2 * Public API and common code for kernel->userspace relay file support.
4 * See Documentation/filesystems/relay.txt for an overview.
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
13 * This file is released under the GPL.
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex
);
28 static LIST_HEAD(relay_channels
);
31 * close() vm_op implementation for relay file mapping.
33 static void relay_file_mmap_close(struct vm_area_struct
*vma
)
35 struct rchan_buf
*buf
= vma
->vm_private_data
;
36 buf
->chan
->cb
->buf_unmapped(buf
, vma
->vm_file
);
40 * fault() vm_op implementation for relay file mapping.
42 static int relay_buf_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
45 struct rchan_buf
*buf
= vma
->vm_private_data
;
46 pgoff_t pgoff
= vmf
->pgoff
;
51 page
= vmalloc_to_page(buf
->start
+ (pgoff
<< PAGE_SHIFT
));
53 return VM_FAULT_SIGBUS
;
61 * vm_ops for relay file mappings.
63 static struct vm_operations_struct relay_file_mmap_ops
= {
64 .fault
= relay_buf_fault
,
65 .close
= relay_file_mmap_close
,
69 * allocate an array of pointers of struct page
71 static struct page
**relay_alloc_page_array(unsigned int n_pages
)
74 size_t pa_size
= n_pages
* sizeof(struct page
*);
76 if (pa_size
> PAGE_SIZE
) {
77 array
= vmalloc(pa_size
);
79 memset(array
, 0, pa_size
);
81 array
= kzalloc(pa_size
, GFP_KERNEL
);
87 * free an array of pointers of struct page
89 static void relay_free_page_array(struct page
**array
)
91 if (is_vmalloc_addr(array
))
98 * relay_mmap_buf: - mmap channel buffer to process address space
99 * @buf: relay channel buffer
100 * @vma: vm_area_struct describing memory to be mapped
102 * Returns 0 if ok, negative on error
104 * Caller should already have grabbed mmap_sem.
106 static int relay_mmap_buf(struct rchan_buf
*buf
, struct vm_area_struct
*vma
)
108 unsigned long length
= vma
->vm_end
- vma
->vm_start
;
109 struct file
*filp
= vma
->vm_file
;
114 if (length
!= (unsigned long)buf
->chan
->alloc_size
)
117 vma
->vm_ops
= &relay_file_mmap_ops
;
118 vma
->vm_flags
|= VM_DONTEXPAND
;
119 vma
->vm_private_data
= buf
;
120 buf
->chan
->cb
->buf_mapped(buf
, filp
);
126 * relay_alloc_buf - allocate a channel buffer
127 * @buf: the buffer struct
128 * @size: total size of the buffer
130 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
131 * passed in size will get page aligned, if it isn't already.
133 static void *relay_alloc_buf(struct rchan_buf
*buf
, size_t *size
)
136 unsigned int i
, j
, n_pages
;
138 *size
= PAGE_ALIGN(*size
);
139 n_pages
= *size
>> PAGE_SHIFT
;
141 buf
->page_array
= relay_alloc_page_array(n_pages
);
142 if (!buf
->page_array
)
145 for (i
= 0; i
< n_pages
; i
++) {
146 buf
->page_array
[i
] = alloc_page(GFP_KERNEL
);
147 if (unlikely(!buf
->page_array
[i
]))
149 set_page_private(buf
->page_array
[i
], (unsigned long)buf
);
151 mem
= vmap(buf
->page_array
, n_pages
, VM_MAP
, PAGE_KERNEL
);
155 memset(mem
, 0, *size
);
156 buf
->page_count
= n_pages
;
160 for (j
= 0; j
< i
; j
++)
161 __free_page(buf
->page_array
[j
]);
162 relay_free_page_array(buf
->page_array
);
167 * relay_create_buf - allocate and initialize a channel buffer
168 * @chan: the relay channel
170 * Returns channel buffer if successful, %NULL otherwise.
172 static struct rchan_buf
*relay_create_buf(struct rchan
*chan
)
174 struct rchan_buf
*buf
= kzalloc(sizeof(struct rchan_buf
), GFP_KERNEL
);
178 buf
->padding
= kmalloc(chan
->n_subbufs
* sizeof(size_t *), GFP_KERNEL
);
182 buf
->start
= relay_alloc_buf(buf
, &chan
->alloc_size
);
187 kref_get(&buf
->chan
->kref
);
197 * relay_destroy_channel - free the channel struct
198 * @kref: target kernel reference that contains the relay channel
200 * Should only be called from kref_put().
