIG_UNEVICTABLE_LRU
507 void putback_lru_page(struct page
*page
)
510 int active
= !!TestClearPageActive(page
);
511 int was_unevictable
= PageUnevictable(page
);
513 VM_BUG_ON(PageLRU(page
));
516 ClearPageUnevictable(page
);
518 if (page_evictable(page
, NULL
)) {
520 * For evictable pages, we can use the cache.
521 * In event of a race, worst case is we end up with an
522 * unevictable page on [in]active list.
523 * We know how to handle that.
525 lru
= active
+ page_is_file_cache(page
);
526 lru_cache_add_lru(page
, lru
);
529 * Put unevictable pages directly on zone's unevictable
532 lru
= LRU_UNEVICTABLE
;
533 add_page_to_unevictable_list(page
);
537 * page's status can change while we move it among lru. If an evictable
538 * page is on unevictable list, it never be freed. To avoid that,
539 * check after we added it to the list, again.
541 if (lru
== LRU_UNEVICTABLE
&& page_evictable(page
, NULL
)) {
542 if (!isolate_lru_page(page
)) {
546 /* This means someone else dropped this page from LRU
547 * So, it will be freed or putback to LRU again. There is
548 * nothing to do here.
552 if (was_unevictable
&& lru
!= LRU_UNEVICTABLE
)
553 count_vm_event(UNEVICTABLE_PGRESCUED
);
554 else if (!was_unevictable
&& lru
== LRU_UNEVICTABLE
)
555 count_vm_event(UNEVICTABLE_PGCULLED
);
557 put_page(page
); /* drop ref from isolate */
560 #else /* CONFIG_UNEVICTABLE_LRU */
562 void putback_lru_page(struct page
*page
)
565 VM_BUG_ON(PageLRU(page
));
567 lru
= !!TestClearPageActive(page
) + page_is_file_cache(page
);
568 lru_cache_add_lru(page
, lru
);
571 #endif /* CONFIG_UNEVICTABLE_LRU */
575 * shrink_page_list() returns the number of reclaimed pages
577 static unsigned long shrink_page_list(struct list_head
*page_list
,
578 struct scan_control
*sc
,
579 enum pageout_io sync_writeback
)
581 LIST_HEAD(ret_pages
);
582 struct pagevec freed_pvec
;
584 unsigned long nr_reclaimed
= 0;
588 pagevec_init(&freed_pvec
, 1);
589 while (!list_empty(page_list
)) {
590 struct address_space
*mapping
;
597 page
= lru_to_page(page_list
);
598 list_del(&page
->lru
);
600 if (!trylock_page(page
))
603 VM_BUG_ON(PageActive(page
));
607 if (unlikely(!page_evictable(page
, NULL
)))
610 if (!sc
->may_swap
&& page_mapped(page
))
613 /* Double the slab pressure for mapped and swapcache pages */
614 if (page_mapped(page
) || PageSwapCache(page
))
617 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
618 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
620 if (PageWriteback(page
)) {
622 * Synchronous reclaim is performed in two passes,
623 * first an asynchronous pass over the list to
624 * start parallel writeback, and a second synchronous
625 * pass to wait for the IO to complete. Wait here
626 * for any page for which writeback has already
629 if (sync_writeback
== PAGEOUT_IO_SYNC
&& may_enter_fs
)
630 wait_on_page_writeback(page
);
635 referenced
= page_referenced(page
, 1, sc
->mem_cgroup
);
636 /* In active use or really unfreeable? Activate it. */
637 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&&
638 referenced
&& page_mapping_inuse(page
))
639 goto activate_locked
;
642 * Anonymous process memory has backing store?
643 * Try to allocate it some swap space here.
645 if (PageAnon(page
) && !PageSwapCache(page
)) {
646 if (!(sc
->gfp_mask
& __GFP_IO
))
648 if (!add_to_swap(page
))
649 goto activate_locked
;
653 mapping
= page_mapping(page
);
656 * The page is mapped into the page tables of one or more
657 * processes. Try to unmap it here.
659 if (page_mapped(page
) && mapping
) {
660 switch (try_to_unmap(page
, 0)) {
662 goto activate_locked
;
668 ; /* try to free the page below */
672 if (PageDirty(page
)) {
673 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&& referenced
)
677 if (!sc
->may_writepage
)
680 /* Page is dirty, try to write it out here */
681 switch (pageout(page
, mapping
, sync_writeback
)) {
685 goto activate_locked
;
687 if (PageWriteback(page
) || PageDirty(page
))
690 * A synchronous write - probably a ramdisk. Go
691 * ahead and try to reclaim the page.
693 if (!trylock_page(page
))
695 if (PageDirty(page
) || PageWriteback(page
))
697 mapping
= page_mapping(page
);
699 ; /* try to free the page below */
704 * If the page has buffers, try to free the buffer mappings
705 * associated with this page. If we succeed we try to free
708 * We do this even if the page is PageDirty().
709 * try_to_release_page() does not perform I/O, but it is
710 * possible for a page to have PageDirty set, but it is actually
711 * clean (all its buffers are clean). This happens if the
712 * buffers were written out directly, with submit_bh(). ext3
713 * will do this, as well as the blockdev mapping.
714 * try_to_release_page() will discover that cleanness and will
715 * drop the buffers and mark the page clean - it can be freed.
717 * Rarely, pages can have buffers and no ->mapping. These are
718 * the pages which were not successfully invalidated in
719 * truncate_complete_page(). We try to drop those buffers here
720 * and if that worked, and the page is no longer mapped into
721 * process address space (page_count == 1) it can be freed.
722 * Otherwise, leave the page on the LRU so it is swappable.
724 if (PagePrivate(page
)) {
725 if (!try_to_release_page(page
, sc
->gfp_mask
))
726 goto activate_locked
;
727 if (!mapping
&& page_count(page
) == 1) {
729 if (put_page_testzero(page
))
733 * rare race with speculative reference.
734 * the speculative reference will free
735 * this page shortly, so we may
736 * increment nr_reclaimed here (and
737 * leave it off the LRU).
745 if (!mapping
|| !__remove_mapping(mapping
, page
))
749 * At this point, we have no other references and there is
750 * no way to pick any more up (removed from LRU, removed
751 * from pagecache). Can use non-atomic bitops now (and
752 * we obviously don't have to worry about waking up a process
753 * waiting on the page lock, because there are no references.
755 __clear_page_locked(page
);
758 if (!pagevec_add(&freed_pvec
, page
)) {
759 __pagevec_free(&freed_pvec
);
760 pagevec_reinit(&freed_pvec
);
765 if (PageSwapCache(page
))
766 try_to_free_swap(page
);
768 putback_lru_page(page
);
772 /* Not a candidate for swapping, so reclaim swap space. */
773 if (PageSwapCache(page
) && vm_swap_full())
774 try_to_free_swap(page
);
775 VM_BUG_ON(PageActive(page
));
781 list_add(&page
->lru
, &ret_pages
);
782 VM_BUG_ON(PageLRU(page
) || PageUnevictable(page
));
784 list_splice(&ret_pages
, page_list
);
785 if (pagevec_count(&freed_pvec
))
786 __pagevec_free(&freed_pvec
);
787 count_vm_events(PGACTIVATE
, pgactivate
);
791 /* LRU Isolation modes. */
792 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
793 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
794 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
797 * Attempt to remove the specified page from its LRU. Only take this page
798 * if it is of the appropriate PageActive status. Pages which are being
799 * freed elsewhere are also ignored.
801 * page: page to consider
802 * mode: one of the LRU isolation modes defined above
804 * returns 0 on success, -ve errno on failure.
