Revert of Sandbox html_viewer on Linux. (patchset #6 id:100001 of https://codereview...
[chromium-blink-merge.git] / remoting / codec / audio_encoder_opus_unittest.cc
blob52fac69f20e688b095ec31838763c09534c02b44
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // MSVC++ requires this to get M_PI.
6 #define _USE_MATH_DEFINES
7 #include <math.h>
9 #include "remoting/codec/audio_encoder_opus.h"
11 #include "base/logging.h"
12 #include "remoting/codec/audio_decoder_opus.h"
13 #include "testing/gtest/include/gtest/gtest.h"
15 namespace remoting {
17 namespace {
19 // Maximum value that can be encoded in a 16-bit signed sample.
20 const int kMaxSampleValue = 32767;
22 const int kChannels = 2;
24 // Phase shift between left and right channels.
25 const double kChannelPhaseShift = 2 * M_PI / 3;
27 // The sampling rate that OPUS uses internally and that we expect to get
28 // from the decoder.
29 const AudioPacket_SamplingRate kDefaultSamplingRate =
30 AudioPacket::SAMPLING_RATE_48000;
32 // Maximum latency expected from the encoder.
33 const int kMaxLatencyMs = 40;
35 // When verifying results ignore the first 1k samples. This is necessary because
36 // it takes some time for the codec to adjust for the input signal.
37 const int kSkippedFirstSamples = 1000;
39 // Maximum standard deviation of the difference between original and decoded
40 // signals as a proportion of kMaxSampleValue. For two unrelated signals this
41 // difference will be close to 1.0, even for signals that differ only slightly.
42 // The value is chosen such that all the tests pass normally, but fail with
43 // small changes (e.g. one sample shift between signals).
44 const double kMaxSignalDeviation = 0.1;
46 } // namespace
48 class OpusAudioEncoderTest : public testing::Test {
49 public:
50 // Return test signal value at the specified position |pos|. |frequency_hz|
51 // defines frequency of the signal. |channel| is used to calculate phase shift
52 // of the signal, so that different signals are generated for left and right
53 // channels.
54 static int16 GetSampleValue(
55 AudioPacket::SamplingRate rate,
56 double frequency_hz,
57 double pos,
58 int channel) {
59 double angle = pos * 2 * M_PI * frequency_hz / rate +
60 kChannelPhaseShift * channel;
61 return static_cast<int>(sin(angle) * kMaxSampleValue + 0.5);
64 // Creates audio packet filled with a test signal with the specified
65 // |frequency_hz|.
66 scoped_ptr<AudioPacket> CreatePacket(
67 int samples,
68 AudioPacket::SamplingRate rate,
69 double frequency_hz,
70 int pos) {
71 std::vector<int16> data(samples * kChannels);
72 for (int i = 0; i < samples; ++i) {
73 data[i * kChannels] = GetSampleValue(rate, frequency_hz, i + pos, 0);
74 data[i * kChannels + 1] = GetSampleValue(rate, frequency_hz, i + pos, 1);
77 scoped_ptr<AudioPacket> packet(new AudioPacket());
78 packet->add_data(reinterpret_cast<char*>(&(data[0])),
79 samples * kChannels * sizeof(int16));
80 packet->set_encoding(AudioPacket::ENCODING_RAW);
81 packet->set_sampling_rate(rate);
82 packet->set_bytes_per_sample(AudioPacket::BYTES_PER_SAMPLE_2);
83 packet->set_channels(AudioPacket::CHANNELS_STEREO);
84 return packet.Pass();
87 // Decoded data is normally shifted in phase relative to the original signal.
88 // This function returns the approximate shift in samples by finding the first
89 // point when signal goes from negative to positive.
90 double EstimateSignalShift(const std::vector<int16>& received_data) {
91 for (size_t i = kSkippedFirstSamples;
92 i < received_data.size() / kChannels - 1; i++) {
93 int16 this_sample = received_data[i * kChannels];
94 int16 next_sample = received_data[(i + 1) * kChannels];
95 if (this_sample < 0 && next_sample > 0) {
96 return
97 i + static_cast<double>(-this_sample) / (next_sample - this_sample);
100 return 0;
103 // Compares decoded signal with the test signal that was encoded. It estimates
104 // phase shift from the original signal, then calculates standard deviation of
105 // the difference between original and decoded signals.