202 static void relay_destroy_channel(struct kref
*kref
)
204 struct rchan
*chan
= container_of(kref
, struct rchan
, kref
);
209 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
210 * @buf: the buffer struct
212 static void relay_destroy_buf(struct rchan_buf
*buf
)
214 struct rchan
*chan
= buf
->chan
;
217 if (likely(buf
->start
)) {
219 for (i
= 0; i
< buf
->page_count
; i
++)
220 __free_page(buf
->page_array
[i
]);
221 relay_free_page_array(buf
->page_array
);
223 chan
->buf
[buf
->cpu
] = NULL
;
226 kref_put(&chan
->kref
, relay_destroy_channel
);
230 * relay_remove_buf - remove a channel buffer
231 * @kref: target kernel reference that contains the relay buffer
233 * Removes the file from the fileystem, which also frees the
234 * rchan_buf_struct and the channel buffer. Should only be called from
237 static void relay_remove_buf(struct kref
*kref
)
239 struct rchan_buf
*buf
= container_of(kref
, struct rchan_buf
, kref
);
240 buf
->chan
->cb
->remove_buf_file(buf
->dentry
);
241 relay_destroy_buf(buf
);
245 * relay_buf_empty - boolean, is the channel buffer empty?
246 * @buf: channel buffer
248 * Returns 1 if the buffer is empty, 0 otherwise.
250 static int relay_buf_empty(struct rchan_buf
*buf
)
252 return (buf
->subbufs_produced
- buf
->subbufs_consumed
) ? 0 : 1;
256 * relay_buf_full - boolean, is the channel buffer full?
257 * @buf: channel buffer
259 * Returns 1 if the buffer is full, 0 otherwise.
261 int relay_buf_full(struct rchan_buf
*buf
)
263 size_t ready
= buf
->subbufs_produced
- buf
->subbufs_consumed
;
264 return (ready
>= buf
->chan
->n_subbufs
) ? 1 : 0;
266 EXPORT_SYMBOL_GPL(relay_buf_full
);
269 * High-level relay kernel API and associated functions.
273 * rchan_callback implementations defining default channel behavior. Used
274 * in place of corresponding NULL values in client callback struct.
278 * subbuf_start() default callback. Does nothing.
280 static int subbuf_start_default_callback (struct rchan_buf
*buf
,
285 if (relay_buf_full(buf
))
292 * buf_mapped() default callback. Does nothing.
294 static void buf_mapped_default_callback(struct rchan_buf
*buf
,
300 * buf_unmapped() default callback. Does nothing.
302 static void buf_unmapped_default_callback(struct rchan_buf
*buf
,
308 * create_buf_file_create() default callback. Does nothing.
310 static struct dentry
*create_buf_file_default_callback(const char *filename
,
311 struct dentry
*parent
,
313 struct rchan_buf
*buf
,
320 * remove_buf_file() default callback. Does nothing.
322 static int remove_buf_file_default_callback(struct dentry
*dentry
)
327 /* relay channel default callbacks */
328 static struct rchan_callbacks default_channel_callbacks
= {
329 .subbuf_start
= subbuf_start_default_callback
,
330 .buf_mapped
= buf_mapped_default_callback
,
331 .buf_unmapped
= buf_unmapped_default_callback
,
332 .create_buf_file
= create_buf_file_default_callback
,
333 .remove_buf_file
= remove_buf_file_default_callback
,
337 * wakeup_readers - wake up readers waiting on a channel
338 * @data: contains the channel buffer
340 * This is the timer function used to defer reader waking.
342 static void wakeup_readers(unsigned long data
)
344 struct rchan_buf
*buf
= (struct rchan_buf
*)data
;
345 wake_up_interruptible(&buf
->read_wait
);
347 * Stupid polling for now:
349 mod_timer(&buf
->timer
, jiffies
+ 1);
353 * __relay_reset - reset a channel buffer
354 * @buf: the channel buffer
355 * @init: 1 if this is a first-time initialization
357 * See relay_reset() for description of effect.
359 static void __relay_reset(struct rchan_buf
*buf
, unsigned int init
)
364 init_waitqueue_head(&buf
->read_wait
);
365 kref_init(&buf
->kref
);
366 setup_timer(&buf
->timer
, wakeup_readers
, (unsigned long)buf
);
367 mod_timer(&buf
->timer
, jiffies
+ 1);
369 del_timer_sync(&buf
->timer
);
371 buf
->subbufs_produced
= 0;
372 buf
->subbufs_consumed
= 0;
373 buf
->bytes_consumed
= 0;
375 buf
->data
= buf
->start
;
378 for (i
= 0; i
< buf
->chan
->n_subbufs
; i
++)
381 buf
->chan
->cb
->subbuf_start(buf
, buf
->data
, NULL
, 0);
385 * relay_reset - reset the channel
388 * This has the effect of erasing all data from all channel buffers
389 * and restarting the channel in its initial state. The buffers
390 * are not freed, so any mappings are still in effect.