806 int __isolate_lru_page(struct page
*page
, int mode
, int file
)
810 /* Only take pages on the LRU. */
815 * When checking the active state, we need to be sure we are
816 * dealing with comparible boolean values. Take the logical not
819 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
822 if (mode
!= ISOLATE_BOTH
&& (!page_is_file_cache(page
) != !file
))
826 * When this function is being called for lumpy reclaim, we
827 * initially look into all LRU pages, active, inactive and
828 * unevictable; only give shrink_page_list evictable pages.
830 if (PageUnevictable(page
))
835 if (likely(get_page_unless_zero(page
))) {
837 * Be careful not to clear PageLRU until after we're
838 * sure the page is not being freed elsewhere -- the
839 * page release code relies on it.
843 mem_cgroup_del_lru(page
);
850 * zone->lru_lock is heavily contended. Some of the functions that
851 * shrink the lists perform better by taking out a batch of pages
852 * and working on them outside the LRU lock.
854 * For pagecache intensive workloads, this function is the hottest
855 * spot in the kernel (apart from copy_*_user functions).
857 * Appropriate locks must be held before calling this function.
859 * @nr_to_scan: The number of pages to look through on the list.
860 * @src: The LRU list to pull pages off.
861 * @dst: The temp list to put pages on to.
862 * @scanned: The number of pages that were scanned.
863 * @order: The caller's attempted allocation order
864 * @mode: One of the LRU isolation modes
865 * @file: True [1] if isolating file [!anon] pages
867 * returns how many pages were moved onto *@dst.
869 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
870 struct list_head
*src
, struct list_head
*dst
,
871 unsigned long *scanned
, int order
, int mode
, int file
)
873 unsigned long nr_taken
= 0;
876 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
879 unsigned long end_pfn
;
880 unsigned long page_pfn
;
883 page
= lru_to_page(src
);
884 prefetchw_prev_lru_page(page
, src
, flags
);
886 VM_BUG_ON(!PageLRU(page
));
888 switch (__isolate_lru_page(page
, mode
, file
)) {
890 list_move(&page
->lru
, dst
);
895 /* else it is being freed elsewhere */
896 list_move(&page
->lru
, src
);
907 * Attempt to take all pages in the order aligned region
908 * surrounding the tag page. Only take those pages of
909 * the same active state as that tag page. We may safely
910 * round the target page pfn down to the requested order
911 * as the mem_map is guarenteed valid out to MAX_ORDER,
912 * where that page is in a different zone we will detect
913 * it from its zone id and abort this block scan.
915 zone_id
= page_zone_id(page
);
916 page_pfn
= page_to_pfn(page
);
917 pfn
= page_pfn
& ~((1 << order
) - 1);
918 end_pfn
= pfn
+ (1 << order
);
919 for (; pfn
< end_pfn
; pfn
++) {
920 struct page
*cursor_page
;
922 /* The target page is in the block, ignore it. */
923 if (unlikely(pfn
== page_pfn
))
926 /* Avoid holes within the zone. */
927 if (unlikely(!pfn_valid_within(pfn
)))
930 cursor_page
= pfn_to_page(pfn
);
932 /* Check that we have not crossed a zone boundary. */
933 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
935 switch (__isolate_lru_page(cursor_page
, mode
, file
)) {
937 list_move(&cursor_page
->lru
, dst
);
943 /* else it is being freed elsewhere */
944 list_move(&cursor_page
->lru
, src
);
946 break; /* ! on LRU or wrong list */
955 static unsigned long isolate_pages_global(unsigned long nr
,
956 struct list_head
*dst
,
957 unsigned long *scanned
, int order
,
958 int mode
, struct zone
*z
,
959 struct mem_cgroup
*mem_cont
,
960 int active
, int file
)
967 return isolate_lru_pages(nr
, &z
->lru
[lru
].list
, dst
, scanned
, order
,
972 * clear_active_flags() is a helper for shrink_active_list(), clearing
973 * any active bits from the pages in the list.
975 static unsigned long clear_active_flags(struct list_head
*page_list
,
982 list_for_each_entry(page
, page_list
, lru
) {
983 lru
= page_is_file_cache(page
);
984 if (PageActive(page
)) {
986 ClearPageActive(page
);
996 * isolate_lru_page - tries to isolate a page from its LRU list
997 * @page: page to isolate from its LRU list
999 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1000 * vmstat statistic corresponding to whatever LRU list the page was on.
1002 * Returns 0 if the page was removed from an LRU list.
1003 * Returns -EBUSY if the page was not on an LRU list.
1005 * The returned page will have PageLRU() cleared. If it was found on
1006 * the active list, it will have PageActive set. If it was found on
1007 * the unevictable list, it will have the PageUnevictable bit set. That flag
1008 * may need to be cleared by the caller before letting the page go.
1010 * The vmstat statistic corresponding to the list on which the page was
1011 * found will be decremented.
1014 * (1) Must be called with an elevated refcount on the page. This is a
1015 * fundamentnal difference from isolate_lru_pages (which is called
1016 * without a stable reference).
1017 * (2) the lru_lock must not be held.
1018 * (3) interrupts must be enabled.
1020 int isolate_lru_page(struct page
*page
)
1024 if (PageLRU(page
)) {
1025 struct zone
*zone
= page_zone(page
);
1027 spin_lock_irq(&zone
->lru_lock
);
1028 if (PageLRU(page
) && get_page_unless_zero(page
)) {
1029 int lru
= page_lru(page
);
1033 del_page_from_lru_list(zone
, page
, lru
);
1035 spin_unlock_irq(&zone
->lru_lock
);
1041 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1042 * of reclaimed pages
1044 static unsigned long shrink_inactive_list(unsigned long max_scan
,
1045 struct zone
*zone
, struct scan_control
*sc
,
1046 int priority
, int file
)
1048 LIST_HEAD(page_list
);
1049 struct pagevec pvec
;
1050 unsigned long nr_scanned
= 0;
1051 unsigned long nr_reclaimed
= 0;
1052 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1054 pagevec_init(&pvec
, 1);
1057 spin_lock_irq(&zone
->lru_lock
);
1060 unsigned long nr_taken
;
1061 unsigned long nr_scan
;
1062 unsigned long nr_freed
;
1063 unsigned long nr_active
;
1064 unsigned int count
[NR_LRU_LISTS
] = { 0, };
1065 int mode
= ISOLATE_INACTIVE
;
1068 * If we need a large contiguous chunk of memory, or have
1069 * trouble getting a small set of contiguous pages, we
1070 * will reclaim both active and inactive pages.
1072 * We use the same threshold as pageout congestion_wait below.
