Separate Simple Backend creation from initialization.
[chromium-blink-merge.git] / third_party / tcmalloc / chromium / src / windows / preamble_patcher.cc
blobb27a95bcb6f737f16d32e74c8243bb31c6810668
1 /* Copyright (c) 2007, Google Inc.
2 * All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are
6 * met:
7 *
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above
11 * copyright notice, this list of conditions and the following disclaimer
12 * in the documentation and/or other materials provided with the
13 * distribution.
14 * * Neither the name of Google Inc. nor the names of its
15 * contributors may be used to endorse or promote products derived from
16 * this software without specific prior written permission.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * ---
31 * Author: Joi Sigurdsson
32 * Author: Scott Francis
34 * Implementation of PreamblePatcher
37 #include "preamble_patcher.h"
39 #include "mini_disassembler.h"
41 // compatibility shims
42 #include "base/logging.h"
44 // Definitions of assembly statements we need
45 #define ASM_JMP32REL 0xE9
46 #define ASM_INT3 0xCC
47 #define ASM_JMP32ABS_0 0xFF
48 #define ASM_JMP32ABS_1 0x25
49 #define ASM_JMP8REL 0xEB
50 #define ASM_JCC32REL_0 0x0F
51 #define ASM_JCC32REL_1_MASK 0x80
52 #define ASM_NOP 0x90
53 // X64 opcodes
54 #define ASM_REXW 0x48
55 #define ASM_MOVRAX_IMM 0xB8
56 #define ASM_JMP 0xFF
57 #define ASM_JMP_RAX 0xE0
59 namespace sidestep {
61 PreamblePatcher::PreamblePage* PreamblePatcher::preamble_pages_ = NULL;
62 long PreamblePatcher::granularity_ = 0;
63 long PreamblePatcher::pagesize_ = 0;
64 bool PreamblePatcher::initialized_ = false;
66 static const unsigned int kPreamblePageMagic = 0x4347414D; // "MAGC"
68 // Handle a special case that we see with functions that point into an
69 // IAT table (including functions linked statically into the
70 // application): these function already starts with ASM_JMP32*. For
71 // instance, malloc() might be implemented as a JMP to __malloc().
72 // This function follows the initial JMPs for us, until we get to the
73 // place where the actual code is defined. If we get to STOP_BEFORE,
74 // we return the address before stop_before. The stop_before_trampoline
75 // flag is used in 64-bit mode. If true, we will return the address
76 // before a trampoline is detected. Trampolines are defined as:
78 // nop
79 // mov rax, <replacement_function>
80 // jmp rax
82 // See PreamblePatcher::RawPatchWithStub for more information.
83 void* PreamblePatcher::ResolveTargetImpl(unsigned char* target,
84 unsigned char* stop_before,
85 bool stop_before_trampoline) {
86 if (target == NULL)
87 return NULL;
88 while (1) {
89 unsigned char* new_target;
90 if (target[0] == ASM_JMP32REL) {
91 // target[1-4] holds the place the jmp goes to, but it's
92 // relative to the next instruction.
93 int relative_offset; // Windows guarantees int is 4 bytes
94 SIDESTEP_ASSERT(sizeof(relative_offset) == 4);
95 memcpy(reinterpret_cast<void*>(&relative_offset),
96 reinterpret_cast<void*>(target + 1), 4);
97 new_target = target + 5 + relative_offset;
98 } else if (target[0] == ASM_JMP8REL) {
99 // Visual Studio 7.1 implements new[] as an 8 bit jump to new
100 signed char relative_offset;
101 memcpy(reinterpret_cast<void*>(&relative_offset),
102 reinterpret_cast<void*>(target + 1), 1);
103 new_target = target + 2 + relative_offset;
104 } else if (target[0] == ASM_JMP32ABS_0 &&
105 target[1] == ASM_JMP32ABS_1) {
106 // Visual studio seems to sometimes do it this way instead of the
107 // previous way. Not sure what the rules are, but it was happening
108 // with operator new in some binaries.