392 * NOTE. Care should be taken that the channel isn't actually
393 * being used by anything when this call is made.
395 void relay_reset(struct rchan
*chan
)
402 if (chan
->is_global
&& chan
->buf
[0]) {
403 __relay_reset(chan
->buf
[0], 0);
407 mutex_lock(&relay_channels_mutex
);
408 for_each_possible_cpu(i
)
410 __relay_reset(chan
->buf
[i
], 0);
411 mutex_unlock(&relay_channels_mutex
);
413 EXPORT_SYMBOL_GPL(relay_reset
);
415 static inline void relay_set_buf_dentry(struct rchan_buf
*buf
,
416 struct dentry
*dentry
)
418 buf
->dentry
= dentry
;
419 buf
->dentry
->d_inode
->i_size
= buf
->early_bytes
;
422 static struct dentry
*relay_create_buf_file(struct rchan
*chan
,
423 struct rchan_buf
*buf
,
426 struct dentry
*dentry
;
429 tmpname
= kzalloc(NAME_MAX
+ 1, GFP_KERNEL
);
432 snprintf(tmpname
, NAME_MAX
, "%s%d", chan
->base_filename
, cpu
);
434 /* Create file in fs */
435 dentry
= chan
->cb
->create_buf_file(tmpname
, chan
->parent
,
445 * relay_open_buf - create a new relay channel buffer
447 * used by relay_open() and CPU hotplug.
449 static struct rchan_buf
*relay_open_buf(struct rchan
*chan
, unsigned int cpu
)
451 struct rchan_buf
*buf
= NULL
;
452 struct dentry
*dentry
;
457 buf
= relay_create_buf(chan
);
461 if (chan
->has_base_filename
) {
462 dentry
= relay_create_buf_file(chan
, buf
, cpu
);
465 relay_set_buf_dentry(buf
, dentry
);
469 __relay_reset(buf
, 1);
471 if(chan
->is_global
) {
479 relay_destroy_buf(buf
);
484 * relay_close_buf - close a channel buffer
485 * @buf: channel buffer
487 * Marks the buffer finalized and restores the default callbacks.
488 * The channel buffer and channel buffer data structure are then freed
489 * automatically when the last reference is given up.
491 static void relay_close_buf(struct rchan_buf
*buf
)
494 del_timer_sync(&buf
->timer
);
495 kref_put(&buf
->kref
, relay_remove_buf
);
498 static void setup_callbacks(struct rchan
*chan
,
499 struct rchan_callbacks
*cb
)
502 chan
->cb
= &default_channel_callbacks
;
506 if (!cb
->subbuf_start
)
507 cb
->subbuf_start
= subbuf_start_default_callback
;
509 cb
->buf_mapped
= buf_mapped_default_callback
;
510 if (!cb
->buf_unmapped
)
511 cb
->buf_unmapped
= buf_unmapped_default_callback
;
512 if (!cb
->create_buf_file
)
513 cb
->create_buf_file
= create_buf_file_default_callback
;
514 if (!cb
->remove_buf_file
)
515 cb
->remove_buf_file
= remove_buf_file_default_callback
;
520 * relay_hotcpu_callback - CPU hotplug callback
521 * @nb: notifier block
522 * @action: hotplug action to take
525 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
527 static int __cpuinit
relay_hotcpu_callback(struct notifier_block
*nb
,
528 unsigned long action
,
531 unsigned int hotcpu
= (unsigned long)hcpu
;
536 case CPU_UP_PREPARE_FROZEN
:
537 mutex_lock(&relay_channels_mutex
);
538 list_for_each_entry(chan
, &relay_channels
, list
) {
539 if (chan
->buf
[hotcpu
])
541 chan
->buf
[hotcpu
] = relay_open_buf(chan
, hotcpu
);
542 if(!chan
->buf
[hotcpu
]) {
544 "relay_hotcpu_callback: cpu %d buffer "
545 "creation failed\n", hotcpu
);
546 mutex_unlock(&relay_channels_mutex
);
550 mutex_unlock(&relay_channels_mutex
);
553 case CPU_DEAD_FROZEN
:
554 /* No need to flush the cpu : will be flushed upon
555 * final relay_flush() call. */
562 * relay_open - create a new relay channel
563 * @base_filename: base name of files to create, %NULL for buffering only
564 * @parent: dentry of parent directory, %NULL for root directory or buffer
565 * @subbuf_size: size of sub-buffers
566 * @n_subbufs: number of sub-buffers
567 * @cb: client callback functions
568 * @private_data: user-defined data
570 * Returns channel pointer if successful, %NULL otherwise.