1074 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
1075 mode
= ISOLATE_BOTH
;
1076 else if (sc
->order
&& priority
< DEF_PRIORITY
- 2)
1077 mode
= ISOLATE_BOTH
;
1079 nr_taken
= sc
->isolate_pages(sc
->swap_cluster_max
,
1080 &page_list
, &nr_scan
, sc
->order
, mode
,
1081 zone
, sc
->mem_cgroup
, 0, file
);
1082 nr_active
= clear_active_flags(&page_list
, count
);
1083 __count_vm_events(PGDEACTIVATE
, nr_active
);
1085 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
,
1086 -count
[LRU_ACTIVE_FILE
]);
1087 __mod_zone_page_state(zone
, NR_INACTIVE_FILE
,
1088 -count
[LRU_INACTIVE_FILE
]);
1089 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
,
1090 -count
[LRU_ACTIVE_ANON
]);
1091 __mod_zone_page_state(zone
, NR_INACTIVE_ANON
,
1092 -count
[LRU_INACTIVE_ANON
]);
1094 if (scanning_global_lru(sc
))
1095 zone
->pages_scanned
+= nr_scan
;
1097 reclaim_stat
->recent_scanned
[0] += count
[LRU_INACTIVE_ANON
];
1098 reclaim_stat
->recent_scanned
[0] += count
[LRU_ACTIVE_ANON
];
1099 reclaim_stat
->recent_scanned
[1] += count
[LRU_INACTIVE_FILE
];
1100 reclaim_stat
->recent_scanned
[1] += count
[LRU_ACTIVE_FILE
];
1102 spin_unlock_irq(&zone
->lru_lock
);
1104 nr_scanned
+= nr_scan
;
1105 nr_freed
= shrink_page_list(&page_list
, sc
, PAGEOUT_IO_ASYNC
);
1108 * If we are direct reclaiming for contiguous pages and we do
1109 * not reclaim everything in the list, try again and wait
1110 * for IO to complete. This will stall high-order allocations
1111 * but that should be acceptable to the caller
1113 if (nr_freed
< nr_taken
&& !current_is_kswapd() &&
1114 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
) {
1115 congestion_wait(WRITE
, HZ
/10);
1118 * The attempt at page out may have made some
1119 * of the pages active, mark them inactive again.
1121 nr_active
= clear_active_flags(&page_list
, count
);
1122 count_vm_events(PGDEACTIVATE
, nr_active
);
1124 nr_freed
+= shrink_page_list(&page_list
, sc
,
1128 nr_reclaimed
+= nr_freed
;
1129 local_irq_disable_nort();
1130 if (current_is_kswapd()) {
1131 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scan
);
1132 __count_vm_events(KSWAPD_STEAL
, nr_freed
);
1133 } else if (scanning_global_lru(sc
))
1134 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scan
);
1136 __count_zone_vm_events(PGSTEAL
, zone
, nr_freed
);
1141 spin_lock(&zone
->lru_lock
);
1143 * Put back any unfreeable pages.
1145 while (!list_empty(&page_list
)) {
1147 page
= lru_to_page(&page_list
);
1148 VM_BUG_ON(PageLRU(page
));
1149 list_del(&page
->lru
);
1150 if (unlikely(!page_evictable(page
, NULL
))) {
1151 spin_unlock_irq(&zone
->lru_lock
);
1152 putback_lru_page(page
);
1153 spin_lock_irq(&zone
->lru_lock
);
1157 lru
= page_lru(page
);
1158 add_page_to_lru_list(zone
, page
, lru
);
1159 if (PageActive(page
)) {
1160 int file
= !!page_is_file_cache(page
);
1161 reclaim_stat
->recent_rotated
[file
]++;
1163 if (!pagevec_add(&pvec
, page
)) {
1164 spin_unlock_irq(&zone
->lru_lock
);
1165 __pagevec_release(&pvec
);
1166 spin_lock_irq(&zone
->lru_lock
);
1169 } while (nr_scanned
< max_scan
);
1171 * Non-PREEMPT_RT relies on IRQs-off protecting the page_states
1172 * per-CPU data. PREEMPT_RT has that data protected even in
1173 * __mod_page_state(), so no need to keep IRQs disabled.
1175 spin_unlock(&zone
->lru_lock
);
1177 local_irq_enable_nort();
1178 pagevec_release(&pvec
);
1179 return nr_reclaimed
;
1183 * We are about to scan this zone at a certain priority level. If that priority
1184 * level is smaller (ie: more urgent) than the previous priority, then note
1185 * that priority level within the zone. This is done so that when the next
1186 * process comes in to scan this zone, it will immediately start out at this
1187 * priority level rather than having to build up its own scanning priority.
1188 * Here, this priority affects only the reclaim-mapped threshold.
1190 static inline void note_zone_scanning_priority(struct zone
*zone
, int priority
)
1192 if (priority
< zone
->prev_priority
)
1193 zone
->prev_priority
= priority
;
1197 * This moves pages from the active list to the inactive list.
1199 * We move them the other way if the page is referenced by one or more
1200 * processes, from rmap.
1202 * If the pages are mostly unmapped, the processing is fast and it is
1203 * appropriate to hold zone->lru_lock across the whole operation. But if
1204 * the pages are mapped, the processing is slow (page_referenced()) so we
1205 * should drop zone->lru_lock around each page. It's impossible to balance
1206 * this, so instead we remove the pages from the LRU while processing them.
1207 * It is safe to rely on PG_active against the non-LRU pages in here because
1208 * nobody will play with that bit on a non-LRU page.
1210 * The downside is that we have to touch page->_count against each page.
1211 * But we had to alter page->flags anyway.
1215 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1216 struct scan_control
*sc
, int priority
, int file
)
1218 unsigned long pgmoved
;
1219 int pgdeactivate
= 0;
1220 unsigned long pgscanned
;
1221 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1222 LIST_HEAD(l_inactive
);
1224 struct pagevec pvec
;
1226 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1229 spin_lock_irq(&zone
->lru_lock
);
1230 pgmoved
= sc
->isolate_pages(nr_pages
, &l_hold
, &pgscanned
, sc
->order
,
1231 ISOLATE_ACTIVE
, zone
,
1232 sc
->mem_cgroup
, 1, file
);
1234 * zone->pages_scanned is used for detect zone's oom
1235 * mem_cgroup remembers nr_scan by itself.
1237 if (scanning_global_lru(sc
)) {
1238 zone
->pages_scanned
+= pgscanned
;
1240 reclaim_stat
->recent_scanned
[!!file
] += pgmoved
;
1243 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
, -pgmoved
);
1245 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
, -pgmoved
);
1246 spin_unlock_irq(&zone
->lru_lock
);
1249 while (!list_empty(&l_hold
)) {
1251 page
= lru_to_page(&l_hold
);
1252 list_del(&page
->lru
);
1254 if (unlikely(!page_evictable(page
, NULL
))) {
1255 putback_lru_page(page
);
1259 /* page_referenced clears PageReferenced */
1260 if (page_mapping_inuse(page
) &&
1261 page_referenced(page
, 0, sc
->mem_cgroup
))
1264 list_add(&page
->lru
, &l_inactive
);
1268 * Move the pages to the [file or anon] inactive list.
1270 pagevec_init(&pvec
, 1);
1271 lru
= LRU_BASE
+ file
* LRU_FILE
;
1273 spin_lock_irq(&zone
->lru_lock
);
1275 * Count referenced pages from currently used mappings as
1276 * rotated, even though they are moved to the inactive list.
1277 * This helps balance scan pressure between file and anonymous
1278 * pages in get_scan_ratio.
