Separate Simple Backend creation from initialization.
[chromium-blink-merge.git] / base / move.h
blobd2cd3df4f7ddf50957dcbb33215869eaebab089e
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef BASE_MOVE_H_
6 #define BASE_MOVE_H_
8 // Macro with the boilerplate that makes a type move-only in C++03.
9 //
10 // USAGE
12 // This macro should be used instead of DISALLOW_COPY_AND_ASSIGN to create
13 // a "move-only" type. Unlike DISALLOW_COPY_AND_ASSIGN, this macro should be
14 // the first line in a class declaration.
16 // A class using this macro must call .Pass() (or somehow be an r-value already)
17 // before it can be:
19 // * Passed as a function argument
20 // * Used as the right-hand side of an assignment
21 // * Returned from a function
23 // Each class will still need to define their own "move constructor" and "move
24 // operator=" to make this useful. Here's an example of the macro, the move
25 // constructor, and the move operator= from the scoped_ptr class:
27 // template <typename T>
28 // class scoped_ptr {
29 // MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
30 // public:
31 // scoped_ptr(RValue& other) : ptr_(other.release()) { }
32 // scoped_ptr& operator=(RValue& other) {
33 // swap(other);
34 // return *this;
35 // }
36 // };
38 // Note that the constructor must NOT be marked explicit.
40 // For consistency, the second parameter to the macro should always be RValue
41 // unless you have a strong reason to do otherwise. It is only exposed as a
42 // macro parameter so that the move constructor and move operator= don't look
43 // like they're using a phantom type.
46 // HOW THIS WORKS
48 // For a thorough explanation of this technique, see:
50 // http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Move_Constructor
52 // The summary is that we take advantage of 2 properties:
54 // 1) non-const references will not bind to r-values.
55 // 2) C++ can apply one user-defined conversion when initializing a
56 // variable.
58 // The first lets us disable the copy constructor and assignment operator
59 // by declaring private version of them with a non-const reference parameter.
61 // For l-values, direct initialization still fails like in
62 // DISALLOW_COPY_AND_ASSIGN because the copy constructor and assignment
63 // operators are private.
65 // For r-values, the situation is different. The copy constructor and
66 // assignment operator are not viable due to (1), so we are trying to call
67 // a non-existent constructor and non-existing operator= rather than a private
68 // one. Since we have not committed an error quite yet, we can provide an
69 // alternate conversion sequence and a constructor. We add
71 // * a private struct named "RValue"
72 // * a user-defined conversion "operator RValue()"
73 // * a "move constructor" and "move operator=" that take the RValue& as
74 // their sole parameter.
76 // Only r-values will trigger this sequence and execute our "move constructor"
77 // or "move operator=." L-values will match the private copy constructor and
78 // operator= first giving a "private in this context" error. This combination
79 // gives us a move-only type.
81 // For signaling a destructive transfer of data from an l-value, we provide a
82 // method named Pass() which creates an r-value for the current instance
83 // triggering the move constructor or move operator=.
85 // Other ways to get r-values is to use the result of an expression like a
86 // function call.
88 // Here's an example with comments explaining what gets triggered where:
90 // class Foo {
91 // MOVE_ONLY_TYPE_FOR_CPP_03(Foo, RValue);
93 // public:
94 // ... API ...
95 // Foo(RValue other); // Move constructor.
96 // Foo& operator=(RValue rhs); // Move operator=
97 // };
99 // Foo MakeFoo(); // Function that returns a Foo.
101 // Foo f;
102 // Foo f_copy(f); // ERROR: Foo(Foo&) is private in this context.
103 // Foo f_assign;
104 // f_assign = f; // ERROR: operator=(Foo&) is private in this context.
107 // Foo f(MakeFoo()); // R-value so alternate conversion executed.
108 // Foo f_copy(f.Pass()); // R-value so alternate conversion executed.
109 // f = f_copy.Pass(); // R-value so alternate conversion executed.
