Separate Simple Backend creation from initialization.
[chromium-blink-merge.git] / base / message_pump_win.cc
blobfb962caaa2f45e2f83792f10dc3fe7bd147e5d23
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/message_pump_win.h"
7 #include <math.h>
9 #include "base/debug/trace_event.h"
10 #include "base/message_loop.h"
11 #include "base/metrics/histogram.h"
12 #include "base/process_util.h"
13 #include "base/win/wrapped_window_proc.h"
15 namespace {
17 enum MessageLoopProblems {
18 MESSAGE_POST_ERROR,
19 COMPLETION_POST_ERROR,
20 SET_TIMER_ERROR,
21 MESSAGE_LOOP_PROBLEM_MAX,
24 } // namespace
26 namespace base {
28 static const wchar_t kWndClass[] = L"Chrome_MessagePumpWindow";
30 // Message sent to get an additional time slice for pumping (processing) another
31 // task (a series of such messages creates a continuous task pump).
32 static const int kMsgHaveWork = WM_USER + 1;
34 //-----------------------------------------------------------------------------
35 // MessagePumpWin public:
37 void MessagePumpWin::AddObserver(MessagePumpObserver* observer) {
38 observers_.AddObserver(observer);
41 void MessagePumpWin::RemoveObserver(MessagePumpObserver* observer) {
42 observers_.RemoveObserver(observer);
45 void MessagePumpWin::WillProcessMessage(const MSG& msg) {
46 FOR_EACH_OBSERVER(MessagePumpObserver, observers_, WillProcessEvent(msg));
49 void MessagePumpWin::DidProcessMessage(const MSG& msg) {
50 FOR_EACH_OBSERVER(MessagePumpObserver, observers_, DidProcessEvent(msg));
53 void MessagePumpWin::RunWithDispatcher(
54 Delegate* delegate, MessagePumpDispatcher* dispatcher) {
55 RunState s;
56 s.delegate = delegate;
57 s.dispatcher = dispatcher;
58 s.should_quit = false;
59 s.run_depth = state_ ? state_->run_depth + 1 : 1;
61 RunState* previous_state = state_;
62 state_ = &s;
64 DoRunLoop();
66 state_ = previous_state;
69 void MessagePumpWin::Quit() {
70 DCHECK(state_);
71 state_->should_quit = true;
74 //-----------------------------------------------------------------------------
75 // MessagePumpWin protected:
77 int MessagePumpWin::GetCurrentDelay() const {
78 if (delayed_work_time_.is_null())
79 return -1;
81 // Be careful here. TimeDelta has a precision of microseconds, but we want a
82 // value in milliseconds. If there are 5.5ms left, should the delay be 5 or
83 // 6? It should be 6 to avoid executing delayed work too early.
84 double timeout =
85 ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF());
87 // If this value is negative, then we need to run delayed work soon.
88 int delay = static_cast<int>(timeout);
89 if (delay < 0)
90 delay = 0;
92 return delay;
95 //-----------------------------------------------------------------------------
96 // MessagePumpForUI public:
98 MessagePumpForUI::MessagePumpForUI()
99 : instance_(NULL),
100 message_filter_(new MessageFilter) {
101 InitMessageWnd();
104 MessagePumpForUI::~MessagePumpForUI() {
105 DestroyWindow(message_hwnd_);
106 UnregisterClass(kWndClass, instance_);
109 void MessagePumpForUI::ScheduleWork() {
110 if (InterlockedExchange(&have_work_, 1))
111 return; // Someone else continued the pumping.
113 // Make sure the MessagePump does some work for us.
114 BOOL ret = PostMessage(message_hwnd_, kMsgHaveWork,
115 reinterpret_cast<WPARAM>(this), 0);
116 if (ret)
117 return; // There was room in the Window Message queue.