1280 reclaim_stat
->recent_rotated
[!!file
] += pgmoved
;
1283 while (!list_empty(&l_inactive
)) {
1284 page
= lru_to_page(&l_inactive
);
1285 prefetchw_prev_lru_page(page
, &l_inactive
, flags
);
1286 VM_BUG_ON(PageLRU(page
));
1288 VM_BUG_ON(!PageActive(page
));
1289 ClearPageActive(page
);
1291 list_move(&page
->lru
, &zone
->lru
[lru
].list
);
1292 mem_cgroup_add_lru_list(page
, lru
);
1294 if (!pagevec_add(&pvec
, page
)) {
1295 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1296 spin_unlock_irq(&zone
->lru_lock
);
1297 pgdeactivate
+= pgmoved
;
1299 if (buffer_heads_over_limit
)
1300 pagevec_strip(&pvec
);
1301 __pagevec_release(&pvec
);
1302 spin_lock_irq(&zone
->lru_lock
);
1305 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1306 pgdeactivate
+= pgmoved
;
1307 if (buffer_heads_over_limit
) {
1308 spin_unlock_irq(&zone
->lru_lock
);
1309 pagevec_strip(&pvec
);
1310 spin_lock_irq(&zone
->lru_lock
);
1312 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1313 __count_vm_events(PGDEACTIVATE
, pgdeactivate
);
1314 spin_unlock_irq(&zone
->lru_lock
);
1316 pagevec_swap_free(&pvec
);
1318 pagevec_release(&pvec
);
1321 static int inactive_anon_is_low_global(struct zone
*zone
)
1323 unsigned long active
, inactive
;
1325 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1326 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1328 if (inactive
* zone
->inactive_ratio
< active
)
1335 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1336 * @zone: zone to check
1337 * @sc: scan control of this context
1339 * Returns true if the zone does not have enough inactive anon pages,
1340 * meaning some active anon pages need to be deactivated.
1342 static int inactive_anon_is_low(struct zone
*zone
, struct scan_control
*sc
)
1346 if (scanning_global_lru(sc
))
1347 low
= inactive_anon_is_low_global(zone
);
1349 low
= mem_cgroup_inactive_anon_is_low(sc
->mem_cgroup
);
1353 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1354 struct zone
*zone
, struct scan_control
*sc
, int priority
)
1356 int file
= is_file_lru(lru
);
1358 if (lru
== LRU_ACTIVE_FILE
) {
1359 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1363 if (lru
== LRU_ACTIVE_ANON
&& inactive_anon_is_low(zone
, sc
)) {
1364 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1367 return shrink_inactive_list(nr_to_scan
, zone
, sc
, priority
, file
);
1371 * Determine how aggressively the anon and file LRU lists should be
1372 * scanned. The relative value of each set of LRU lists is determined
1373 * by looking at the fraction of the pages scanned we did rotate back
1374 * onto the active list instead of evict.
1376 * percent[0] specifies how much pressure to put on ram/swap backed
1377 * memory, while percent[1] determines pressure on the file LRUs.
1379 static void get_scan_ratio(struct zone
*zone
, struct scan_control
*sc
,
1380 unsigned long *percent
)
1382 unsigned long anon
, file
, free
;
1383 unsigned long anon_prio
, file_prio
;
1384 unsigned long ap
, fp
;
1385 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1387 /* If we have no swap space, do not bother scanning anon pages. */
1388 if (nr_swap_pages
<= 0) {
1394 anon
= zone_nr_pages(zone
, sc
, LRU_ACTIVE_ANON
) +
1395 zone_nr_pages(zone
, sc
, LRU_INACTIVE_ANON
);
1396 file
= zone_nr_pages(zone
, sc
, LRU_ACTIVE_FILE
) +
1397 zone_nr_pages(zone
, sc
, LRU_INACTIVE_FILE
);
1399 if (scanning_global_lru(sc
)) {
1400 free
= zone_page_state(zone
, NR_FREE_PAGES
);
1401 /* If we have very few page cache pages,
1402 force-scan anon pages. */
1403 if (unlikely(file
+ free
<= zone
->pages_high
)) {
1411 * OK, so we have swap space and a fair amount of page cache
1412 * pages. We use the recently rotated / recently scanned
1413 * ratios to determine how valuable each cache is.
1415 * Because workloads change over time (and to avoid overflow)
1416 * we keep these statistics as a floating average, which ends
1417 * up weighing recent references more than old ones.
1419 * anon in [0], file in [1]
1421 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
1422 spin_lock_irq(&zone
->lru_lock
);
1423 reclaim_stat
->recent_scanned
[0] /= 2;
1424 reclaim_stat
->recent_rotated
[0] /= 2;
1425 spin_unlock_irq(&zone
->lru_lock
);
1428 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
1429 spin_lock_irq(&zone
->lru_lock
);
1430 reclaim_stat
->recent_scanned
[1] /= 2;
1431 reclaim_stat
->recent_rotated
[1] /= 2;
1432 spin_unlock_irq(&zone
->lru_lock
);
1436 * With swappiness at 100, anonymous and file have the same priority.
1437 * This scanning priority is essentially the inverse of IO cost.
1439 anon_prio
= sc
->swappiness
;
1440 file_prio
= 200 - sc
->swappiness
;
1443 * The amount of pressure on anon vs file pages is inversely
1444 * proportional to the fraction of recently scanned pages on
1445 * each list that were recently referenced and in active use.
1447 ap
= (anon_prio
+ 1) * (reclaim_stat
->recent_scanned
[0] + 1);
1448 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
1450 fp
= (file_prio
+ 1) * (reclaim_stat
->recent_scanned
[1] + 1);
1451 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
1453 /* Normalize to percentages */
1454 percent
[0] = 100 * ap
/ (ap
+ fp
+ 1);
1455 percent
[1] = 100 - percent
[0];
1460 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1462 static void shrink_zone(int priority
, struct zone
*zone
,
1463 struct scan_control
*sc
)
1465 unsigned long nr
[NR_LRU_LISTS
];
1466 unsigned long nr_to_scan
;
1467 unsigned long percent
[2]; /* anon @ 0; file @ 1 */
1469 unsigned long nr_reclaimed
= sc
->nr_reclaimed
;
1470 unsigned long swap_cluster_max
= sc
->swap_cluster_max
;
1472 get_scan_ratio(zone
, sc
, percent
);
1474 for_each_evictable_lru(l
) {
1475 int file
= is_file_lru(l
);
1478 scan
= zone_nr_pages(zone
, sc
, l
);
1481 scan
= (scan
* percent
[file
]) / 100;
1483 if (scanning_global_lru(sc
)) {
1484 zone
->lru
[l
].nr_scan
+= scan
;
1485 nr
[l
] = zone
->lru
[l
].nr_scan
;
1486 if (nr
[l
] >= swap_cluster_max
)
1487 zone
->lru
[l
].nr_scan
= 0;
1494 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
1495 nr
[LRU_INACTIVE_FILE
]) {
1496 for_each_evictable_lru(l
) {
1498 nr_to_scan
= min(nr
[l
], swap_cluster_max
);
1499 nr
[l
] -= nr_to_scan
;
1501 nr_reclaimed
+= shrink_list(l
, nr_to_scan
,
1502 zone
, sc
, priority
);
1506 * On large memory systems, scan >> priority can become
1507 * really large. This is fine for the starting priority;
1508 * we want to put equal scanning pressure on each zone.
1509 * However, if the VM has a harder time of freeing pages,
1510 * with multiple processes reclaiming pages, the total
1511 * freeing target can get unreasonably large.
1513 if (nr_reclaimed
> swap_cluster_max
&&
1514 priority
< DEF_PRIORITY
&& !current_is_kswapd())
1518 sc
->nr_reclaimed
= nr_reclaimed
;
1521 * Even if we did not try to evict anon pages at all, we want to
1522 * rebalance the anon lru active/inactive ratio.
1524 if (inactive_anon_is_low(zone
, sc
))
1525 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
1527 throttle_vm_writeout(sc
->gfp_mask
);
1531 * This is the direct reclaim path, for page-allocating processes. We only
1532 * try to reclaim pages from zones which will satisfy the caller's allocation
1535 * We reclaim from a zone even if that zone is over pages_high. Because:
1536 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1538 * b) The zones may be over pages_high but they must go *over* pages_high to
1539 * satisfy the `incremental min' zone defense algorithm.