572 * Creates a channel buffer for each cpu using the sizes and
573 * attributes specified. The created channel buffer files
574 * will be named base_filename0...base_filenameN-1. File
575 * permissions will be %S_IRUSR.
577 struct rchan
*relay_open(const char *base_filename
,
578 struct dentry
*parent
,
581 struct rchan_callbacks
*cb
,
587 if (!(subbuf_size
&& n_subbufs
))
590 chan
= kzalloc(sizeof(struct rchan
), GFP_KERNEL
);
594 chan
->version
= RELAYFS_CHANNEL_VERSION
;
595 chan
->n_subbufs
= n_subbufs
;
596 chan
->subbuf_size
= subbuf_size
;
597 chan
->alloc_size
= FIX_SIZE(subbuf_size
* n_subbufs
);
598 chan
->parent
= parent
;
599 chan
->private_data
= private_data
;
601 chan
->has_base_filename
= 1;
602 strlcpy(chan
->base_filename
, base_filename
, NAME_MAX
);
604 setup_callbacks(chan
, cb
);
605 kref_init(&chan
->kref
);
607 mutex_lock(&relay_channels_mutex
);
608 for_each_online_cpu(i
) {
609 chan
->buf
[i
] = relay_open_buf(chan
, i
);
613 list_add(&chan
->list
, &relay_channels
);
614 mutex_unlock(&relay_channels_mutex
);
619 for_each_possible_cpu(i
) {
621 relay_close_buf(chan
->buf
[i
]);
624 kref_put(&chan
->kref
, relay_destroy_channel
);
625 mutex_unlock(&relay_channels_mutex
);
628 EXPORT_SYMBOL_GPL(relay_open
);
630 struct rchan_percpu_buf_dispatcher
{
631 struct rchan_buf
*buf
;
632 struct dentry
*dentry
;
635 /* Called in atomic context. */
636 static void __relay_set_buf_dentry(void *info
)
638 struct rchan_percpu_buf_dispatcher
*p
= info
;
640 relay_set_buf_dentry(p
->buf
, p
->dentry
);
644 * relay_late_setup_files - triggers file creation
645 * @chan: channel to operate on
646 * @base_filename: base name of files to create
647 * @parent: dentry of parent directory, %NULL for root directory
649 * Returns 0 if successful, non-zero otherwise.
651 * Use to setup files for a previously buffer-only channel.
652 * Useful to do early tracing in kernel, before VFS is up, for example.
654 int relay_late_setup_files(struct rchan
*chan
,
655 const char *base_filename
,
656 struct dentry
*parent
)
659 unsigned int i
, curr_cpu
;
661 struct dentry
*dentry
;
662 struct rchan_percpu_buf_dispatcher disp
;
664 if (!chan
|| !base_filename
)
667 strlcpy(chan
->base_filename
, base_filename
, NAME_MAX
);
669 mutex_lock(&relay_channels_mutex
);
670 /* Is chan already set up? */
671 if (unlikely(chan
->has_base_filename
)) {
672 mutex_unlock(&relay_channels_mutex
);
675 chan
->has_base_filename
= 1;
676 chan
->parent
= parent
;
677 curr_cpu
= get_cpu();
679 * The CPU hotplug notifier ran before us and created buffers with
680 * no files associated. So it's safe to call relay_setup_buf_file()
681 * on all currently online CPUs.
683 for_each_online_cpu(i
) {
684 if (unlikely(!chan
->buf
[i
])) {
685 WARN_ONCE(1, KERN_ERR
"CPU has no buffer!\n");
690 dentry
= relay_create_buf_file(chan
, chan
->buf
[i
], i
);
691 if (unlikely(!dentry
)) {
697 local_irq_save(flags
);
698 relay_set_buf_dentry(chan
->buf
[i
], dentry
);
699 local_irq_restore(flags
);
701 disp
.buf
= chan
->buf
[i
];
702 disp
.dentry
= dentry
;
704 /* relay_channels_mutex must be held, so wait. */
705 err
= smp_call_function_single(i
,
706 __relay_set_buf_dentry
,
713 mutex_unlock(&relay_channels_mutex
);
719 * relay_switch_subbuf - switch to a new sub-buffer
720 * @buf: channel buffer
721 * @length: size of current event
723 * Returns either the length passed in or 0 if full.
725 * Performs sub-buffer-switch tasks such as invoking callbacks,
726 * updating padding counts, waking up readers, etc.