119 // We have failed to insert a have-work message, so there is a chance that we
120 // will starve tasks/timers while sitting in a nested message loop. Nested
121 // loops only look at Windows Message queues, and don't look at *our* task
122 // queues, etc., so we might not get a time slice in such. :-(
123 // We could abort here, but the fear is that this failure mode is plausibly
124 // common (queue is full, of about 2000 messages), so we'll do a near-graceful
125 // recovery. Nested loops are pretty transient (we think), so this will
126 // probably be recoverable.
127 InterlockedExchange(&have_work_, 0); // Clarify that we didn't really insert.
128 UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", MESSAGE_POST_ERROR,
129 MESSAGE_LOOP_PROBLEM_MAX);
132 void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
134 // We would *like* to provide high resolution timers. Windows timers using
135 // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup
136 // mechanism because the application can enter modal windows loops where it
137 // is not running our MessageLoop; the only way to have our timers fire in
138 // these cases is to post messages there.
140 // To provide sub-10ms timers, we process timers directly from our run loop.
141 // For the common case, timers will be processed there as the run loop does
142 // its normal work. However, we *also* set the system timer so that WM_TIMER
143 // events fire. This mops up the case of timers not being able to work in
144 // modal message loops. It is possible for the SetTimer to pop and have no
145 // pending timers, because they could have already been processed by the
146 // run loop itself.
148 // We use a single SetTimer corresponding to the timer that will expire
149 // soonest. As new timers are created and destroyed, we update SetTimer.
150 // Getting a spurrious SetTimer event firing is benign, as we'll just be
151 // processing an empty timer queue.
153 delayed_work_time_ = delayed_work_time;
155 int delay_msec = GetCurrentDelay();
156 DCHECK_GE(delay_msec, 0);
157 if (delay_msec < USER_TIMER_MINIMUM)
158 delay_msec = USER_TIMER_MINIMUM;
160 // Create a WM_TIMER event that will wake us up to check for any pending
161 // timers (in case we are running within a nested, external sub-pump).
162 BOOL ret = SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this),
163 delay_msec, NULL);
164 if (ret)
165 return;
166 // If we can't set timers, we are in big trouble... but cross our fingers for
167 // now.
168 // TODO(jar): If we don't see this error, use a CHECK() here instead.
169 UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", SET_TIMER_ERROR,
170 MESSAGE_LOOP_PROBLEM_MAX);
173 void MessagePumpForUI::PumpOutPendingPaintMessages() {
174 // If we are being called outside of the context of Run, then don't try to do
175 // any work.
176 if (!state_)
177 return;
179 // Create a mini-message-pump to force immediate processing of only Windows
180 // WM_PAINT messages. Don't provide an infinite loop, but do enough peeking
181 // to get the job done. Actual common max is 4 peeks, but we'll be a little
182 // safe here.
183 const int kMaxPeekCount = 20;
184 int peek_count;
185 for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) {
186 MSG msg;
187 if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT))
188 break;
189 ProcessMessageHelper(msg);
190 if (state_->should_quit) // Handle WM_QUIT.
191 break;
193 // Histogram what was really being used, to help to adjust kMaxPeekCount.
194 DHISTOGRAM_COUNTS("Loop.PumpOutPendingPaintMessages Peeks", peek_count);
197 //-----------------------------------------------------------------------------
198 // MessagePumpForUI private:
200 // static
201 LRESULT CALLBACK MessagePumpForUI::WndProcThunk(
202 HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) {
203 switch (message) {
204 case kMsgHaveWork:
205 reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage();
206 break;
207 case WM_TIMER:
208 reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage();
209 break;
211 return DefWindowProc(hwnd, message, wparam, lparam);
214 void MessagePumpForUI::DoRunLoop() {
215 // IF this was just a simple PeekMessage() loop (servicing all possible work
216 // queues), then Windows would try to achieve the following order according
217 // to MSDN documentation about PeekMessage with no filter):
218 // * Sent messages
219 // * Posted messages
220 // * Sent messages (again)
221 // * WM_PAINT messages
222 // * WM_TIMER messages
224 // Summary: none of the above classes is starved, and sent messages has twice
225 // the chance of being processed (i.e., reduced service time).
