Separate Simple Backend creation from initialization.
[chromium-blink-merge.git] / tools / memory_watcher / mini_disassembler.cc
blobc97ae6f3e2bd1f1a3f035da003857933aa50ea1d
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 /*
6 * Implementation of MiniDisassembler.
7 */
9 #include "mini_disassembler.h"
11 namespace sidestep {
13 MiniDisassembler::MiniDisassembler(bool operand_default_is_32_bits,
14 bool address_default_is_32_bits)
15 : operand_default_is_32_bits_(operand_default_is_32_bits),
16 address_default_is_32_bits_(address_default_is_32_bits) {
17 Initialize();
20 MiniDisassembler::MiniDisassembler()
21 : operand_default_is_32_bits_(true),
22 address_default_is_32_bits_(true) {
23 Initialize();
26 InstructionType MiniDisassembler::Disassemble(
27 unsigned char* start_byte,
28 unsigned int& instruction_bytes) {
29 // Clean up any state from previous invocations.
30 Initialize();
32 // Start by processing any prefixes.
33 unsigned char* current_byte = start_byte;
34 unsigned int size = 0;
35 InstructionType instruction_type = ProcessPrefixes(current_byte, size);
37 if (IT_UNKNOWN == instruction_type)
38 return instruction_type;
40 current_byte += size;
41 size = 0;
43 // Invariant: We have stripped all prefixes, and the operand_is_32_bits_
44 // and address_is_32_bits_ flags are correctly set.
46 instruction_type = ProcessOpcode(current_byte, 0, size);
48 // Check for error processing instruction
49 if ((IT_UNKNOWN == instruction_type_) || (IT_UNUSED == instruction_type_)) {
50 return IT_UNKNOWN;
53 current_byte += size;
55 // Invariant: operand_bytes_ indicates the total size of operands
56 // specified by the opcode and/or ModR/M byte and/or SIB byte.
57 // pCurrentByte points to the first byte after the ModR/M byte, or after
58 // the SIB byte if it is present (i.e. the first byte of any operands
59 // encoded in the instruction).
61 // We get the total length of any prefixes, the opcode, and the ModR/M and
62 // SIB bytes if present, by taking the difference of the original starting
63 // address and the current byte (which points to the first byte of the
64 // operands if present, or to the first byte of the next instruction if
65 // they are not). Adding the count of bytes in the operands encoded in
66 // the instruction gives us the full length of the instruction in bytes.
67 instruction_bytes += operand_bytes_ + (current_byte - start_byte);
69 // Return the instruction type, which was set by ProcessOpcode().
70 return instruction_type_;
73 void MiniDisassembler::Initialize() {
74 operand_is_32_bits_ = operand_default_is_32_bits_;
75 address_is_32_bits_ = address_default_is_32_bits_;
76 operand_bytes_ = 0;
77 have_modrm_ = false;
78 should_decode_modrm_ = false;
79 instruction_type_ = IT_UNKNOWN;
80 got_f2_prefix_ = false;
81 got_f3_prefix_ = false;
82 got_66_prefix_ = false;
85 InstructionType MiniDisassembler::ProcessPrefixes(unsigned char* start_byte,
86 unsigned int& size) {
87 InstructionType instruction_type = IT_GENERIC;
88 const Opcode& opcode = s_ia32_opcode_map_[0].table_[*start_byte];
90 switch (opcode.type_) {
91 case IT_PREFIX_ADDRESS:
92 address_is_32_bits_ = !address_default_is_32_bits_;
93 goto nochangeoperand;
94 case IT_PREFIX_OPERAND:
95 operand_is_32_bits_ = !operand_default_is_32_bits_;
96 nochangeoperand:
97 case IT_PREFIX:
99 if (0xF2 == (*start_byte))
100 got_f2_prefix_ = true;
101 else if (0xF3 == (*start_byte))
102 got_f3_prefix_ = true;
103 else if (0x66 == (*start_byte))
104 got_66_prefix_ = true;
106 instruction_type = opcode.type_;
107 size ++;
108 // we got a prefix, so add one and check next byte
109 ProcessPrefixes(start_byte + 1, size);
110 default:
111 break; // not a prefix byte
114 return instruction_type;
117 InstructionType MiniDisassembler::ProcessOpcode(unsigned char* start_byte,
118 unsigned int table_index,
119 unsigned int& size) {
120 const OpcodeTable& table = s_ia32_opcode_map_[table_index]; // Get our table
121 unsigned char current_byte = (*start_byte) >> table.shift_;
122 current_byte = current_byte & table.mask_; // Mask out the bits we will use
124 // Check whether the byte we have is inside the table we have.
125 if (current_byte < table.min_lim_ || current_byte > table.max_lim_) {
126 instruction_type_ = IT_UNKNOWN;
127 return instruction_type_;
130 const Opcode& opcode = table.table_[current_byte];
131 if (IT_UNUSED == opcode.type_) {
132 // This instruction is not used by the IA-32 ISA, so we indicate
133 // this to the user. Probably means that we were pointed to
134 // a byte in memory that was not the start of an instruction.
135 instruction_type_ = IT_UNUSED;
136 return instruction_type_;
137 } else if (IT_REFERENCE == opcode.type_) {
138 // We are looking at an opcode that has more bytes (or is continued
139 // in the ModR/M byte). Recursively find the opcode definition in
140 // the table for the opcode's next byte.