728 size_t relay_switch_subbuf(struct rchan_buf
*buf
, size_t length
)
731 size_t old_subbuf
, new_subbuf
;
733 if (unlikely(length
> buf
->chan
->subbuf_size
))
736 if (buf
->offset
!= buf
->chan
->subbuf_size
+ 1) {
737 buf
->prev_padding
= buf
->chan
->subbuf_size
- buf
->offset
;
738 old_subbuf
= buf
->subbufs_produced
% buf
->chan
->n_subbufs
;
739 buf
->padding
[old_subbuf
] = buf
->prev_padding
;
740 buf
->subbufs_produced
++;
742 buf
->dentry
->d_inode
->i_size
+=
743 buf
->chan
->subbuf_size
-
744 buf
->padding
[old_subbuf
];
746 buf
->early_bytes
+= buf
->chan
->subbuf_size
-
747 buf
->padding
[old_subbuf
];
751 new_subbuf
= buf
->subbufs_produced
% buf
->chan
->n_subbufs
;
752 new = buf
->start
+ new_subbuf
* buf
->chan
->subbuf_size
;
754 if (!buf
->chan
->cb
->subbuf_start(buf
, new, old
, buf
->prev_padding
)) {
755 buf
->offset
= buf
->chan
->subbuf_size
+ 1;
759 buf
->padding
[new_subbuf
] = 0;
761 if (unlikely(length
+ buf
->offset
> buf
->chan
->subbuf_size
))
767 buf
->chan
->last_toobig
= length
;
770 EXPORT_SYMBOL_GPL(relay_switch_subbuf
);
773 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
775 * @cpu: the cpu associated with the channel buffer to update
776 * @subbufs_consumed: number of sub-buffers to add to current buf's count
778 * Adds to the channel buffer's consumed sub-buffer count.
779 * subbufs_consumed should be the number of sub-buffers newly consumed,
780 * not the total consumed.
782 * NOTE. Kernel clients don't need to call this function if the channel
783 * mode is 'overwrite'.
785 void relay_subbufs_consumed(struct rchan
*chan
,
787 size_t subbufs_consumed
)
789 struct rchan_buf
*buf
;
794 if (cpu
>= NR_CPUS
|| !chan
->buf
[cpu
])
797 buf
= chan
->buf
[cpu
];
798 buf
->subbufs_consumed
+= subbufs_consumed
;
799 if (buf
->subbufs_consumed
> buf
->subbufs_produced
)
800 buf
->subbufs_consumed
= buf
->subbufs_produced
;
802 EXPORT_SYMBOL_GPL(relay_subbufs_consumed
);
805 * relay_close - close the channel
808 * Closes all channel buffers and frees the channel.
810 void relay_close(struct rchan
*chan
)
817 mutex_lock(&relay_channels_mutex
);
818 if (chan
->is_global
&& chan
->buf
[0])
819 relay_close_buf(chan
->buf
[0]);
821 for_each_possible_cpu(i
)
823 relay_close_buf(chan
->buf
[i
]);
825 if (chan
->last_toobig
)
826 printk(KERN_WARNING
"relay: one or more items not logged "
827 "[item size (%Zd) > sub-buffer size (%Zd)]\n",
828 chan
->last_toobig
, chan
->subbuf_size
);
830 list_del(&chan
->list
);
831 kref_put(&chan
->kref
, relay_destroy_channel
);
832 mutex_unlock(&relay_channels_mutex
);
834 EXPORT_SYMBOL_GPL(relay_close
);
837 * relay_flush - close the channel
840 * Flushes all channel buffers, i.e. forces buffer switch.
842 void relay_flush(struct rchan
*chan
)
849 if (chan
->is_global
&& chan
->buf
[0]) {
850 relay_switch_subbuf(chan
->buf
[0], 0);
854 mutex_lock(&relay_channels_mutex
);
855 for_each_possible_cpu(i
)
857 relay_switch_subbuf(chan
->buf
[i
], 0);
858 mutex_unlock(&relay_channels_mutex
);
860 EXPORT_SYMBOL_GPL(relay_flush
);
863 * relay_file_open - open file op for relay files
867 * Increments the channel buffer refcount.
869 static int relay_file_open(struct inode
*inode
, struct file
*filp
)
871 struct rchan_buf
*buf
= inode
->i_private
;
872 kref_get(&buf
->kref
);
873 filp
->private_data
= buf
;
875 return nonseekable_open(inode
, filp
);
879 * relay_file_mmap - mmap file op for relay files
881 * @vma: the vma describing what to map
883 * Calls upon relay_mmap_buf() to map the file into user space.
885 static int relay_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
887 struct rchan_buf
*buf
= filp
->private_data
;
888 return relay_mmap_buf(buf
, vma
);
892 * relay_file_poll - poll file op for relay files
898 static unsigned int relay_file_poll(struct file
*filp
, poll_table
*wait
)
900 unsigned int mask
= 0;
901 struct rchan_buf
*buf
= filp
->private_data
;
906 if (filp
->f_mode
& FMODE_READ
) {
907 poll_wait(filp
, &buf
->read_wait
, wait
);
908 if (!relay_buf_empty(buf
))
909 mask
|= POLLIN
| POLLRDNORM
;
916 * relay_file_release - release file op for relay files
920 * Decrements the channel refcount, as the filesystem is
921 * no longer using it.