1541 * If a zone is deemed to be full of pinned pages then just give it a light
1542 * scan then give up on it.
1544 static void shrink_zones(int priority
, struct zonelist
*zonelist
,
1545 struct scan_control
*sc
)
1547 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1551 sc
->all_unreclaimable
= 1;
1552 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1553 if (!populated_zone(zone
))
1556 * Take care memory controller reclaiming has small influence
1559 if (scanning_global_lru(sc
)) {
1560 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1562 note_zone_scanning_priority(zone
, priority
);
1564 if (zone_is_all_unreclaimable(zone
) &&
1565 priority
!= DEF_PRIORITY
)
1566 continue; /* Let kswapd poll it */
1567 sc
->all_unreclaimable
= 0;
1570 * Ignore cpuset limitation here. We just want to reduce
1571 * # of used pages by us regardless of memory shortage.
1573 sc
->all_unreclaimable
= 0;
1574 mem_cgroup_note_reclaim_priority(sc
->mem_cgroup
,
1578 shrink_zone(priority
, zone
, sc
);
1583 * This is the main entry point to direct page reclaim.
1585 * If a full scan of the inactive list fails to free enough memory then we
1586 * are "out of memory" and something needs to be killed.
1588 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1589 * high - the zone may be full of dirty or under-writeback pages, which this
1590 * caller can't do much about. We kick pdflush and take explicit naps in the
1591 * hope that some of these pages can be written. But if the allocating task
1592 * holds filesystem locks which prevent writeout this might not work, and the
1593 * allocation attempt will fail.
1595 * returns: 0, if no pages reclaimed
1596 * else, the number of pages reclaimed
1598 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
1599 struct scan_control
*sc
)
1602 unsigned long ret
= 0;
1603 unsigned long total_scanned
= 0;
1604 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1605 unsigned long lru_pages
= 0;
1608 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1610 delayacct_freepages_start();
1612 if (scanning_global_lru(sc
))
1613 count_vm_event(ALLOCSTALL
);
1615 * mem_cgroup will not do shrink_slab.
1617 if (scanning_global_lru(sc
)) {
1618 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1620 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1623 lru_pages
+= zone_lru_pages(zone
);
1627 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1630 disable_swap_token();
1631 shrink_zones(priority
, zonelist
, sc
);
1633 * Don't shrink slabs when reclaiming memory from
1634 * over limit cgroups
1636 if (scanning_global_lru(sc
)) {
1637 shrink_slab(sc
->nr_scanned
, sc
->gfp_mask
, lru_pages
);
1638 if (reclaim_state
) {
1639 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1640 reclaim_state
->reclaimed_slab
= 0;
1643 total_scanned
+= sc
->nr_scanned
;
1644 if (sc
->nr_reclaimed
>= sc
->swap_cluster_max
) {
1645 ret
= sc
->nr_reclaimed
;
1650 * Try to write back as many pages as we just scanned. This
1651 * tends to cause slow streaming writers to write data to the
1652 * disk smoothly, at the dirtying rate, which is nice. But
1653 * that's undesirable in laptop mode, where we *want* lumpy
1654 * writeout. So in laptop mode, write out the whole world.
1656 if (total_scanned
> sc
->swap_cluster_max
+
1657 sc
->swap_cluster_max
/ 2) {
1658 wakeup_pdflush(laptop_mode
? 0 : total_scanned
);
1659 sc
->may_writepage
= 1;
1662 /* Take a nap, wait for some writeback to complete */
1663 if (sc
->nr_scanned
&& priority
< DEF_PRIORITY
- 2)
1664 congestion_wait(WRITE
, HZ
/10);
1666 /* top priority shrink_zones still had more to do? don't OOM, then */
1667 if (!sc
->all_unreclaimable
&& scanning_global_lru(sc
))
1668 ret
= sc
->nr_reclaimed
;
1671 * Now that we've scanned all the zones at this priority level, note
1672 * that level within the zone so that the next thread which performs
1673 * scanning of this zone will immediately start out at this priority
1674 * level. This affects only the decision whether or not to bring
1675 * mapped pages onto the inactive list.
1680 if (scanning_global_lru(sc
)) {
1681 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1683 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1686 zone
->prev_priority
= priority
;
1689 mem_cgroup_record_reclaim_priority(sc
->mem_cgroup
, priority
);
1691 delayacct_freepages_end();
1696 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
1699 struct scan_control sc
= {
1700 .gfp_mask
= gfp_mask
,
1701 .may_writepage
= !laptop_mode
,
1702 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1704 .swappiness
= vm_swappiness
,
1707 .isolate_pages
= isolate_pages_global
,
1710 return do_try_to_free_pages(zonelist
, &sc
);
1713 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1715 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
1718 unsigned int swappiness
)
1720 struct scan_control sc
= {
1721 .may_writepage
= !laptop_mode
,
1723 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1724 .swappiness
= swappiness
,
1726 .mem_cgroup
= mem_cont
,
1727 .isolate_pages
= mem_cgroup_isolate_pages
,
1729 struct zonelist
*zonelist
;
1734 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
1735 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
1736 zonelist
= NODE_DATA(numa_node_id())->node_zonelists
;
1737 return do_try_to_free_pages(zonelist
, &sc
);
1742 * For kswapd, balance_pgdat() will work across all this node's zones until
1743 * they are all at pages_high.
1745 * Returns the number of pages which were actually freed.
1747 * There is special handling here for zones which are full of pinned pages.
1748 * This can happen if the pages are all mlocked, or if they are all used by
1749 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1750 * What we do is to detect the case where all pages in the zone have been
1751 * scanned twice and there has been zero successful reclaim. Mark the zone as
1752 * dead and from now on, only perform a short scan. Basically we're polling
1753 * the zone for when the problem goes away.
1755 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1756 * zones which have free_pages > pages_high, but once a zone is found to have
1757 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1758 * of the number of free pages in the lower zones. This interoperates with
1759 * the page allocator fallback scheme to ensure that aging of pages is balanced
1762 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
1767 unsigned long total_scanned
;
1768 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1769 struct scan_control sc
= {
1770 .gfp_mask
= GFP_KERNEL
,
1772 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1773 .swappiness
= vm_swappiness
,
1776 .isolate_pages
= isolate_pages_global
,
1779 * temp_priority is used to remember the scanning priority at which
1780 * this zone was successfully refilled to free_pages == pages_high.
1782 int temp_priority
[MAX_NR_ZONES
];
1786 sc
.nr_reclaimed
= 0;
1787 sc
.may_writepage
= !laptop_mode
;
1788 count_vm_event(PAGEOUTRUN
);
1790 for (i
= 0; i
< pgdat
->nr_zones
; i
++)
1791 temp_priority
[i
] = DEF_PRIORITY
;
1793 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1794 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
1795 unsigned long lru_pages
= 0;
1797 /* The swap token gets in the way of swapout... */
1799 disable_swap_token();
1804 * Scan in the highmem->dma direction for the highest
1805 * zone which needs scanning
1807 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
1808 struct zone
*zone
= pgdat
->node_zones
+ i
;
1810 if (!populated_zone(zone
))
1813 if (zone_is_all_unreclaimable(zone
) &&
1814 priority
!= DEF_PRIORITY
)
1818 * Do some background aging of the anon list, to give
1819 * pages a chance to be referenced before reclaiming.
1821 if (inactive_anon_is_low(zone
, &sc
))
1822 shrink_active_list(SWAP_CLUSTER_MAX
, zone
,
1825 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1834 for (i
= 0; i
<= end_zone
; i
++) {
1835 struct zone
*zone
= pgdat
->node_zones
+ i
;
1837 lru_pages
+= zone_lru_pages(zone
);
1841 * Now scan the zone in the dma->highmem direction, stopping
1842 * at the last zone which needs scanning.