106 void ValidateReceivedData(int samples,
107 AudioPacket::SamplingRate rate,
108 double frequency_hz,
109 const std::vector<int16>& received_data) {
110 double shift = EstimateSignalShift(received_data);
111 double diff_sqare_sum = 0;
112 for (size_t i = kSkippedFirstSamples;
113 i < received_data.size() / kChannels; i++) {
114 double d = received_data[i * kChannels] -
115 GetSampleValue(rate, frequency_hz, i - shift, 0);
116 diff_sqare_sum += d * d;
117 d = received_data[i * kChannels + 1] -
118 GetSampleValue(rate, frequency_hz, i - shift, 1);
119 diff_sqare_sum += d * d;
121 double deviation = sqrt(diff_sqare_sum / received_data.size())
122 / kMaxSampleValue;
123 LOG(ERROR) << "Decoded signal deviation: " << deviation;
124 EXPECT_LE(deviation, kMaxSignalDeviation);
127 void TestEncodeDecode(int packet_size,
128 double frequency_hz,
129 AudioPacket::SamplingRate rate) {
130 const int kTotalTestSamples = 24000;
132 encoder_.reset(new AudioEncoderOpus());
133 decoder_.reset(new AudioDecoderOpus());
135 std::vector<int16> received_data;
136 int pos = 0;
137 for (; pos < kTotalTestSamples; pos += packet_size) {
138 scoped_ptr<AudioPacket> source_packet =
139 CreatePacket(packet_size, rate, frequency_hz, pos);
140 scoped_ptr<AudioPacket> encoded =
141 encoder_->Encode(source_packet.Pass());
142 if (encoded.get()) {
143 scoped_ptr<AudioPacket> decoded = decoder_->Decode(encoded.Pass());
144 EXPECT_EQ(kDefaultSamplingRate, decoded->sampling_rate());
145 for (int i = 0; i < decoded->data_size(); ++i) {
146 const int16* data =
147 reinterpret_cast<const int16*>(decoded->data(i).data());
148 received_data.insert(
149 received_data.end(), data,
150 data + decoded->data(i).size() / sizeof(int16));
155 // Verify that at most kMaxLatencyMs worth of samples is buffered inside
156 // |encoder_| and |decoder_|.
157 EXPECT_GE(static_cast<int>(received_data.size()) / kChannels,
158 pos - rate * kMaxLatencyMs / 1000);
160 ValidateReceivedData(packet_size, kDefaultSamplingRate,
161 frequency_hz, received_data);
164 protected:
165 scoped_ptr<AudioEncoderOpus> encoder_;
166 scoped_ptr<AudioDecoderOpus> decoder_;
169 TEST_F(OpusAudioEncoderTest, CreateAndDestroy) {
172 TEST_F(OpusAudioEncoderTest, NoResampling) {
173 TestEncodeDecode(2000, 50, AudioPacket::SAMPLING_RATE_48000);
174 TestEncodeDecode(2000, 3000, AudioPacket::SAMPLING_RATE_48000);
175 TestEncodeDecode(2000, 10000, AudioPacket::SAMPLING_RATE_48000);
178 TEST_F(OpusAudioEncoderTest, Resampling) {
179 TestEncodeDecode(2000, 50, AudioPacket::SAMPLING_RATE_44100);
180 TestEncodeDecode(2000, 3000, AudioPacket::SAMPLING_RATE_44100);
181 TestEncodeDecode(2000, 10000, AudioPacket::SAMPLING_RATE_44100);
184 TEST_F(OpusAudioEncoderTest, BufferSizeAndResampling) {
185 TestEncodeDecode(500, 3000, AudioPacket::SAMPLING_RATE_44100);
186 TestEncodeDecode(1000, 3000, AudioPacket::SAMPLING_RATE_44100);
187 TestEncodeDecode(5000, 3000, AudioPacket::SAMPLING_RATE_44100);
190 } // namespace remoting