112 // IMPLEMENTATION SUBTLETIES WITH RValue
114 // The RValue struct is just a container for a pointer back to the original
115 // object. It should only ever be created as a temporary, and no external
116 // class should ever declare it or use it in a parameter.
118 // It is tempting to want to use the RValue type in function parameters, but
119 // excluding the limited usage here for the move constructor and move
120 // operator=, doing so would mean that the function could take both r-values
121 // and l-values equially which is unexpected. See COMPARED To Boost.Move for
122 // more details.
124 // An alternate, and incorrect, implementation of the RValue class used by
125 // Boost.Move makes RValue a fieldless child of the move-only type. RValue&
126 // is then used in place of RValue in the various operators. The RValue& is
127 // "created" by doing *reinterpret_cast<RValue*>(this). This has the appeal
128 // of never creating a temporary RValue struct even with optimizations
129 // disabled. Also, by virtue of inheritance you can treat the RValue
130 // reference as if it were the move-only type itself. Unfortunately,
131 // using the result of this reinterpret_cast<> is actually undefined behavior
132 // due to C++98 5.2.10.7. In certain compilers (e.g., NaCl) the optimizer
133 // will generate non-working code.
135 // In optimized builds, both implementations generate the same assembly so we
136 // choose the one that adheres to the standard.
139 // COMPARED TO C++11
141 // In C++11, you would implement this functionality using an r-value reference
142 // and our .Pass() method would be replaced with a call to std::move().
144 // This emulation also has a deficiency where it uses up the single
145 // user-defined conversion allowed by C++ during initialization. This can
146 // cause problems in some API edge cases. For instance, in scoped_ptr, it is
147 // impossible to make a function "void Foo(scoped_ptr<Parent> p)" accept a
148 // value of type scoped_ptr<Child> even if you add a constructor to
149 // scoped_ptr<> that would make it look like it should work. C++11 does not
150 // have this deficiency.
153 // COMPARED TO Boost.Move
155 // Our implementation similar to Boost.Move, but we keep the RValue struct
156 // private to the move-only type, and we don't use the reinterpret_cast<> hack.
158 // In Boost.Move, RValue is the boost::rv<> template. This type can be used
159 // when writing APIs like:
161 // void MyFunc(boost::rv<Foo>& f)
163 // that can take advantage of rv<> to avoid extra copies of a type. However you
164 // would still be able to call this version of MyFunc with an l-value:
166 // Foo f;
167 // MyFunc(f); // Uh oh, we probably just destroyed |f| w/o calling Pass().
169 // unless someone is very careful to also declare a parallel override like:
171 // void MyFunc(const Foo& f)
173 // that would catch the l-values first. This was declared unsafe in C++11 and
174 // a C++11 compiler will explicitly fail MyFunc(f). Unfortunately, we cannot
175 // ensure this in C++03.
177 // Since we have no need for writing such APIs yet, our implementation keeps
178 // RValue private and uses a .Pass() method to do the conversion instead of
179 // trying to write a version of "std::move()." Writing an API like std::move()
180 // would require the RValue struct to be public.
183 // CAVEATS
185 // If you include a move-only type as a field inside a class that does not
186 // explicitly declare a copy constructor, the containing class's implicit
187 // copy constructor will change from Containing(const Containing&) to
188 // Containing(Containing&). This can cause some unexpected errors.
190 // http://llvm.org/bugs/show_bug.cgi?id=11528
192 // The workaround is to explicitly declare your copy constructor.
194 #define MOVE_ONLY_TYPE_FOR_CPP_03(type, rvalue_type) \
195 private: \
196 struct rvalue_type { \
197 explicit rvalue_type(type* object) : object(object) {} \
198 type* object; \
199 }; \
200 type(type&); \
201 void operator=(type&); \
202 public: \
203 operator rvalue_type() { return rvalue_type(this); } \
204 type Pass() { return type(rvalue_type(this)); } \
205 private:
207 #endif // BASE_MOVE_H_