109 void** new_target_v;
110 if (kIs64BitBinary) {
111 // In 64-bit mode JMPs are RIP-relative, not absolute
112 int target_offset;
113 memcpy(reinterpret_cast<void*>(&target_offset),
114 reinterpret_cast<void*>(target + 2), 4);
115 new_target_v = reinterpret_cast<void**>(target + target_offset + 6);
116 } else {
117 SIDESTEP_ASSERT(sizeof(new_target) == 4);
118 memcpy(&new_target_v, reinterpret_cast<void*>(target + 2), 4);
120 new_target = reinterpret_cast<unsigned char*>(*new_target_v);
121 } else {
122 break;
124 if (new_target == stop_before)
125 break;
126 if (stop_before_trampoline && *new_target == ASM_NOP
127 && new_target[1] == ASM_REXW && new_target[2] == ASM_MOVRAX_IMM)
128 break;
129 target = new_target;
131 return target;
134 // Special case scoped_ptr to avoid dependency on scoped_ptr below.
135 class DeleteUnsignedCharArray {
136 public:
137 DeleteUnsignedCharArray(unsigned char* array) : array_(array) {
140 ~DeleteUnsignedCharArray() {
141 if (array_) {
142 PreamblePatcher::FreePreambleBlock(array_);
146 unsigned char* Release() {
147 unsigned char* temp = array_;
148 array_ = NULL;
149 return temp;
152 private:
153 unsigned char* array_;
156 SideStepError PreamblePatcher::RawPatchWithStubAndProtections(
157 void* target_function, void *replacement_function,
158 unsigned char* preamble_stub, unsigned long stub_size,
159 unsigned long* bytes_needed) {
160 // We need to be able to write to a process-local copy of the first
161 // MAX_PREAMBLE_STUB_SIZE bytes of target_function
162 DWORD old_target_function_protect = 0;
163 BOOL succeeded = ::VirtualProtect(reinterpret_cast<void*>(target_function),
164 MAX_PREAMBLE_STUB_SIZE,
165 PAGE_EXECUTE_READWRITE,
166 &old_target_function_protect);
167 if (!succeeded) {
168 SIDESTEP_ASSERT(false && "Failed to make page containing target function "
169 "copy-on-write.");
170 return SIDESTEP_ACCESS_DENIED;
173 SideStepError error_code = RawPatchWithStub(target_function,
174 replacement_function,
175 preamble_stub,
176 stub_size,
177 bytes_needed);
179 // Restore the protection of the first MAX_PREAMBLE_STUB_SIZE bytes of
180 // pTargetFunction to what they were before we started goofing around.
181 // We do this regardless of whether the patch succeeded or not.
182 succeeded = ::VirtualProtect(reinterpret_cast<void*>(target_function),
183 MAX_PREAMBLE_STUB_SIZE,
184 old_target_function_protect,
185 &old_target_function_protect);
186 if (!succeeded) {
187 SIDESTEP_ASSERT(false &&
188 "Failed to restore protection to target function.");
189 // We must not return an error here because the function has
190 // likely actually been patched, and returning an error might
191 // cause our client code not to unpatch it. So we just keep
192 // going.
195 if (SIDESTEP_SUCCESS != error_code) { // Testing RawPatchWithStub, above
196 SIDESTEP_ASSERT(false);
197 return error_code;
200 // Flush the instruction cache to make sure the processor doesn't execute the
201 // old version of the instructions (before our patch).
203 // FlushInstructionCache is actually a no-op at least on
204 // single-processor XP machines. I'm not sure why this is so, but
205 // it is, yet I want to keep the call to the API here for
206 // correctness in case there is a difference in some variants of
207 // Windows/hardware.
208 succeeded = ::FlushInstructionCache(::GetCurrentProcess(),
209 target_function,
210 MAX_PREAMBLE_STUB_SIZE);
211 if (!succeeded) {
212 SIDESTEP_ASSERT(false && "Failed to flush instruction cache.");
213 // We must not return an error here because the function has actually
214 // been patched, and returning an error would likely cause our client
215 // code not to unpatch it. So we just keep going.