923 static int relay_file_release(struct inode
*inode
, struct file
*filp
)
925 struct rchan_buf
*buf
= filp
->private_data
;
926 kref_put(&buf
->kref
, relay_remove_buf
);
932 * relay_file_read_consume - update the consumed count for the buffer
934 static void relay_file_read_consume(struct rchan_buf
*buf
,
936 size_t bytes_consumed
)
938 size_t subbuf_size
= buf
->chan
->subbuf_size
;
939 size_t n_subbufs
= buf
->chan
->n_subbufs
;
942 if (buf
->subbufs_produced
== buf
->subbufs_consumed
&&
943 buf
->offset
== buf
->bytes_consumed
)
946 if (buf
->bytes_consumed
+ bytes_consumed
> subbuf_size
) {
947 relay_subbufs_consumed(buf
->chan
, buf
->cpu
, 1);
948 buf
->bytes_consumed
= 0;
951 buf
->bytes_consumed
+= bytes_consumed
;
953 read_subbuf
= buf
->subbufs_consumed
% n_subbufs
;
955 read_subbuf
= read_pos
/ buf
->chan
->subbuf_size
;
956 if (buf
->bytes_consumed
+ buf
->padding
[read_subbuf
] == subbuf_size
) {
957 if ((read_subbuf
== buf
->subbufs_produced
% n_subbufs
) &&
958 (buf
->offset
== subbuf_size
))
960 relay_subbufs_consumed(buf
->chan
, buf
->cpu
, 1);
961 buf
->bytes_consumed
= 0;
966 * relay_file_read_avail - boolean, are there unconsumed bytes available?
968 static int relay_file_read_avail(struct rchan_buf
*buf
, size_t read_pos
)
970 size_t subbuf_size
= buf
->chan
->subbuf_size
;
971 size_t n_subbufs
= buf
->chan
->n_subbufs
;
972 size_t produced
= buf
->subbufs_produced
;
973 size_t consumed
= buf
->subbufs_consumed
;
975 relay_file_read_consume(buf
, read_pos
, 0);
977 consumed
= buf
->subbufs_consumed
;
979 if (unlikely(buf
->offset
> subbuf_size
)) {
980 if (produced
== consumed
)
985 if (unlikely(produced
- consumed
>= n_subbufs
)) {
986 consumed
= produced
- n_subbufs
+ 1;
987 buf
->subbufs_consumed
= consumed
;
988 buf
->bytes_consumed
= 0;
991 produced
= (produced
% n_subbufs
) * subbuf_size
+ buf
->offset
;
992 consumed
= (consumed
% n_subbufs
) * subbuf_size
+ buf
->bytes_consumed
;
994 if (consumed
> produced
)
995 produced
+= n_subbufs
* subbuf_size
;
997 if (consumed
== produced
) {
998 if (buf
->offset
== subbuf_size
&&
999 buf
->subbufs_produced
> buf
->subbufs_consumed
)
1008 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
1009 * @read_pos: file read position
1010 * @buf: relay channel buffer
1012 static size_t relay_file_read_subbuf_avail(size_t read_pos
,
1013 struct rchan_buf
*buf
)
1015 size_t padding
, avail
= 0;
1016 size_t read_subbuf
, read_offset
, write_subbuf
, write_offset
;
1017 size_t subbuf_size
= buf
->chan
->subbuf_size
;
1019 write_subbuf
= (buf
->data
- buf
->start
) / subbuf_size
;
1020 write_offset
= buf
->offset
> subbuf_size
? subbuf_size
: buf
->offset
;
1021 read_subbuf
= read_pos
/ subbuf_size
;
1022 read_offset
= read_pos
% subbuf_size
;
1023 padding
= buf
->padding
[read_subbuf
];
1025 if (read_subbuf
== write_subbuf
) {
1026 if (read_offset
+ padding
< write_offset
)
1027 avail
= write_offset
- (read_offset
+ padding
);
1029 avail
= (subbuf_size
- padding
) - read_offset
;
1035 * relay_file_read_start_pos - find the first available byte to read
1036 * @read_pos: file read position
1037 * @buf: relay channel buffer
1039 * If the @read_pos is in the middle of padding, return the
1040 * position of the first actually available byte, otherwise
1041 * return the original value.