227 for (;;) {
228 // If we do any work, we may create more messages etc., and more work may
229 // possibly be waiting in another task group. When we (for example)
230 // ProcessNextWindowsMessage(), there is a good chance there are still more
231 // messages waiting. On the other hand, when any of these methods return
232 // having done no work, then it is pretty unlikely that calling them again
233 // quickly will find any work to do. Finally, if they all say they had no
234 // work, then it is a good time to consider sleeping (waiting) for more
235 // work.
237 bool more_work_is_plausible = ProcessNextWindowsMessage();
238 if (state_->should_quit)
239 break;
241 more_work_is_plausible |= state_->delegate->DoWork();
242 if (state_->should_quit)
243 break;
245 more_work_is_plausible |=
246 state_->delegate->DoDelayedWork(&delayed_work_time_);
247 // If we did not process any delayed work, then we can assume that our
248 // existing WM_TIMER if any will fire when delayed work should run. We
249 // don't want to disturb that timer if it is already in flight. However,
250 // if we did do all remaining delayed work, then lets kill the WM_TIMER.
251 if (more_work_is_plausible && delayed_work_time_.is_null())
252 KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
253 if (state_->should_quit)
254 break;
256 if (more_work_is_plausible)
257 continue;
259 more_work_is_plausible = state_->delegate->DoIdleWork();
260 if (state_->should_quit)
261 break;
263 if (more_work_is_plausible)
264 continue;
266 WaitForWork(); // Wait (sleep) until we have work to do again.
270 void MessagePumpForUI::InitMessageWnd() {
271 WNDCLASSEX wc = {0};
272 wc.cbSize = sizeof(wc);
273 wc.lpfnWndProc = base::win::WrappedWindowProc<WndProcThunk>;
274 wc.hInstance = base::GetModuleFromAddress(wc.lpfnWndProc);
275 wc.lpszClassName = kWndClass;
276 instance_ = wc.hInstance;
277 RegisterClassEx(&wc);
279 message_hwnd_ =
280 CreateWindow(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, instance_, 0);
281 DCHECK(message_hwnd_);
284 void MessagePumpForUI::WaitForWork() {
285 // Wait until a message is available, up to the time needed by the timer
286 // manager to fire the next set of timers.
287 int delay = GetCurrentDelay();
288 if (delay < 0) // Negative value means no timers waiting.
289 delay = INFINITE;
291 DWORD result;
292 result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT,
293 MWMO_INPUTAVAILABLE);
295 if (WAIT_OBJECT_0 == result) {
296 // A WM_* message is available.
297 // If a parent child relationship exists between windows across threads
298 // then their thread inputs are implicitly attached.
299 // This causes the MsgWaitForMultipleObjectsEx API to return indicating
300 // that messages are ready for processing (Specifically, mouse messages
301 // intended for the child window may appear if the child window has
302 // capture).
303 // The subsequent PeekMessages call may fail to return any messages thus
304 // causing us to enter a tight loop at times.
305 // The WaitMessage call below is a workaround to give the child window
306 // some time to process its input messages.
307 MSG msg = {0};
308 DWORD queue_status = GetQueueStatus(QS_MOUSE);
309 if (HIWORD(queue_status) & QS_MOUSE &&
310 !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) {
311 WaitMessage();
313 return;
316 DCHECK_NE(WAIT_FAILED, result) << GetLastError();
319 void MessagePumpForUI::HandleWorkMessage() {
320 // If we are being called outside of the context of Run, then don't try to do
321 // any work. This could correspond to a MessageBox call or something of that
322 // sort.
323 if (!state_) {
324 // Since we handled a kMsgHaveWork message, we must still update this flag.
325 InterlockedExchange(&have_work_, 0);
326 return;
329 // Let whatever would have run had we not been putting messages in the queue
330 // run now. This is an attempt to make our dummy message not starve other
331 // messages that may be in the Windows message queue.