218 return SIDESTEP_SUCCESS;
221 SideStepError PreamblePatcher::RawPatch(void* target_function,
222 void* replacement_function,
223 void** original_function_stub) {
224 if (!target_function || !replacement_function || !original_function_stub ||
225 (*original_function_stub) || target_function == replacement_function) {
226 SIDESTEP_ASSERT(false && "Preconditions not met");
227 return SIDESTEP_INVALID_PARAMETER;
230 BOOL succeeded = FALSE;
232 // First, deal with a special case that we see with functions that
233 // point into an IAT table (including functions linked statically
234 // into the application): these function already starts with
235 // ASM_JMP32REL. For instance, malloc() might be implemented as a
236 // JMP to __malloc(). In that case, we replace the destination of
237 // the JMP (__malloc), rather than the JMP itself (malloc). This
238 // way we get the correct behavior no matter how malloc gets called.
239 void* new_target = ResolveTarget(target_function);
240 if (new_target != target_function) {
241 target_function = new_target;
244 // In 64-bit mode, preamble_stub must be within 2GB of target function
245 // so that if target contains a jump, we can translate it.
246 unsigned char* preamble_stub = AllocPreambleBlockNear(target_function);
247 if (!preamble_stub) {
248 SIDESTEP_ASSERT(false && "Unable to allocate preamble-stub.");
249 return SIDESTEP_INSUFFICIENT_BUFFER;
252 // Frees the array at end of scope.
253 DeleteUnsignedCharArray guard_preamble_stub(preamble_stub);
255 SideStepError error_code = RawPatchWithStubAndProtections(
256 target_function, replacement_function, preamble_stub,
257 MAX_PREAMBLE_STUB_SIZE, NULL);
259 if (SIDESTEP_SUCCESS != error_code) {
260 SIDESTEP_ASSERT(false);
261 return error_code;
264 // Flush the instruction cache to make sure the processor doesn't execute the
265 // old version of the instructions (before our patch).
267 // FlushInstructionCache is actually a no-op at least on
268 // single-processor XP machines. I'm not sure why this is so, but
269 // it is, yet I want to keep the call to the API here for
270 // correctness in case there is a difference in some variants of
271 // Windows/hardware.
272 succeeded = ::FlushInstructionCache(::GetCurrentProcess(),
273 target_function,
274 MAX_PREAMBLE_STUB_SIZE);
275 if (!succeeded) {
276 SIDESTEP_ASSERT(false && "Failed to flush instruction cache.");
277 // We must not return an error here because the function has actually
278 // been patched, and returning an error would likely cause our client
279 // code not to unpatch it. So we just keep going.
282 SIDESTEP_LOG("PreamblePatcher::RawPatch successfully patched.");
284 // detach the scoped pointer so the memory is not freed
285 *original_function_stub =
286 reinterpret_cast<void*>(guard_preamble_stub.Release());
287 return SIDESTEP_SUCCESS;
290 SideStepError PreamblePatcher::Unpatch(void* target_function,
291 void* replacement_function,
292 void* original_function_stub) {
293 SIDESTEP_ASSERT(target_function && replacement_function &&
294 original_function_stub);
295 if (!target_function || !replacement_function ||
296 !original_function_stub) {
297 return SIDESTEP_INVALID_PARAMETER;
300 // Before unpatching, target_function should be a JMP to
301 // replacement_function. If it's not, then either it's an error, or
302 // we're falling into the case where the original instruction was a
303 // JMP, and we patched the jumped_to address rather than the JMP
304 // itself. (For instance, if malloc() is just a JMP to __malloc(),
305 // we patched __malloc() and not malloc().)
306 unsigned char* target = reinterpret_cast<unsigned char*>(target_function);
307 target = reinterpret_cast<unsigned char*>(
308 ResolveTargetImpl(
309 target, reinterpret_cast<unsigned char*>(replacement_function),
310 true));
311 // We should end at the function we patched. When we patch, we insert
312 // a ASM_JMP32REL instruction, so look for that as a sanity check.
