Separate Simple Backend creation from initialization.
[chromium-blink-merge.git] / base / basictypes.h
blob642d31189b8eb563691d0d54be0bfedfeae9c9a0
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef BASE_BASICTYPES_H_
6 #define BASE_BASICTYPES_H_
8 #include <limits.h> // So we can set the bounds of our types
9 #include <stddef.h> // For size_t
10 #include <string.h> // for memcpy
12 #include "base/port.h" // Types that only need exist on certain systems
14 #ifndef COMPILER_MSVC
15 // stdint.h is part of C99 but MSVC doesn't have it.
16 #include <stdint.h> // For intptr_t.
17 #endif
19 typedef signed char schar;
20 typedef signed char int8;
21 typedef short int16;
22 typedef int int32;
24 // The NSPR system headers define 64-bit as |long| when possible, except on
25 // Mac OS X. In order to not have typedef mismatches, we do the same on LP64.
27 // On Mac OS X, |long long| is used for 64-bit types for compatibility with
28 // <inttypes.h> format macros even in the LP64 model.
29 #if defined(__LP64__) && !defined(OS_MACOSX) && !defined(OS_OPENBSD)
30 typedef long int64;
31 #else
32 typedef long long int64;
33 #endif
35 // NOTE: It is DANGEROUS to compare signed with unsigned types in loop
36 // conditions and other conditional expressions, and it is DANGEROUS to
37 // compute object/allocation sizes, indices, and offsets with signed types.
38 // Integer overflow behavior for signed types is UNDEFINED in the C/C++
39 // standards, but is defined for unsigned types.
41 // Use the unsigned types if your variable represents a bit pattern (e.g. a
42 // hash value), object or allocation size, object count, offset,
43 // array/vector index, etc.
45 // Do NOT use 'unsigned' to express "this value should always be positive";
46 // use assertions for this.
48 // See the Chromium style guide for more information.
49 // https://sites.google.com/a/chromium.org/dev/developers/coding-style
51 typedef unsigned char uint8;
52 typedef unsigned short uint16;
53 typedef unsigned int uint32;
55 // See the comment above about NSPR and 64-bit.
56 #if defined(__LP64__) && !defined(OS_MACOSX) && !defined(OS_OPENBSD)
57 typedef unsigned long uint64;
58 #else
59 typedef unsigned long long uint64;
60 #endif
62 // A type to represent a Unicode code-point value. As of Unicode 4.0,
63 // such values require up to 21 bits.
64 // (For type-checking on pointers, make this explicitly signed,
65 // and it should always be the signed version of whatever int32 is.)
66 typedef signed int char32;
68 const uint8 kuint8max = (( uint8) 0xFF);
69 const uint16 kuint16max = ((uint16) 0xFFFF);
70 const uint32 kuint32max = ((uint32) 0xFFFFFFFF);
71 const uint64 kuint64max = ((uint64) GG_LONGLONG(0xFFFFFFFFFFFFFFFF));
72 const int8 kint8min = (( int8) 0x80);
73 const int8 kint8max = (( int8) 0x7F);
74 const int16 kint16min = (( int16) 0x8000);
75 const int16 kint16max = (( int16) 0x7FFF);
76 const int32 kint32min = (( int32) 0x80000000);
77 const int32 kint32max = (( int32) 0x7FFFFFFF);
78 const int64 kint64min = (( int64) GG_LONGLONG(0x8000000000000000));
79 const int64 kint64max = (( int64) GG_LONGLONG(0x7FFFFFFFFFFFFFFF));
81 // Put this in the private: declarations for a class to be uncopyable.
82 #define DISALLOW_COPY(TypeName) \
83 TypeName(const TypeName&)
85 // Put this in the private: declarations for a class to be unassignable.
86 #define DISALLOW_ASSIGN(TypeName) \
87 void operator=(const TypeName&)
89 // A macro to disallow the copy constructor and operator= functions
90 // This should be used in the private: declarations for a class
91 #define DISALLOW_COPY_AND_ASSIGN(TypeName) \
92 TypeName(const TypeName&); \
93 void operator=(const TypeName&)
95 // An older, deprecated, politically incorrect name for the above.
96 // NOTE: The usage of this macro was baned from our code base, but some
97 // third_party libraries are yet using it.
98 // TODO(tfarina): Figure out how to fix the usage of this macro in the
99 // third_party libraries and get rid of it.
100 #define DISALLOW_EVIL_CONSTRUCTORS(TypeName) DISALLOW_COPY_AND_ASSIGN(TypeName)
102 // A macro to disallow all the implicit constructors, namely the
103 // default constructor, copy constructor and operator= functions.
105 // This should be used in the private: declarations for a class
106 // that wants to prevent anyone from instantiating it. This is
107 // especially useful for classes containing only static methods.
108 #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
109 TypeName(); \
110 DISALLOW_COPY_AND_ASSIGN(TypeName)
112 // The arraysize(arr) macro returns the # of elements in an array arr.
113 // The expression is a compile-time constant, and therefore can be
114 // used in defining new arrays, for example. If you use arraysize on
115 // a pointer by mistake, you will get a compile-time error.