1844 * We do this because the page allocator works in the opposite
1845 * direction. This prevents the page allocator from allocating
1846 * pages behind kswapd's direction of progress, which would
1847 * cause too much scanning of the lower zones.
1849 for (i
= 0; i
<= end_zone
; i
++) {
1850 struct zone
*zone
= pgdat
->node_zones
+ i
;
1853 if (!populated_zone(zone
))
1856 if (zone_is_all_unreclaimable(zone
) &&
1857 priority
!= DEF_PRIORITY
)
1860 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1863 temp_priority
[i
] = priority
;
1865 note_zone_scanning_priority(zone
, priority
);
1867 * We put equal pressure on every zone, unless one
1868 * zone has way too many pages free already.
1870 if (!zone_watermark_ok(zone
, order
, 8*zone
->pages_high
,
1872 shrink_zone(priority
, zone
, &sc
);
1873 reclaim_state
->reclaimed_slab
= 0;
1874 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
1876 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1877 total_scanned
+= sc
.nr_scanned
;
1878 if (zone_is_all_unreclaimable(zone
))
1880 if (nr_slab
== 0 && zone
->pages_scanned
>=
1881 (zone_lru_pages(zone
) * 6))
1883 ZONE_ALL_UNRECLAIMABLE
);
1885 * If we've done a decent amount of scanning and
1886 * the reclaim ratio is low, start doing writepage
1887 * even in laptop mode
1889 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
1890 total_scanned
> sc
.nr_reclaimed
+ sc
.nr_reclaimed
/ 2)
1891 sc
.may_writepage
= 1;
1894 break; /* kswapd: all done */
1896 * OK, kswapd is getting into trouble. Take a nap, then take
1897 * another pass across the zones.
1899 if (total_scanned
&& priority
< DEF_PRIORITY
- 2)
1900 congestion_wait(WRITE
, HZ
/10);
1903 * We do this so kswapd doesn't build up large priorities for
1904 * example when it is freeing in parallel with allocators. It
1905 * matches the direct reclaim path behaviour in terms of impact
1906 * on zone->*_priority.
1908 if (sc
.nr_reclaimed
>= SWAP_CLUSTER_MAX
)
1913 * Note within each zone the priority level at which this zone was
1914 * brought into a happy state. So that the next thread which scans this
1915 * zone will start out at that priority level.
1917 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1918 struct zone
*zone
= pgdat
->node_zones
+ i
;
1920 zone
->prev_priority
= temp_priority
[i
];
1922 if (!all_zones_ok
) {
1928 * Fragmentation may mean that the system cannot be
1929 * rebalanced for high-order allocations in all zones.
1930 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1931 * it means the zones have been fully scanned and are still
1932 * not balanced. For high-order allocations, there is
1933 * little point trying all over again as kswapd may
1936 * Instead, recheck all watermarks at order-0 as they
1937 * are the most important. If watermarks are ok, kswapd will go
1938 * back to sleep. High-order users can still perform direct
1939 * reclaim if they wish.
1941 if (sc
.nr_reclaimed
< SWAP_CLUSTER_MAX
)
1942 order
= sc
.order
= 0;
1947 return sc
.nr_reclaimed
;
1951 * The background pageout daemon, started as a kernel thread
1952 * from the init process.
1954 * This basically trickles out pages so that we have _some_
1955 * free memory available even if there is no other activity
1956 * that frees anything up. This is needed for things like routing
1957 * etc, where we otherwise might have all activity going on in
1958 * asynchronous contexts that cannot page things out.
1960 * If there are applications that are active memory-allocators
1961 * (most normal use), this basically shouldn't matter.
1963 static int kswapd(void *p
)
1965 unsigned long order
;
1966 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1967 struct task_struct
*tsk
= current
;
1969 struct reclaim_state reclaim_state
= {
1970 .reclaimed_slab
= 0,
1972 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1974 lockdep_set_current_reclaim_state(GFP_KERNEL
);
1976 if (!cpumask_empty(cpumask
))
1977 set_cpus_allowed_ptr(tsk
, cpumask
);
1978 current
->reclaim_state
= &reclaim_state
;
1981 * Tell the memory management that we're a "memory allocator",
1982 * and that if we need more memory we should get access to it
1983 * regardless (see "__alloc_pages()"). "kswapd" should
1984 * never get caught in the normal page freeing logic.
1986 * (Kswapd normally doesn't need memory anyway, but sometimes
1987 * you need a small amount of memory in order to be able to
1988 * page out something else, and this flag essentially protects
1989 * us from recursively trying to free more memory as we're
1990 * trying to free the first piece of memory in the first place).
1992 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
1997 unsigned long new_order
;
1999 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2000 new_order
= pgdat
->kswapd_max_order
;
2001 pgdat
->kswapd_max_order
= 0;
2002 if (order
< new_order
) {
2004 * Don't sleep if someone wants a larger 'order'
2009 if (!freezing(current
))
2012 order
= pgdat
->kswapd_max_order
;
2014 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2016 if (!try_to_freeze()) {
2017 /* We can speed up thawing tasks if we don't call
2018 * balance_pgdat after returning from the refrigerator
2020 balance_pgdat(pgdat
, order
);
2027 * A zone is low on free memory, so wake its kswapd task to service it.