313 if (target[0] != ASM_JMP32REL) {
314 SIDESTEP_ASSERT(false &&
315 "target_function does not look like it was patched.");
316 return SIDESTEP_INVALID_PARAMETER;
319 const unsigned int kRequiredTargetPatchBytes = 5;
321 // We need to be able to write to a process-local copy of the first
322 // kRequiredTargetPatchBytes bytes of target_function
323 DWORD old_target_function_protect = 0;
324 BOOL succeeded = ::VirtualProtect(reinterpret_cast<void*>(target),
325 kRequiredTargetPatchBytes,
326 PAGE_EXECUTE_READWRITE,
327 &old_target_function_protect);
328 if (!succeeded) {
329 SIDESTEP_ASSERT(false && "Failed to make page containing target function "
330 "copy-on-write.");
331 return SIDESTEP_ACCESS_DENIED;
334 unsigned char* preamble_stub = reinterpret_cast<unsigned char*>(
335 original_function_stub);
337 // Disassemble the preamble of stub and copy the bytes back to target.
338 // If we've done any conditional jumps in the preamble we need to convert
339 // them back to the orignal REL8 jumps in the target.
340 MiniDisassembler disassembler;
341 unsigned int preamble_bytes = 0;
342 unsigned int target_bytes = 0;
343 while (target_bytes < kRequiredTargetPatchBytes) {
344 unsigned int cur_bytes = 0;
345 InstructionType instruction_type =
346 disassembler.Disassemble(preamble_stub + preamble_bytes, cur_bytes);
347 if (IT_JUMP == instruction_type) {
348 unsigned int jump_bytes = 0;
349 SideStepError jump_ret = SIDESTEP_JUMP_INSTRUCTION;
350 if (IsNearConditionalJump(preamble_stub + preamble_bytes, cur_bytes) ||
351 IsNearRelativeJump(preamble_stub + preamble_bytes, cur_bytes) ||
352 IsNearAbsoluteCall(preamble_stub + preamble_bytes, cur_bytes) ||
353 IsNearRelativeCall(preamble_stub + preamble_bytes, cur_bytes)) {
354 jump_ret = PatchNearJumpOrCall(preamble_stub + preamble_bytes,
355 cur_bytes, target + target_bytes,
356 &jump_bytes, MAX_PREAMBLE_STUB_SIZE);
358 if (jump_ret == SIDESTEP_JUMP_INSTRUCTION) {
359 SIDESTEP_ASSERT(false &&
360 "Found unsupported jump instruction in stub!!");
361 return SIDESTEP_UNSUPPORTED_INSTRUCTION;
363 target_bytes += jump_bytes;
364 } else if (IT_GENERIC == instruction_type) {
365 if (IsMovWithDisplacement(preamble_stub + preamble_bytes, cur_bytes)) {
366 unsigned int mov_bytes = 0;
367 if (PatchMovWithDisplacement(preamble_stub + preamble_bytes, cur_bytes,
368 target + target_bytes, &mov_bytes,
369 MAX_PREAMBLE_STUB_SIZE)
370 != SIDESTEP_SUCCESS) {
371 SIDESTEP_ASSERT(false &&
372 "Found unsupported generic instruction in stub!!");
373 return SIDESTEP_UNSUPPORTED_INSTRUCTION;
375 } else {
376 memcpy(reinterpret_cast<void*>(target + target_bytes),
377 reinterpret_cast<void*>(reinterpret_cast<unsigned char*>(
378 original_function_stub) + preamble_bytes), cur_bytes);
379 target_bytes += cur_bytes;
381 } else {
382 SIDESTEP_ASSERT(false &&
383 "Found unsupported instruction in stub!!");
384 return SIDESTEP_UNSUPPORTED_INSTRUCTION;
386 preamble_bytes += cur_bytes;
389 FreePreambleBlock(reinterpret_cast<unsigned char*>(original_function_stub));
391 // Restore the protection of the first kRequiredTargetPatchBytes bytes of
392 // target to what they were before we started goofing around.
393 succeeded = ::VirtualProtect(reinterpret_cast<void*>(target),
394 kRequiredTargetPatchBytes,
395 old_target_function_protect,
396 &old_target_function_protect);
398 // Flush the instruction cache to make sure the processor doesn't execute the
399 // old version of the instructions (before our patch).
401 // See comment on FlushInstructionCache elsewhere in this file.