117 // One caveat is that arraysize() doesn't accept any array of an
118 // anonymous type or a type defined inside a function. In these rare
119 // cases, you have to use the unsafe ARRAYSIZE_UNSAFE() macro below. This is
120 // due to a limitation in C++'s template system. The limitation might
121 // eventually be removed, but it hasn't happened yet.
123 // This template function declaration is used in defining arraysize.
124 // Note that the function doesn't need an implementation, as we only
125 // use its type.
126 template <typename T, size_t N>
127 char (&ArraySizeHelper(T (&array)[N]))[N];
129 // That gcc wants both of these prototypes seems mysterious. VC, for
130 // its part, can't decide which to use (another mystery). Matching of
131 // template overloads: the final frontier.
132 #ifndef _MSC_VER
133 template <typename T, size_t N>
134 char (&ArraySizeHelper(const T (&array)[N]))[N];
135 #endif
137 #define arraysize(array) (sizeof(ArraySizeHelper(array)))
139 // ARRAYSIZE_UNSAFE performs essentially the same calculation as arraysize,
140 // but can be used on anonymous types or types defined inside
141 // functions. It's less safe than arraysize as it accepts some
142 // (although not all) pointers. Therefore, you should use arraysize
143 // whenever possible.
145 // The expression ARRAYSIZE_UNSAFE(a) is a compile-time constant of type
146 // size_t.
148 // ARRAYSIZE_UNSAFE catches a few type errors. If you see a compiler error
150 // "warning: division by zero in ..."
152 // when using ARRAYSIZE_UNSAFE, you are (wrongfully) giving it a pointer.
153 // You should only use ARRAYSIZE_UNSAFE on statically allocated arrays.
155 // The following comments are on the implementation details, and can
156 // be ignored by the users.
158 // ARRAYSIZE_UNSAFE(arr) works by inspecting sizeof(arr) (the # of bytes in
159 // the array) and sizeof(*(arr)) (the # of bytes in one array
160 // element). If the former is divisible by the latter, perhaps arr is
161 // indeed an array, in which case the division result is the # of
162 // elements in the array. Otherwise, arr cannot possibly be an array,
163 // and we generate a compiler error to prevent the code from
164 // compiling.
166 // Since the size of bool is implementation-defined, we need to cast
167 // !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final
168 // result has type size_t.
170 // This macro is not perfect as it wrongfully accepts certain
171 // pointers, namely where the pointer size is divisible by the pointee
172 // size. Since all our code has to go through a 32-bit compiler,
173 // where a pointer is 4 bytes, this means all pointers to a type whose
174 // size is 3 or greater than 4 will be (righteously) rejected.
176 #define ARRAYSIZE_UNSAFE(a) \
177 ((sizeof(a) / sizeof(*(a))) / \
178 static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
181 // Use implicit_cast as a safe version of static_cast or const_cast
182 // for upcasting in the type hierarchy (i.e. casting a pointer to Foo
183 // to a pointer to SuperclassOfFoo or casting a pointer to Foo to
184 // a const pointer to Foo).
185 // When you use implicit_cast, the compiler checks that the cast is safe.
186 // Such explicit implicit_casts are necessary in surprisingly many
187 // situations where C++ demands an exact type match instead of an
188 // argument type convertable to a target type.
190 // The From type can be inferred, so the preferred syntax for using
191 // implicit_cast is the same as for static_cast etc.:
193 // implicit_cast<ToType>(expr)
195 // implicit_cast would have been part of the C++ standard library,
196 // but the proposal was submitted too late. It will probably make
197 // its way into the language in the future.
198 template<typename To, typename From>
199 inline To implicit_cast(From const &f) {
200 return f;
203 // The COMPILE_ASSERT macro can be used to verify that a compile time
204 // expression is true. For example, you could use it to verify the
205 // size of a static array:
207 // COMPILE_ASSERT(ARRAYSIZE_UNSAFE(content_type_names) == CONTENT_NUM_TYPES,
208 // content_type_names_incorrect_size);
210 // or to make sure a struct is smaller than a certain size:
212 // COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large);
214 // The second argument to the macro is the name of the variable. If
215 // the expression is false, most compilers will issue a warning/error
216 // containing the name of the variable.
218 template <bool>
219 struct CompileAssert {
222 #undef COMPILE_ASSERT
223 #define COMPILE_ASSERT(expr, msg) \
224 typedef CompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1]
226 // Implementation details of COMPILE_ASSERT:
228 // - COMPILE_ASSERT works by defining an array type that has -1
229 // elements (and thus is invalid) when the expression is false.
231 // - The simpler definition
233 // #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1]
235 // does not work, as gcc supports variable-length arrays whose sizes
236 // are determined at run-time (this is gcc's extension and not part
237 // of the C++ standard). As a result, gcc fails to reject the
238 // following code with the simple definition:
240 // int foo;
241 // COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is
242 // // not a compile-time constant.
244 // - By using the type CompileAssert<(bool(expr))>, we ensures that
245 // expr is a compile-time constant. (Template arguments must be
246 // determined at compile-time.)