2029 void wakeup_kswapd(struct zone
*zone
, int order
)
2033 if (!populated_zone(zone
))
2036 pgdat
= zone
->zone_pgdat
;
2037 if (zone_watermark_ok(zone
, order
, zone
->pages_low
, 0, 0))
2039 if (pgdat
->kswapd_max_order
< order
)
2040 pgdat
->kswapd_max_order
= order
;
2041 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2043 if (!waitqueue_active(&pgdat
->kswapd_wait
))
2045 wake_up_interruptible(&pgdat
->kswapd_wait
);
2048 unsigned long global_lru_pages(void)
2050 return global_page_state(NR_ACTIVE_ANON
)
2051 + global_page_state(NR_ACTIVE_FILE
)
2052 + global_page_state(NR_INACTIVE_ANON
)
2053 + global_page_state(NR_INACTIVE_FILE
);
2058 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
2059 * from LRU lists system-wide, for given pass and priority, and returns the
2060 * number of reclaimed pages
2062 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2064 static unsigned long shrink_all_zones(unsigned long nr_pages
, int prio
,
2065 int pass
, struct scan_control
*sc
)
2068 unsigned long ret
= 0;
2070 for_each_zone(zone
) {
2073 if (!populated_zone(zone
))
2075 if (zone_is_all_unreclaimable(zone
) && prio
!= DEF_PRIORITY
)
2078 for_each_evictable_lru(l
) {
2079 enum zone_stat_item ls
= NR_LRU_BASE
+ l
;
2080 unsigned long lru_pages
= zone_page_state(zone
, ls
);
2082 /* For pass = 0, we don't shrink the active list */
2083 if (pass
== 0 && (l
== LRU_ACTIVE_ANON
||
2084 l
== LRU_ACTIVE_FILE
))
2087 zone
->lru
[l
].nr_scan
+= (lru_pages
>> prio
) + 1;
2088 if (zone
->lru
[l
].nr_scan
>= nr_pages
|| pass
> 3) {
2089 unsigned long nr_to_scan
;
2091 zone
->lru
[l
].nr_scan
= 0;
2092 nr_to_scan
= min(nr_pages
, lru_pages
);
2093 ret
+= shrink_list(l
, nr_to_scan
, zone
,
2095 if (ret
>= nr_pages
)
2104 * Try to free `nr_pages' of memory, system-wide, and return the number of
2107 * Rather than trying to age LRUs the aim is to preserve the overall
2108 * LRU order by reclaiming preferentially
2109 * inactive > active > active referenced > active mapped
2111 unsigned long shrink_all_memory(unsigned long nr_pages
)
2113 unsigned long lru_pages
, nr_slab
;
2114 unsigned long ret
= 0;
2116 struct reclaim_state reclaim_state
;
2117 struct scan_control sc
= {
2118 .gfp_mask
= GFP_KERNEL
,
2120 .swap_cluster_max
= nr_pages
,
2122 .isolate_pages
= isolate_pages_global
,
2125 current
->reclaim_state
= &reclaim_state
;
2127 lru_pages
= global_lru_pages();
2128 nr_slab
= global_page_state(NR_SLAB_RECLAIMABLE
);
2129 /* If slab caches are huge, it's better to hit them first */
2130 while (nr_slab
>= lru_pages
) {
2131 reclaim_state
.reclaimed_slab
= 0;
2132 shrink_slab(nr_pages
, sc
.gfp_mask
, lru_pages
);
2133 if (!reclaim_state
.reclaimed_slab
)
2136 ret
+= reclaim_state
.reclaimed_slab
;
2137 if (ret
>= nr_pages
)
2140 nr_slab
-= reclaim_state
.reclaimed_slab
;
2144 * We try to shrink LRUs in 5 passes:
2145 * 0 = Reclaim from inactive_list only
2146 * 1 = Reclaim from active list but don't reclaim mapped
2147 * 2 = 2nd pass of type 1
2148 * 3 = Reclaim mapped (normal reclaim)
2149 * 4 = 2nd pass of type 3
2151 for (pass
= 0; pass
< 5; pass
++) {
2154 /* Force reclaiming mapped pages in the passes #3 and #4 */
2158 for (prio
= DEF_PRIORITY
; prio
>= 0; prio
--) {
2159 unsigned long nr_to_scan
= nr_pages
- ret
;
2162 ret
+= shrink_all_zones(nr_to_scan
, prio
, pass
, &sc
);
2163 if (ret
>= nr_pages
)
2166 reclaim_state
.reclaimed_slab
= 0;
2167 shrink_slab(sc
.nr_scanned
, sc
.gfp_mask
,
2168 global_lru_pages());
2169 ret
+= reclaim_state
.reclaimed_slab
;
2170 if (ret
>= nr_pages
)
2173 if (sc
.nr_scanned
&& prio
< DEF_PRIORITY
- 2)
2174 congestion_wait(WRITE
, HZ
/ 10);
2179 * If ret = 0, we could not shrink LRUs, but there may be something
2184 reclaim_state
.reclaimed_slab
= 0;
2185 shrink_slab(nr_pages
, sc
.gfp_mask
, global_lru_pages());
2186 ret
+= reclaim_state
.reclaimed_slab
;
2187 } while (ret
< nr_pages
&& reclaim_state
.reclaimed_slab
> 0);
2191 current
->reclaim_state
= NULL
;
2197 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2198 not required for correctness. So if the last cpu in a node goes
2199 away, we get changed to run anywhere: as the first one comes back,
2200 restore their cpu bindings. */
2201 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
2202 unsigned long action
, void *hcpu
)
2206 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
2207 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2208 pg_data_t
*pgdat
= NODE_DATA(nid
);
2209 const struct cpumask
*mask
;
2211 mask
= cpumask_of_node(pgdat
->node_id
);
2213 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2214 /* One of our CPUs online: restore mask */
2215 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
2222 * This kswapd start function will be called by init and node-hot-add.
2223 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2225 int kswapd_run(int nid
)
2227 pg_data_t
*pgdat
= NODE_DATA(nid
);
2233 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
2234 if (IS_ERR(pgdat
->kswapd
)) {
2235 /* failure at boot is fatal */
2236 BUG_ON(system_state
== SYSTEM_BOOTING
);
2237 printk("Failed to start kswapd on node %d\n",nid
);
2243 static int __init
kswapd_init(void)
2248 for_each_node_state(nid
, N_HIGH_MEMORY
)
2250 hotcpu_notifier(cpu_callback
, 0);
2254 module_init(kswapd_init
)
2260 * If non-zero call zone_reclaim when the number of free pages falls below
2263 int zone_reclaim_mode __read_mostly
;
2265 #define RECLAIM_OFF 0
2266 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2267 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2268 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2271 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2272 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2275 #define ZONE_RECLAIM_PRIORITY 4
2278 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2281 int sysctl_min_unmapped_ratio
= 1;
2284 * If the number of slab pages in a zone grows beyond this percentage then
2285 * slab reclaim needs to occur.
2287 int sysctl_min_slab_ratio
= 5;
2290 * Try to free up some pages from this zone through reclaim.
2292 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2294 /* Minimum pages needed in order to stay on node */
2295 const unsigned long nr_pages
= 1 << order
;
2296 struct task_struct
*p
= current
;
2297 struct reclaim_state reclaim_state
;
2299 struct scan_control sc
= {
2300 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
2301 .may_swap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
2302 .swap_cluster_max
= max_t(unsigned long, nr_pages
,
2304 .gfp_mask
= gfp_mask
,
2305 .swappiness
= vm_swappiness
,
2306 .isolate_pages
= isolate_pages_global
,
2308 unsigned long slab_reclaimable
;
2310 disable_swap_token();
2313 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2314 * and we also need to be able to write out pages for RECLAIM_WRITE
2317 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
2318 reclaim_state
.reclaimed_slab
= 0;
2319 p
->reclaim_state
= &reclaim_state
;
2321 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2322 zone_page_state(zone
, NR_FILE_MAPPED
) >
2323 zone
->min_unmapped_pages
) {
2325 * Free memory by calling shrink zone with increasing
2326 * priorities until we have enough memory freed.
2328 priority
= ZONE_RECLAIM_PRIORITY
;
2330 note_zone_scanning_priority(zone
, priority
);
2331 shrink_zone(priority
, zone
, &sc
);
2333 } while (priority
>= 0 && sc
.nr_reclaimed
< nr_pages
);
2336 slab_reclaimable
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2337 if (slab_reclaimable
> zone
->min_slab_pages
) {
2339 * shrink_slab() does not currently allow us to determine how
2340 * many pages were freed in this zone. So we take the current
2341 * number of slab pages and shake the slab until it is reduced
2342 * by the same nr_pages that we used for reclaiming unmapped
2345 * Note that shrink_slab will free memory on all zones and may
2348 while (shrink_slab(sc
.nr_scanned
, gfp_mask
, order
) &&
2349 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) >
2350 slab_reclaimable
- nr_pages
)
2354 * Update nr_reclaimed by the number of slab pages we
2355 * reclaimed from this zone.
2357 sc
.nr_reclaimed
+= slab_reclaimable
-
2358 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2361 p
->reclaim_state
= NULL
;
2362 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
2363 return sc
.nr_reclaimed
>= nr_pages
;
2366 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2372 * Zone reclaim reclaims unmapped file backed pages and
2373 * slab pages if we are over the defined limits.
2375 * A small portion of unmapped file backed pages is needed for
2376 * file I/O otherwise pages read by file I/O will be immediately
2377 * thrown out if the zone is overallocated. So we do not reclaim
2378 * if less than a specified percentage of the zone is used by
2379 * unmapped file backed pages.
