Separate Simple Backend creation from initialization.
[chromium-blink-merge.git] / base / callback_internal.h
blobd9aba39fc37f8411ec018338e2d6bf396fd7c2c2
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // This file contains utility functions and classes that help the
6 // implementation, and management of the Callback objects.
8 #ifndef BASE_CALLBACK_INTERNAL_H_
9 #define BASE_CALLBACK_INTERNAL_H_
11 #include <stddef.h>
13 #include "base/base_export.h"
14 #include "base/memory/ref_counted.h"
15 #include "base/memory/scoped_ptr.h"
17 template <typename T>
18 class ScopedVector;
20 namespace base {
21 namespace internal {
23 // BindStateBase is used to provide an opaque handle that the Callback
24 // class can use to represent a function object with bound arguments. It
25 // behaves as an existential type that is used by a corresponding
26 // DoInvoke function to perform the function execution. This allows
27 // us to shield the Callback class from the types of the bound argument via
28 // "type erasure."
29 class BindStateBase : public RefCountedThreadSafe<BindStateBase> {
30 protected:
31 friend class RefCountedThreadSafe<BindStateBase>;
32 virtual ~BindStateBase() {}
35 // Holds the Callback methods that don't require specialization to reduce
36 // template bloat.
37 class BASE_EXPORT CallbackBase {
38 public:
39 // Returns true if Callback is null (doesn't refer to anything).
40 bool is_null() const;
42 // Returns the Callback into an uninitialized state.
43 void Reset();
45 protected:
46 // In C++, it is safe to cast function pointers to function pointers of
47 // another type. It is not okay to use void*. We create a InvokeFuncStorage
48 // that that can store our function pointer, and then cast it back to
49 // the original type on usage.
50 typedef void(*InvokeFuncStorage)(void);
52 // Returns true if this callback equals |other|. |other| may be null.
53 bool Equals(const CallbackBase& other) const;
55 // Allow initializing of |bind_state_| via the constructor to avoid default
56 // initialization of the scoped_refptr. We do not also initialize
57 // |polymorphic_invoke_| here because doing a normal assignment in the
58 // derived Callback templates makes for much nicer compiler errors.
59 explicit CallbackBase(BindStateBase* bind_state);
61 // Force the destructor to be instantiated inside this translation unit so
62 // that our subclasses will not get inlined versions. Avoids more template
63 // bloat.
64 ~CallbackBase();
66 scoped_refptr<BindStateBase> bind_state_;
67 InvokeFuncStorage polymorphic_invoke_;
70 // This is a typetraits object that's used to take an argument type, and
71 // extract a suitable type for storing and forwarding arguments.
73 // In particular, it strips off references, and converts arrays to
74 // pointers for storage; and it avoids accidentally trying to create a
75 // "reference of a reference" if the argument is a reference type.
77 // This array type becomes an issue for storage because we are passing bound
78 // parameters by const reference. In this case, we end up passing an actual
79 // array type in the initializer list which C++ does not allow. This will
80 // break passing of C-string literals.
81 template <typename T>
82 struct CallbackParamTraits {
83 typedef const T& ForwardType;
84 typedef T StorageType;
87 // The Storage should almost be impossible to trigger unless someone manually
88 // specifies type of the bind parameters. However, in case they do,
89 // this will guard against us accidentally storing a reference parameter.
91 // The ForwardType should only be used for unbound arguments.
92 template <typename T>
93 struct CallbackParamTraits<T&> {
94 typedef T& ForwardType;
95 typedef T StorageType;
98 // Note that for array types, we implicitly add a const in the conversion. This
99 // means that it is not possible to bind array arguments to functions that take
100 // a non-const pointer. Trying to specialize the template based on a "const
101 // T[n]" does not seem to match correctly, so we are stuck with this
102 // restriction.
103 template <typename T, size_t n>
104 struct CallbackParamTraits<T[n]> {
105 typedef const T* ForwardType;
106 typedef const T* StorageType;
109 // See comment for CallbackParamTraits<T[n]>.
110 template <typename T>
111 struct CallbackParamTraits<T[]> {
112 typedef const T* ForwardType;
113 typedef const T* StorageType;
116 // Parameter traits for movable-but-not-copyable scopers.
118 // Callback<>/Bind() understands movable-but-not-copyable semantics where
119 // the type cannot be copied but can still have its state destructively
120 // transferred (aka. moved) to another instance of the same type by calling a
121 // helper function. When used with Bind(), this signifies transferal of the
122 // object's state to the target function.
124 // For these types, the ForwardType must not be a const reference, or a
125 // reference. A const reference is inappropriate, and would break const
126 // correctness, because we are implementing a destructive move. A non-const
127 // reference cannot be used with temporaries which means the result of a
128 // function or a cast would not be usable with Callback<> or Bind().
130 // TODO(ajwong): We might be able to use SFINAE to search for the existence of
131 // a Pass() function in the type and avoid the whitelist in CallbackParamTraits
132 // and CallbackForward.
133 template <typename T, typename D>
134 struct CallbackParamTraits<scoped_ptr<T, D> > {
135 typedef scoped_ptr<T, D> ForwardType;
136 typedef scoped_ptr<T, D> StorageType;
139 template <typename T>
140 struct CallbackParamTraits<scoped_array<T> > {
141 typedef scoped_array<T> ForwardType;
142 typedef scoped_array<T> StorageType;
145 template <typename T, typename R>
146 struct CallbackParamTraits<scoped_ptr_malloc<T, R> > {
147 typedef scoped_ptr_malloc<T, R> ForwardType;
148 typedef scoped_ptr_malloc<T, R> StorageType;
151 template <typename T>
152 struct CallbackParamTraits<ScopedVector<T> > {
153 typedef ScopedVector<T> ForwardType;
154 typedef ScopedVector<T> StorageType;
157 // CallbackForward() is a very limited simulation of C++11's std::forward()
158 // used by the Callback/Bind system for a set of movable-but-not-copyable
159 // types. It is needed because forwarding a movable-but-not-copyable
160 // argument to another function requires us to invoke the proper move
161 // operator to create a rvalue version of the type. The supported types are
162 // whitelisted below as overloads of the CallbackForward() function. The
163 // default template compiles out to be a no-op.
165 // In C++11, std::forward would replace all uses of this function. However, it
166 // is impossible to implement a general std::forward with C++11 due to a lack
167 // of rvalue references.
169 // In addition to Callback/Bind, this is used by PostTaskAndReplyWithResult to
170 // simulate std::forward() and forward the result of one Callback as a
171 // parameter to another callback. This is to support Callbacks that return
172 // the movable-but-not-copyable types whitelisted above.
173 template <typename T>
174 T& CallbackForward(T& t) { return t; }
176 template <typename T, typename D>
177 scoped_ptr<T, D> CallbackForward(scoped_ptr<T, D>& p) { return p.Pass(); }
179 template <typename T>
180 scoped_array<T> CallbackForward(scoped_array<T>& p) { return p.Pass(); }
182 template <typename T, typename R>
183 scoped_ptr_malloc<T, R> CallbackForward(scoped_ptr_malloc<T, R>& p) {
184 return p.Pass();
187 template <typename T>
188 ScopedVector<T> CallbackForward(ScopedVector<T>& p) { return p.Pass(); }
190 } // namespace internal
191 } // namespace base
193 #endif // BASE_CALLBACK_INTERNAL_H_