402 succeeded = ::FlushInstructionCache(::GetCurrentProcess(),
403 target,
404 MAX_PREAMBLE_STUB_SIZE);
405 if (!succeeded) {
406 SIDESTEP_ASSERT(false && "Failed to flush instruction cache.");
407 return SIDESTEP_UNEXPECTED;
410 SIDESTEP_LOG("PreamblePatcher::Unpatch successfully unpatched.");
411 return SIDESTEP_SUCCESS;
414 void PreamblePatcher::Initialize() {
415 if (!initialized_) {
416 SYSTEM_INFO si = { 0 };
417 ::GetSystemInfo(&si);
418 granularity_ = si.dwAllocationGranularity;
419 pagesize_ = si.dwPageSize;
420 initialized_ = true;
424 unsigned char* PreamblePatcher::AllocPreambleBlockNear(void* target) {
425 PreamblePage* preamble_page = preamble_pages_;
426 while (preamble_page != NULL) {
427 if (preamble_page->free_ != NULL) {
428 __int64 val = reinterpret_cast<__int64>(preamble_page) -
429 reinterpret_cast<__int64>(target);
430 if ((val > 0 && val + pagesize_ <= INT_MAX) ||
431 (val < 0 && val >= INT_MIN)) {
432 break;
435 preamble_page = preamble_page->next_;
438 // The free_ member of the page is used to store the next available block
439 // of memory to use or NULL if there are no chunks available, in which case
440 // we'll allocate a new page.
441 if (preamble_page == NULL || preamble_page->free_ == NULL) {
442 // Create a new preamble page and initialize the free list
443 preamble_page = reinterpret_cast<PreamblePage*>(AllocPageNear(target));
444 SIDESTEP_ASSERT(preamble_page != NULL && "Could not allocate page!");
445 void** pp = &preamble_page->free_;
446 unsigned char* ptr = reinterpret_cast<unsigned char*>(preamble_page) +
447 MAX_PREAMBLE_STUB_SIZE;
448 unsigned char* limit = reinterpret_cast<unsigned char*>(preamble_page) +
449 pagesize_;
450 while (ptr < limit) {
451 *pp = ptr;
452 pp = reinterpret_cast<void**>(ptr);
453 ptr += MAX_PREAMBLE_STUB_SIZE;
455 *pp = NULL;
456 // Insert the new page into the list
457 preamble_page->magic_ = kPreamblePageMagic;
458 preamble_page->next_ = preamble_pages_;
459 preamble_pages_ = preamble_page;
461 unsigned char* ret = reinterpret_cast<unsigned char*>(preamble_page->free_);
462 preamble_page->free_ = *(reinterpret_cast<void**>(preamble_page->free_));
463 return ret;
466 void PreamblePatcher::FreePreambleBlock(unsigned char* block) {
467 SIDESTEP_ASSERT(block != NULL);
468 SIDESTEP_ASSERT(granularity_ != 0);
469 uintptr_t ptr = reinterpret_cast<uintptr_t>(block);
470 ptr -= ptr & (granularity_ - 1);
471 PreamblePage* preamble_page = reinterpret_cast<PreamblePage*>(ptr);
472 SIDESTEP_ASSERT(preamble_page->magic_ == kPreamblePageMagic);
473 *(reinterpret_cast<void**>(block)) = preamble_page->free_;
474 preamble_page->free_ = block;
477 void* PreamblePatcher::AllocPageNear(void* target) {
478 MEMORY_BASIC_INFORMATION mbi = { 0 };
479 if (!::VirtualQuery(target, &mbi, sizeof(mbi))) {
480 SIDESTEP_ASSERT(false && "VirtualQuery failed on target address");
481 return 0;
483 if (initialized_ == false) {
484 PreamblePatcher::Initialize();
485 SIDESTEP_ASSERT(initialized_);
487 void* pv = NULL;
488 unsigned char* allocation_base = reinterpret_cast<unsigned char*>(
489 mbi.AllocationBase);
490 __int64 i = 1;
491 bool high_target = reinterpret_cast<__int64>(target) > UINT_MAX;