2381 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2382 zone_page_state(zone
, NR_FILE_MAPPED
) <= zone
->min_unmapped_pages
2383 && zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)
2384 <= zone
->min_slab_pages
)
2387 if (zone_is_all_unreclaimable(zone
))
2391 * Do not scan if the allocation should not be delayed.
2393 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
2397 * Only run zone reclaim on the local zone or on zones that do not
2398 * have associated processors. This will favor the local processor
2399 * over remote processors and spread off node memory allocations
2400 * as wide as possible.
2402 node_id
= zone_to_nid(zone
);
2403 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
2406 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
2408 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
2409 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
2415 #ifdef CONFIG_UNEVICTABLE_LRU
2417 * page_evictable - test whether a page is evictable
2418 * @page: the page to test
2419 * @vma: the VMA in which the page is or will be mapped, may be NULL
2421 * Test whether page is evictable--i.e., should be placed on active/inactive
2422 * lists vs unevictable list. The vma argument is !NULL when called from the
2423 * fault path to determine how to instantate a new page.
2425 * Reasons page might not be evictable:
2426 * (1) page's mapping marked unevictable
2427 * (2) page is part of an mlocked VMA
2430 int page_evictable(struct page
*page
, struct vm_area_struct
*vma
)
2433 if (mapping_unevictable(page_mapping(page
)))
2436 if (PageMlocked(page
) || (vma
&& is_mlocked_vma(vma
, page
)))
2443 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2444 * @page: page to check evictability and move to appropriate lru list
2445 * @zone: zone page is in
2447 * Checks a page for evictability and moves the page to the appropriate
2450 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2451 * have PageUnevictable set.
2453 static void check_move_unevictable_page(struct page
*page
, struct zone
*zone
)
2455 VM_BUG_ON(PageActive(page
));
2458 ClearPageUnevictable(page
);
2459 if (page_evictable(page
, NULL
)) {
2460 enum lru_list l
= LRU_INACTIVE_ANON
+ page_is_file_cache(page
);
2462 __dec_zone_state(zone
, NR_UNEVICTABLE
);
2463 list_move(&page
->lru
, &zone
->lru
[l
].list
);
2464 mem_cgroup_move_lists(page
, LRU_UNEVICTABLE
, l
);
2465 __inc_zone_state(zone
, NR_INACTIVE_ANON
+ l
);
2466 __count_vm_event(UNEVICTABLE_PGRESCUED
);
2469 * rotate unevictable list
2471 SetPageUnevictable(page
);
2472 list_move(&page
->lru
, &zone
->lru
[LRU_UNEVICTABLE
].list
);
2473 mem_cgroup_rotate_lru_list(page
, LRU_UNEVICTABLE
);
2474 if (page_evictable(page
, NULL
))
2480 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2481 * @mapping: struct address_space to scan for evictable pages
2483 * Scan all pages in mapping. Check unevictable pages for
2484 * evictability and move them to the appropriate zone lru list.
2486 void scan_mapping_unevictable_pages(struct address_space
*mapping
)
2489 pgoff_t end
= (i_size_read(mapping
->host
) + PAGE_CACHE_SIZE
- 1) >>
2492 struct pagevec pvec
;
2494 if (mapping
->nrpages
== 0)
2497 pagevec_init(&pvec
, 0);
2498 while (next
< end
&&
2499 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
2505 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
2506 struct page
*page
= pvec
.pages
[i
];
2507 pgoff_t page_index
= page
->index
;
2508 struct zone
*pagezone
= page_zone(page
);
2511 if (page_index
> next
)
2515 if (pagezone
!= zone
) {
2517 spin_unlock_irq(&zone
->lru_lock
);
2519 spin_lock_irq(&zone
->lru_lock
);
2522 if (PageLRU(page
) && PageUnevictable(page
))
2523 check_move_unevictable_page(page
, zone
);
2526 spin_unlock_irq(&zone
->lru_lock
);
2527 pagevec_release(&pvec
);
2529 count_vm_events(UNEVICTABLE_PGSCANNED
, pg_scanned
);
2535 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2536 * @zone - zone of which to scan the unevictable list
2538 * Scan @zone's unevictable LRU lists to check for pages that have become
2539 * evictable. Move those that have to @zone's inactive list where they
2540 * become candidates for reclaim, unless shrink_inactive_zone() decides
2541 * to reactivate them. Pages that are still unevictable are rotated
2542 * back onto @zone's unevictable list.
2544 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2545 static void scan_zone_unevictable_pages(struct zone
*zone
)
2547 struct list_head
*l_unevictable
= &zone
->lru
[LRU_UNEVICTABLE
].list
;
2549 unsigned long nr_to_scan
= zone_page_state(zone
, NR_UNEVICTABLE
);
2551 while (nr_to_scan
> 0) {
2552 unsigned long batch_size
= min(nr_to_scan
,
2553 SCAN_UNEVICTABLE_BATCH_SIZE
);
2555 spin_lock_irq(&zone
->lru_lock
);
2556 for (scan
= 0; scan
< batch_size
; scan
++) {
2557 struct page
*page
= lru_to_page(l_unevictable
);
2559 if (!trylock_page(page
))
2562 prefetchw_prev_lru_page(page
, l_unevictable
, flags
);
2564 if (likely(PageLRU(page
) && PageUnevictable(page
)))
2565 check_move_unevictable_page(page
, zone
);
2569 spin_unlock_irq(&zone
->lru_lock
);
2571 nr_to_scan
-= batch_size
;
2577 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2579 * A really big hammer: scan all zones' unevictable LRU lists to check for
2580 * pages that have become evictable. Move those back to the zones'
2581 * inactive list where they become candidates for reclaim.
2582 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2583 * and we add swap to the system. As such, it runs in the context of a task
2584 * that has possibly/probably made some previously unevictable pages
2587 static void scan_all_zones_unevictable_pages(void)
2591 for_each_zone(zone
) {
2592 scan_zone_unevictable_pages(zone
);
2597 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2598 * all nodes' unevictable lists for evictable pages
2600 unsigned long scan_unevictable_pages
;
2602 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
2603 struct file
*file
, void __user
*buffer
,
2604 size_t *length
, loff_t
*ppos
)
2606 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2608 if (write
&& *(unsigned long *)table
->data
)
2609 scan_all_zones_unevictable_pages();
2611 scan_unevictable_pages
= 0;
2616 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2617 * a specified node's per zone unevictable lists for evictable pages.
2620 static ssize_t
read_scan_unevictable_node(struct sys_device
*dev
,
2621 struct sysdev_attribute
*attr
,
2624 return sprintf(buf
, "0\n"); /* always zero; should fit... */
2627 static ssize_t
write_scan_unevictable_node(struct sys_device
*dev
,
2628 struct sysdev_attribute
*attr
,
2629 const char *buf
, size_t count
)
2631 struct zone
*node_zones
= NODE_DATA(dev
->id
)->node_zones
;
2634 unsigned long req
= strict_strtoul(buf
, 10, &res
);
2637 return 1; /* zero is no-op */
2639 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2640 if (!populated_zone(zone
))
2642 scan_zone_unevictable_pages(zone
);
2648 static SYSDEV_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
2649 read_scan_unevictable_node
,
2650 write_scan_unevictable_node
);
2652 int scan_unevictable_register_node(struct node
*node
)
2654 return sysdev_create_file(&node
->sysdev
, &attr_scan_unevictable_pages
);
2657 void scan_unevictable_unregister_node(struct node
*node
)
2659 sysdev_remove_file(&node
->sysdev
, &attr_scan_unevictable_pages
);