1043 static size_t relay_file_read_start_pos(size_t read_pos
,
1044 struct rchan_buf
*buf
)
1046 size_t read_subbuf
, padding
, padding_start
, padding_end
;
1047 size_t subbuf_size
= buf
->chan
->subbuf_size
;
1048 size_t n_subbufs
= buf
->chan
->n_subbufs
;
1049 size_t consumed
= buf
->subbufs_consumed
% n_subbufs
;
1052 read_pos
= consumed
* subbuf_size
+ buf
->bytes_consumed
;
1053 read_subbuf
= read_pos
/ subbuf_size
;
1054 padding
= buf
->padding
[read_subbuf
];
1055 padding_start
= (read_subbuf
+ 1) * subbuf_size
- padding
;
1056 padding_end
= (read_subbuf
+ 1) * subbuf_size
;
1057 if (read_pos
>= padding_start
&& read_pos
< padding_end
) {
1058 read_subbuf
= (read_subbuf
+ 1) % n_subbufs
;
1059 read_pos
= read_subbuf
* subbuf_size
;
1066 * relay_file_read_end_pos - return the new read position
1067 * @read_pos: file read position
1068 * @buf: relay channel buffer
1069 * @count: number of bytes to be read
1071 static size_t relay_file_read_end_pos(struct rchan_buf
*buf
,
1075 size_t read_subbuf
, padding
, end_pos
;
1076 size_t subbuf_size
= buf
->chan
->subbuf_size
;
1077 size_t n_subbufs
= buf
->chan
->n_subbufs
;
1079 read_subbuf
= read_pos
/ subbuf_size
;
1080 padding
= buf
->padding
[read_subbuf
];
1081 if (read_pos
% subbuf_size
+ count
+ padding
== subbuf_size
)
1082 end_pos
= (read_subbuf
+ 1) * subbuf_size
;
1084 end_pos
= read_pos
+ count
;
1085 if (end_pos
>= subbuf_size
* n_subbufs
)
1092 * subbuf_read_actor - read up to one subbuf's worth of data
1094 static int subbuf_read_actor(size_t read_start
,
1095 struct rchan_buf
*buf
,
1097 read_descriptor_t
*desc
,
1103 from
= buf
->start
+ read_start
;
1105 if (copy_to_user(desc
->arg
.buf
, from
, avail
)) {
1106 desc
->error
= -EFAULT
;
1109 desc
->arg
.data
+= ret
;
1110 desc
->written
+= ret
;
1116 typedef int (*subbuf_actor_t
) (size_t read_start
,
1117 struct rchan_buf
*buf
,
1119 read_descriptor_t
*desc
,
1120 read_actor_t actor
);
1123 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1125 static ssize_t
relay_file_read_subbufs(struct file
*filp
, loff_t
*ppos
,
1126 subbuf_actor_t subbuf_actor
,
1128 read_descriptor_t
*desc
)
1130 struct rchan_buf
*buf
= filp
->private_data
;
1131 size_t read_start
, avail
;
1137 mutex_lock(&filp
->f_path
.dentry
->d_inode
->i_mutex
);
1139 if (!relay_file_read_avail(buf
, *ppos
))
1142 read_start
= relay_file_read_start_pos(*ppos
, buf
);
1143 avail
= relay_file_read_subbuf_avail(read_start
, buf
);
1147 avail
= min(desc
->count
, avail
);
1148 ret
= subbuf_actor(read_start
, buf
, avail
, desc
, actor
);
1149 if (desc
->error
< 0)
1153 relay_file_read_consume(buf
, read_start
, ret
);
1154 *ppos
= relay_file_read_end_pos(buf
, read_start
, ret
);
1156 } while (desc
->count
&& ret
);
1157 mutex_unlock(&filp
->f_path
.dentry
->d_inode
->i_mutex
);
1159 return desc
->written
;
1162 static ssize_t
relay_file_read(struct file
*filp
,
1163 char __user
*buffer
,
1167 read_descriptor_t desc
;
1170 desc
.arg
.buf
= buffer
;
1172 return relay_file_read_subbufs(filp
, ppos
, subbuf_read_actor
,
1176 static void relay_consume_bytes(struct rchan_buf
*rbuf
, int bytes_consumed
)
1178 rbuf
->bytes_consumed
+= bytes_consumed
;
1180 if (rbuf
->bytes_consumed
>= rbuf
->chan
->subbuf_size
) {
1181 relay_subbufs_consumed(rbuf
->chan
, rbuf
->cpu
, 1);
1182 rbuf
->bytes_consumed
%= rbuf
->chan
->subbuf_size
;
1186 static void relay_pipe_buf_release(struct pipe_inode_info
*pipe
,
1187 struct pipe_buffer