492 while (pv == NULL) {
493 __int64 val = reinterpret_cast<__int64>(allocation_base) -
494 (i * granularity_);
495 if (high_target &&
496 reinterpret_cast<__int64>(target) - val > INT_MAX) {
497 // We're further than 2GB from the target
498 break;
499 } else if (val <= NULL) {
500 // Less than 0
501 break;
503 pv = ::VirtualAlloc(reinterpret_cast<void*>(allocation_base -
504 (i++ * granularity_)),
505 pagesize_, MEM_COMMIT | MEM_RESERVE,
506 PAGE_EXECUTE_READWRITE);
509 // We couldn't allocate low, try to allocate high
510 if (pv == NULL) {
511 i = 1;
512 // Round up to the next multiple of page granularity
513 allocation_base = reinterpret_cast<unsigned char*>(
514 (reinterpret_cast<__int64>(target) &
515 (~(granularity_ - 1))) + granularity_);
516 while (pv == NULL) {
517 __int64 val = reinterpret_cast<__int64>(allocation_base) +
518 (i * granularity_) - reinterpret_cast<__int64>(target);
519 if (val > INT_MAX || val < 0) {
520 // We're too far or we overflowed
521 break;
523 pv = ::VirtualAlloc(reinterpret_cast<void*>(allocation_base +
524 (i++ * granularity_)),
525 pagesize_, MEM_COMMIT | MEM_RESERVE,
526 PAGE_EXECUTE_READWRITE);
529 return pv;
532 bool PreamblePatcher::IsShortConditionalJump(
533 unsigned char* target,
534 unsigned int instruction_size) {
535 return (*(target) & 0x70) == 0x70 && instruction_size == 2;
538 bool PreamblePatcher::IsNearConditionalJump(
539 unsigned char* target,
540 unsigned int instruction_size) {
541 return *(target) == 0xf && (*(target + 1) & 0x80) == 0x80 &&
542 instruction_size == 6;
545 bool PreamblePatcher::IsNearRelativeJump(
546 unsigned char* target,
547 unsigned int instruction_size) {
548 return *(target) == 0xe9 && instruction_size == 5;
551 bool PreamblePatcher::IsNearAbsoluteCall(
552 unsigned char* target,
553 unsigned int instruction_size) {
554 return *(target) == 0xff && (*(target + 1) & 0x10) == 0x10 &&
555 instruction_size == 6;
558 bool PreamblePatcher::IsNearRelativeCall(
559 unsigned char* target,
560 unsigned int instruction_size) {
561 return *(target) == 0xe8 && instruction_size == 5;
564 bool PreamblePatcher::IsMovWithDisplacement(
565 unsigned char* target,
566 unsigned int instruction_size) {
567 // In this case, the ModRM byte's mod field will be 0 and r/m will be 101b (5)
568 return instruction_size == 7 && *target == 0x48 && *(target + 1) == 0x8b &&
569 (*(target + 2) >> 6) == 0 && (*(target + 2) & 0x7) == 5;
572 SideStepError PreamblePatcher::PatchShortConditionalJump(
573 unsigned char* source,
574 unsigned int instruction_size,
575 unsigned char* target,
576 unsigned int* target_bytes,
577 unsigned int target_size) {
578 unsigned char* original_jump_dest = (source + 2) + source[1];
579 unsigned char* stub_jump_from = target + 6;
580 __int64 fixup_jump_offset = original_jump_dest - stub_jump_from;
581 if (fixup_jump_offset > INT_MAX || fixup_jump_offset < INT_MIN) {
582 SIDESTEP_ASSERT(false &&
583 "Unable to fix up short jump because target"
584 " is too far away.");
585 return SIDESTEP_JUMP_INSTRUCTION;
588 *target_bytes = 6;
589 if (target_size > *target_bytes) {
590 // Convert the short jump to a near jump.