332 ProcessPumpReplacementMessage();
334 // Now give the delegate a chance to do some work. He'll let us know if he
335 // needs to do more work.
336 if (state_->delegate->DoWork())
337 ScheduleWork();
340 void MessagePumpForUI::HandleTimerMessage() {
341 KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
343 // If we are being called outside of the context of Run, then don't do
344 // anything. This could correspond to a MessageBox call or something of
345 // that sort.
346 if (!state_)
347 return;
349 state_->delegate->DoDelayedWork(&delayed_work_time_);
350 if (!delayed_work_time_.is_null()) {
351 // A bit gratuitous to set delayed_work_time_ again, but oh well.
352 ScheduleDelayedWork(delayed_work_time_);
356 bool MessagePumpForUI::ProcessNextWindowsMessage() {
357 // If there are sent messages in the queue then PeekMessage internally
358 // dispatches the message and returns false. We return true in this
359 // case to ensure that the message loop peeks again instead of calling
360 // MsgWaitForMultipleObjectsEx again.
361 bool sent_messages_in_queue = false;
362 DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE);
363 if (HIWORD(queue_status) & QS_SENDMESSAGE)
364 sent_messages_in_queue = true;
366 MSG msg;
367 if (message_filter_->DoPeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
368 return ProcessMessageHelper(msg);
370 return sent_messages_in_queue;
373 bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
374 TRACE_EVENT1("base", "MessagePumpForUI::ProcessMessageHelper",
375 "message", msg.message);
376 if (WM_QUIT == msg.message) {
377 // Repost the QUIT message so that it will be retrieved by the primary
378 // GetMessage() loop.
379 state_->should_quit = true;
380 PostQuitMessage(static_cast<int>(msg.wParam));
381 return false;
384 // While running our main message pump, we discard kMsgHaveWork messages.
385 if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_)
386 return ProcessPumpReplacementMessage();
388 if (CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode))
389 return true;
391 WillProcessMessage(msg);
393 if (!message_filter_->ProcessMessage(msg)) {
394 if (state_->dispatcher) {
395 if (!state_->dispatcher->Dispatch(msg))
396 state_->should_quit = true;
397 } else {
398 TranslateMessage(&msg);
399 DispatchMessage(&msg);
403 DidProcessMessage(msg);
404 return true;
407 bool MessagePumpForUI::ProcessPumpReplacementMessage() {
408 // When we encounter a kMsgHaveWork message, this method is called to peek
409 // and process a replacement message, such as a WM_PAINT or WM_TIMER. The
410 // goal is to make the kMsgHaveWork as non-intrusive as possible, even though
411 // a continuous stream of such messages are posted. This method carefully
412 // peeks a message while there is no chance for a kMsgHaveWork to be pending,
413 // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
414 // possibly be posted), and finally dispatches that peeked replacement. Note
415 // that the re-post of kMsgHaveWork may be asynchronous to this thread!!
417 bool have_message = false;
418 MSG msg;
419 // We should not process all window messages if we are in the context of an
420 // OS modal loop, i.e. in the context of a windows API call like MessageBox.
421 // This is to ensure that these messages are peeked out by the OS modal loop.
422 if (MessageLoop::current()->os_modal_loop()) {
423 // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above.
424 have_message = PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) ||
425 PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE);
426 } else {
427 have_message = !!message_filter_->DoPeekMessage(&msg, NULL, 0, 0,
428 PM_REMOVE);
431 DCHECK(!have_message || kMsgHaveWork != msg.message ||
432 msg.hwnd != message_hwnd_);
434 // Since we discarded a kMsgHaveWork message, we must update the flag.
435 int old_have_work = InterlockedExchange(&have_work_, 0);
436 DCHECK(old_have_work);
438 // We don't need a special time slice if we didn't have_message to process.
439 if (!have_message)
440 return false;
442 // Guarantee we'll get another time slice in the case where we go into native
443 // windows code. This ScheduleWork() may hurt performance a tiny bit when
444 // tasks appear very infrequently, but when the event queue is busy, the
445 // kMsgHaveWork events get (percentage wise) rarer and rarer.