*buf
)
1189 struct rchan_buf
*rbuf
;
1191 rbuf
= (struct rchan_buf
*)page_private(buf
->page
);
1192 relay_consume_bytes(rbuf
, buf
->private);
1195 static struct pipe_buf_operations relay_pipe_buf_ops
= {
1197 .map
= generic_pipe_buf_map
,
1198 .unmap
= generic_pipe_buf_unmap
,
1199 .confirm
= generic_pipe_buf_confirm
,
1200 .release
= relay_pipe_buf_release
,
1201 .steal
= generic_pipe_buf_steal
,
1202 .get
= generic_pipe_buf_get
,
1205 static void relay_page_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1210 * subbuf_splice_actor - splice up to one subbuf's worth of data
1212 static int subbuf_splice_actor(struct file
*in
,
1214 struct pipe_inode_info
*pipe
,
1219 unsigned int pidx
, poff
, total_len
, subbuf_pages
, nr_pages
, ret
;
1220 struct rchan_buf
*rbuf
= in
->private_data
;
1221 unsigned int subbuf_size
= rbuf
->chan
->subbuf_size
;
1222 uint64_t pos
= (uint64_t) *ppos
;
1223 uint32_t alloc_size
= (uint32_t) rbuf
->chan
->alloc_size
;
1224 size_t read_start
= (size_t) do_div(pos
, alloc_size
);
1225 size_t read_subbuf
= read_start
/ subbuf_size
;
1226 size_t padding
= rbuf
->padding
[read_subbuf
];
1227 size_t nonpad_end
= read_subbuf
* subbuf_size
+ subbuf_size
- padding
;
1228 struct page
*pages
[PIPE_BUFFERS
];
1229 struct partial_page partial
[PIPE_BUFFERS
];
1230 struct splice_pipe_desc spd
= {
1235 .ops
= &relay_pipe_buf_ops
,
1236 .spd_release
= relay_page_release
,
1239 if (rbuf
->subbufs_produced
== rbuf
->subbufs_consumed
)
1243 * Adjust read len, if longer than what is available
1245 if (len
> (subbuf_size
- read_start
% subbuf_size
))
1246 len
= subbuf_size
- read_start
% subbuf_size
;
1248 subbuf_pages
= rbuf
->chan
->alloc_size
>> PAGE_SHIFT
;
1249 pidx
= (read_start
/ PAGE_SIZE
) % subbuf_pages
;
1250 poff
= read_start
& ~PAGE_MASK
;
1251 nr_pages
= min_t(unsigned int, subbuf_pages
, PIPE_BUFFERS
);
1253 for (total_len
= 0; spd
.nr_pages
< nr_pages
; spd
.nr_pages
++) {
1254 unsigned int this_len
, this_end
, private;
1255 unsigned int cur_pos
= read_start
+ total_len
;
1260 this_len
= min_t(unsigned long, len
, PAGE_SIZE
- poff
);
1263 spd
.pages
[spd
.nr_pages
] = rbuf
->page_array
[pidx
];
1264 spd
.partial
[spd
.nr_pages
].offset
= poff
;
1266 this_end
= cur_pos
+ this_len
;
1267 if (this_end
>= nonpad_end
) {
1268 this_len
= nonpad_end
- cur_pos
;
1269 private = this_len
+ padding
;
1271 spd
.partial
[spd
.nr_pages
].len
= this_len
;
1272 spd
.partial
[spd
.nr_pages
].private = private;
1275 total_len
+= this_len
;
1277 pidx
= (pidx
+ 1) % subbuf_pages
;
1279 if (this_end
>= nonpad_end
) {
1288 ret
= *nonpad_ret
= splice_to_pipe(pipe
, &spd
);
1289 if (ret
< 0 || ret
< total_len
)
1292 if (read_start
+ ret
== nonpad_end
)
1298 static ssize_t
relay_file_splice_read(struct file
*in
,
1300 struct pipe_inode_info
*pipe
,
1311 while (len
&& !spliced
) {
1312 ret
= subbuf_splice_actor(in
, ppos
, pipe
, len
, flags
, &nonpad_ret
);
1316 if (flags
& SPLICE_F_NONBLOCK
)
1326 spliced
+= nonpad_ret
;
1336 const struct file_operations relay_file_operations
= {
1337 .open
= relay_file_open
,
1338 .poll
= relay_file_poll
,
1339 .mmap
= relay_file_mmap
,
1340 .read
= relay_file_read
,
1341 .llseek
= no_llseek
,
1342 .release
= relay_file_release
,
1343 .splice_read
= relay_file_splice_read
,
1345 EXPORT_SYMBOL_GPL(relay_file_operations
);
1347 static __init
int relay_init(void)
1350 hotcpu_notifier(relay_hotcpu_callback
, 0);
1354 early_initcall(relay_init
);