592 // 0f 8x xx xx xx xx = Jcc rel32off
593 unsigned short jmpcode = ((0x80 | (source[0] & 0xf)) << 8) | 0x0f;
594 memcpy(reinterpret_cast<void*>(target),
595 reinterpret_cast<void*>(&jmpcode), 2);
596 memcpy(reinterpret_cast<void*>(target + 2),
597 reinterpret_cast<void*>(&fixup_jump_offset), 4);
600 return SIDESTEP_SUCCESS;
603 SideStepError PreamblePatcher::PatchNearJumpOrCall(
604 unsigned char* source,
605 unsigned int instruction_size,
606 unsigned char* target,
607 unsigned int* target_bytes,
608 unsigned int target_size) {
609 SIDESTEP_ASSERT(instruction_size == 5 || instruction_size == 6);
610 unsigned int jmp_offset_in_instruction = instruction_size == 5 ? 1 : 2;
611 unsigned char* original_jump_dest = reinterpret_cast<unsigned char *>(
612 reinterpret_cast<__int64>(source + instruction_size) +
613 *(reinterpret_cast<int*>(source + jmp_offset_in_instruction)));
614 unsigned char* stub_jump_from = target + instruction_size;
615 __int64 fixup_jump_offset = original_jump_dest - stub_jump_from;
616 if (fixup_jump_offset > INT_MAX || fixup_jump_offset < INT_MIN) {
617 SIDESTEP_ASSERT(false &&
618 "Unable to fix up near jump because target"
619 " is too far away.");
620 return SIDESTEP_JUMP_INSTRUCTION;
623 if ((fixup_jump_offset < SCHAR_MAX && fixup_jump_offset > SCHAR_MIN)) {
624 *target_bytes = 2;
625 if (target_size > *target_bytes) {
626 // If the new offset is in range, use a short jump instead of a near jump.
627 if (source[0] == ASM_JCC32REL_0 &&
628 (source[1] & ASM_JCC32REL_1_MASK) == ASM_JCC32REL_1_MASK) {
629 unsigned short jmpcode = (static_cast<unsigned char>(
630 fixup_jump_offset) << 8) | (0x70 | (source[1] & 0xf));
631 memcpy(reinterpret_cast<void*>(target),
632 reinterpret_cast<void*>(&jmpcode),
634 } else {
635 target[0] = ASM_JMP8REL;
636 target[1] = static_cast<unsigned char>(fixup_jump_offset);
639 } else {
640 *target_bytes = instruction_size;
641 if (target_size > *target_bytes) {
642 memcpy(reinterpret_cast<void*>(target),
643 reinterpret_cast<void*>(source),
644 jmp_offset_in_instruction);
645 memcpy(reinterpret_cast<void*>(target + jmp_offset_in_instruction),
646 reinterpret_cast<void*>(&fixup_jump_offset),
651 return SIDESTEP_SUCCESS;
654 SideStepError PreamblePatcher::PatchMovWithDisplacement(
655 unsigned char* source,
656 unsigned int instruction_size,
657 unsigned char* target,
658 unsigned int* target_bytes,
659 unsigned int target_size) {
660 SIDESTEP_ASSERT(instruction_size == 7);
661 const int mov_offset_in_instruction = 3; // 0x48 0x8b 0x0d <offset>
662 unsigned char* original_mov_dest = reinterpret_cast<unsigned char*>(
663 reinterpret_cast<__int64>(source + instruction_size) +
664 *(reinterpret_cast<int*>(source + mov_offset_in_instruction)));
665 unsigned char* stub_mov_from = target + instruction_size;
666 __int64 fixup_mov_offset = original_mov_dest - stub_mov_from;
667 if (fixup_mov_offset > INT_MAX || fixup_mov_offset < INT_MIN) {
668 SIDESTEP_ASSERT(false &&
669 "Unable to fix up near MOV because target is too far away.");
670 return SIDESTEP_UNEXPECTED;
672 *target_bytes = instruction_size;
673 if (target_size > *target_bytes) {
674 memcpy(reinterpret_cast<void*>(target),
675 reinterpret_cast<void*>(source),
676 mov_offset_in_instruction);
677 memcpy(reinterpret_cast<void*>(target + mov_offset_in_instruction),
678 reinterpret_cast<void*>(&fixup_mov_offset),
681 return SIDESTEP_SUCCESS;
684 }; // namespace sidestep