248 // - The outer parentheses in CompileAssert<(bool(expr))> are necessary
249 // to work around a bug in gcc 3.4.4 and 4.0.1. If we had written
251 // CompileAssert<bool(expr)>
253 // instead, these compilers will refuse to compile
255 // COMPILE_ASSERT(5 > 0, some_message);
257 // (They seem to think the ">" in "5 > 0" marks the end of the
258 // template argument list.)
260 // - The array size is (bool(expr) ? 1 : -1), instead of simply
262 // ((expr) ? 1 : -1).
264 // This is to avoid running into a bug in MS VC 7.1, which
265 // causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1.
268 // bit_cast<Dest,Source> is a template function that implements the
269 // equivalent of "*reinterpret_cast<Dest*>(&source)". We need this in
270 // very low-level functions like the protobuf library and fast math
271 // support.
273 // float f = 3.14159265358979;
274 // int i = bit_cast<int32>(f);
275 // // i = 0x40490fdb
277 // The classical address-casting method is:
279 // // WRONG
280 // float f = 3.14159265358979; // WRONG
281 // int i = * reinterpret_cast<int*>(&f); // WRONG
283 // The address-casting method actually produces undefined behavior
284 // according to ISO C++ specification section 3.10 -15 -. Roughly, this
285 // section says: if an object in memory has one type, and a program
286 // accesses it with a different type, then the result is undefined
287 // behavior for most values of "different type".
289 // This is true for any cast syntax, either *(int*)&f or
290 // *reinterpret_cast<int*>(&f). And it is particularly true for
291 // conversions betweeen integral lvalues and floating-point lvalues.
293 // The purpose of 3.10 -15- is to allow optimizing compilers to assume
294 // that expressions with different types refer to different memory. gcc
295 // 4.0.1 has an optimizer that takes advantage of this. So a
296 // non-conforming program quietly produces wildly incorrect output.
298 // The problem is not the use of reinterpret_cast. The problem is type
299 // punning: holding an object in memory of one type and reading its bits
300 // back using a different type.
302 // The C++ standard is more subtle and complex than this, but that
303 // is the basic idea.
305 // Anyways ...
307 // bit_cast<> calls memcpy() which is blessed by the standard,
308 // especially by the example in section 3.9 . Also, of course,
309 // bit_cast<> wraps up the nasty logic in one place.
311 // Fortunately memcpy() is very fast. In optimized mode, with a
312 // constant size, gcc 2.95.3, gcc 4.0.1, and msvc 7.1 produce inline
313 // code with the minimal amount of data movement. On a 32-bit system,
314 // memcpy(d,s,4) compiles to one load and one store, and memcpy(d,s,8)
315 // compiles to two loads and two stores.
317 // I tested this code with gcc 2.95.3, gcc 4.0.1, icc 8.1, and msvc 7.1.
319 // WARNING: if Dest or Source is a non-POD type, the result of the memcpy
320 // is likely to surprise you.
322 template <class Dest, class Source>
323 inline Dest bit_cast(const Source& source) {
324 // Compile time assertion: sizeof(Dest) == sizeof(Source)
325 // A compile error here means your Dest and Source have different sizes.
326 typedef char VerifySizesAreEqual [sizeof(Dest) == sizeof(Source) ? 1 : -1];
328 Dest dest;
329 memcpy(&dest, &source, sizeof(dest));
330 return dest;
333 // Used to explicitly mark the return value of a function as unused. If you are
334 // really sure you don't want to do anything with the return value of a function
335 // that has been marked WARN_UNUSED_RESULT, wrap it with this. Example:
337 // scoped_ptr<MyType> my_var = ...;
338 // if (TakeOwnership(my_var.get()) == SUCCESS)
339 // ignore_result(my_var.release());
341 template<typename T>
342 inline void ignore_result(const T&) {
345 // The following enum should be used only as a constructor argument to indicate
346 // that the variable has static storage class, and that the constructor should
347 // do nothing to its state. It indicates to the reader that it is legal to
348 // declare a static instance of the class, provided the constructor is given
349 // the base::LINKER_INITIALIZED argument. Normally, it is unsafe to declare a
350 // static variable that has a constructor or a destructor because invocation
351 // order is undefined. However, IF the type can be initialized by filling with
352 // zeroes (which the loader does for static variables), AND the destructor also
353 // does nothing to the storage, AND there are no virtual methods, then a
354 // constructor declared as
355 // explicit MyClass(base::LinkerInitialized x) {}
356 // and invoked as
357 // static MyClass my_variable_name(base::LINKER_INITIALIZED);
358 namespace base {
359 enum LinkerInitialized { LINKER_INITIALIZED };
361 // Use these to declare and define a static local variable (static T;) so that
362 // it is leaked so that its destructors are not called at exit. If you need
363 // thread-safe initialization, use base/lazy_instance.h instead.
364 #define CR_DEFINE_STATIC_LOCAL(type, name, arguments) \
365 static type& name = *new type arguments
367 } // base
369 #endif // BASE_BASICTYPES_H_