446 ScheduleWork();
447 return ProcessMessageHelper(msg);
450 void MessagePumpForUI::SetMessageFilter(
451 scoped_ptr<MessageFilter> message_filter) {
452 message_filter_ = message_filter.Pass();
455 //-----------------------------------------------------------------------------
456 // MessagePumpForIO public:
458 MessagePumpForIO::MessagePumpForIO() {
459 port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1));
460 DCHECK(port_.IsValid());
463 void MessagePumpForIO::ScheduleWork() {
464 if (InterlockedExchange(&have_work_, 1))
465 return; // Someone else continued the pumping.
467 // Make sure the MessagePump does some work for us.
468 BOOL ret = PostQueuedCompletionStatus(port_, 0,
469 reinterpret_cast<ULONG_PTR>(this),
470 reinterpret_cast<OVERLAPPED*>(this));
471 if (ret)
472 return; // Post worked perfectly.
474 // See comment in MessagePumpForUI::ScheduleWork() for this error recovery.
475 InterlockedExchange(&have_work_, 0); // Clarify that we didn't succeed.
476 UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", COMPLETION_POST_ERROR,
477 MESSAGE_LOOP_PROBLEM_MAX);
480 void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
481 // We know that we can't be blocked right now since this method can only be
482 // called on the same thread as Run, so we only need to update our record of
483 // how long to sleep when we do sleep.
484 delayed_work_time_ = delayed_work_time;
487 void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
488 IOHandler* handler) {
489 ULONG_PTR key = HandlerToKey(handler, true);
490 HANDLE port = CreateIoCompletionPort(file_handle, port_, key, 1);
491 DPCHECK(port);
494 bool MessagePumpForIO::RegisterJobObject(HANDLE job_handle,
495 IOHandler* handler) {
496 // Job object notifications use the OVERLAPPED pointer to carry the message
497 // data. Mark the completion key correspondingly, so we will not try to
498 // convert OVERLAPPED* to IOContext*.
499 ULONG_PTR key = HandlerToKey(handler, false);
500 JOBOBJECT_ASSOCIATE_COMPLETION_PORT info;
501 info.CompletionKey = reinterpret_cast<void*>(key);
502 info.CompletionPort = port_;
503 return SetInformationJobObject(job_handle,
504 JobObjectAssociateCompletionPortInformation,
505 &info,
506 sizeof(info)) != FALSE;
509 //-----------------------------------------------------------------------------
510 // MessagePumpForIO private:
512 void MessagePumpForIO::DoRunLoop() {
513 for (;;) {
514 // If we do any work, we may create more messages etc., and more work may
515 // possibly be waiting in another task group. When we (for example)
516 // WaitForIOCompletion(), there is a good chance there are still more
517 // messages waiting. On the other hand, when any of these methods return
518 // having done no work, then it is pretty unlikely that calling them
519 // again quickly will find any work to do. Finally, if they all say they
520 // had no work, then it is a good time to consider sleeping (waiting) for
521 // more work.
523 bool more_work_is_plausible = state_->delegate->DoWork();
524 if (state_->should_quit)
525 break;
527 more_work_is_plausible |= WaitForIOCompletion(0, NULL);
528 if (state_->should_quit)
529 break;
531 more_work_is_plausible |=
532 state_->delegate->DoDelayedWork(&delayed_work_time_);
533 if (state_->should_quit)
534 break;
536 if (more_work_is_plausible)
537 continue;
539 more_work_is_plausible = state_->delegate->DoIdleWork();
540 if (state_->should_quit)
541 break;
543 if (more_work_is_plausible)
544 continue;
546 WaitForWork(); // Wait (sleep) until we have work to do again.
550 // Wait until IO completes, up to the time needed by the timer manager to fire
551 // the next set of timers.
552 void MessagePumpForIO::WaitForWork() {
553 // We do not support nested IO message loops. This is to avoid messy
554 // recursion problems.
555 DCHECK_EQ(1, state_->run_depth) << "Cannot nest an IO message loop!";
557 int timeout = GetCurrentDelay();
558 if (timeout < 0) // Negative value means no timers waiting.
559 timeout = INFINITE;
561 WaitForIOCompletion(timeout, NULL);
564 bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
565 IOItem item;
566 if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) {
567 // We have to ask the system for another IO completion.
568 if (!GetIOItem(timeout, &item))
569 return false;
571 if (ProcessInternalIOItem(item))
572 return true;
575 // If |item.has_valid_io_context| is false then |item.context| does not point
576 // to a context structure, and so should not be dereferenced, although it may
577 // still hold valid non-pointer data.
578 if (!item.has_valid_io_context || item.context->handler) {
579 if (filter && item.handler != filter) {
580 // Save this item for later
581 completed_io_.push_back(item);
582 } else {
583 DCHECK(!item.has_valid_io_context ||
584 (item.context->handler == item.handler));
585 WillProcessIOEvent();
586 item.handler->OnIOCompleted(item.context, item.bytes_transfered,
587 item.error);
588 DidProcessIOEvent();
590 } else {
591 // The handler must be gone by now, just cleanup the mess.
592 delete item.context;
594 return true;
597 // Asks the OS for another IO completion result.
598 bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
599 memset(item, 0, sizeof(*item));
600 ULONG_PTR key = NULL;
601 OVERLAPPED* overlapped = NULL;
602 if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key,
603 &overlapped, timeout)) {
604 if (!overlapped)
605 return false; // Nothing in the queue.
606 item->error = GetLastError();
607 item->bytes_transfered = 0;
610 item->handler = KeyToHandler(key, &item->has_valid_io_context);
611 item->context = reinterpret_cast<IOContext*>(overlapped);
612 return true;
615 bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
616 if (this == reinterpret_cast<MessagePumpForIO*>(item.context) &&
617 this == reinterpret_cast<MessagePumpForIO*>(item.handler)) {
618 // This is our internal completion.
619 DCHECK(!item.bytes_transfered);
620 InterlockedExchange(&have_work_, 0);
621 return true;
623 return false;
626 // Returns a completion item that was previously received.
627 bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) {
628 DCHECK(!completed_io_.empty());
629 for (std::list<IOItem>::iterator it = completed_io_.begin();
630 it != completed_io_.end(); ++it) {
631 if (!filter || it->handler == filter) {
632 *item = *it;
633 completed_io_.erase(it);
634 return true;
637 return false;
640 void MessagePumpForIO::AddIOObserver(IOObserver *obs) {
641 io_observers_.AddObserver(obs);
644 void MessagePumpForIO::RemoveIOObserver(IOObserver *obs) {
645 io_observers_.RemoveObserver(obs);
648 void MessagePumpForIO::WillProcessIOEvent() {
649 FOR_EACH_OBSERVER(IOObserver, io_observers_, WillProcessIOEvent());
652 void MessagePumpForIO::DidProcessIOEvent() {
653 FOR_EACH_OBSERVER(IOObserver, io_observers_, DidProcessIOEvent());
656 // static
657 ULONG_PTR MessagePumpForIO::HandlerToKey(IOHandler* handler,
658 bool has_valid_io_context) {
659 ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler);
661 // |IOHandler| is at least pointer-size aligned, so the lowest two bits are
662 // always cleared. We use the lowest bit to distinguish completion keys with
663 // and without the associated |IOContext|.
664 DCHECK((key & 1) == 0);
666 // Mark the completion key as context-less.
667 if (!has_valid_io_context)
668 key = key | 1;
669 return key;
672 // static
673 MessagePumpForIO::IOHandler* MessagePumpForIO::KeyToHandler(
674 ULONG_PTR key,
675 bool* has_valid_io_context) {
676 *has_valid_io_context = ((key & 1) == 0);
677 return reinterpret_cast<IOHandler*>(key & ~static_cast<ULONG_PTR>(1));
680 } // namespace base