141 size++;
142 ProcessOpcode(start_byte + 1, opcode.table_index_, size);
143 return instruction_type_;
146 const SpecificOpcode* specific_opcode = (SpecificOpcode*)&opcode;
147 if (opcode.is_prefix_dependent_) {
148 if (got_f2_prefix_ && opcode.opcode_if_f2_prefix_.mnemonic_ != 0) {
149 specific_opcode = &opcode.opcode_if_f2_prefix_;
150 } else if (got_f3_prefix_ && opcode.opcode_if_f3_prefix_.mnemonic_ != 0) {
151 specific_opcode = &opcode.opcode_if_f3_prefix_;
152 } else if (got_66_prefix_ && opcode.opcode_if_66_prefix_.mnemonic_ != 0) {
153 specific_opcode = &opcode.opcode_if_66_prefix_;
157 // Inv: The opcode type is known.
158 instruction_type_ = specific_opcode->type_;
160 // Let's process the operand types to see if we have any immediate
161 // operands, and/or a ModR/M byte.
163 ProcessOperand(specific_opcode->flag_dest_);
164 ProcessOperand(specific_opcode->flag_source_);
165 ProcessOperand(specific_opcode->flag_aux_);
167 // Inv: We have processed the opcode and incremented operand_bytes_
168 // by the number of bytes of any operands specified by the opcode
169 // that are stored in the instruction (not registers etc.). Now
170 // we need to return the total number of bytes for the opcode and
171 // for the ModR/M or SIB bytes if they are present.
173 if (table.mask_ != 0xff) {
174 if (have_modrm_) {
175 // we're looking at a ModR/M byte so we're not going to
176 // count that into the opcode size
177 ProcessModrm(start_byte, size);
178 return IT_GENERIC;
179 } else {
180 // need to count the ModR/M byte even if it's just being
181 // used for opcode extension
182 size++;
183 return IT_GENERIC;
185 } else {
186 if (have_modrm_) {
187 // The ModR/M byte is the next byte.
188 size++;
189 ProcessModrm(start_byte + 1, size);
190 return IT_GENERIC;
191 } else {
192 size++;
193 return IT_GENERIC;
198 bool MiniDisassembler::ProcessOperand(int flag_operand) {
199 bool succeeded = true;
200 if (AM_NOT_USED == flag_operand)
201 return succeeded;
203 // Decide what to do based on the addressing mode.
204 switch (flag_operand & AM_MASK) {
205 // No ModR/M byte indicated by these addressing modes, and no
206 // additional (e.g. immediate) parameters.
207 case AM_A: // Direct address
208 case AM_F: // EFLAGS register
209 case AM_X: // Memory addressed by the DS:SI register pair
210 case AM_Y: // Memory addressed by the ES:DI register pair
211 case AM_IMPLICIT: // Parameter is implicit, occupies no space in
212 // instruction
213 break;
215 // There is a ModR/M byte but it does not necessarily need
216 // to be decoded.
217 case AM_C: // reg field of ModR/M selects a control register
218 case AM_D: // reg field of ModR/M selects a debug register
219 case AM_G: // reg field of ModR/M selects a general register
220 case AM_P: // reg field of ModR/M selects an MMX register
221 case AM_R: // mod field of ModR/M may refer only to a general register
222 case AM_S: // reg field of ModR/M selects a segment register
223 case AM_T: // reg field of ModR/M selects a test register
224 case AM_V: // reg field of ModR/M selects a 128-bit XMM register
225 have_modrm_ = true;
226 break;
228 // In these addressing modes, there is a ModR/M byte and it needs to be
229 // decoded. No other (e.g. immediate) params than indicated in ModR/M.
230 case AM_E: // Operand is either a general-purpose register or memory,
231 // specified by ModR/M byte
232 case AM_M: // ModR/M byte will refer only to memory
233 case AM_Q: // Operand is either an MMX register or memory (complex
234 // evaluation), specified by ModR/M byte
235 case AM_W: // Operand is either a 128-bit XMM register or memory (complex
236 // eval), specified by ModR/M byte
237 have_modrm_ = true;
238 should_decode_modrm_ = true;
239 break;
241 // These addressing modes specify an immediate or an offset value
242 // directly, so we need to look at the operand type to see how many
243 // bytes.
244 case AM_I: // Immediate data.
245 case AM_J: // Jump to offset.
246 case AM_O: // Operand is at offset.
247 switch (flag_operand & OT_MASK) {
248 case OT_B: // Byte regardless of operand-size attribute.
249 operand_bytes_ += OS_BYTE;
250 break;
251 case OT_C: // Byte or word, depending on operand-size attribute.
252 if (operand_is_32_bits_)
253 operand_bytes_ += OS_WORD;
254 else
255 operand_bytes_ += OS_BYTE;
256 break;
257 case OT_D: // Doubleword, regardless of operand-size attribute.
258 operand_bytes_ += OS_DOUBLE_WORD;
259 break;
260 case OT_DQ: // Double-quadword, regardless of operand-size attribute.
261 operand_bytes_ += OS_DOUBLE_QUAD_WORD;
262 break;
263 case OT_P: // 32-bit or 48-bit pointer, depending on operand-size
264 // attribute.
265 if (operand_is_32_bits_)
266 operand_bytes_ += OS_48_BIT_POINTER;
267 else
268 operand_bytes_ += OS_32_BIT_POINTER;
269 break;
270 case OT_PS: // 128-bit packed single-precision floating-point data.
271 operand_bytes_ += OS_128_BIT_PACKED_SINGLE_PRECISION_FLOATING;
272 break;
273 case OT_Q: // Quadword, regardless of operand-size attribute.
274 operand_bytes_ += OS_QUAD_WORD;
275 break;
276 case OT_S: // 6-byte pseudo-descriptor.
277 operand_bytes_ += OS_PSEUDO_DESCRIPTOR;
278 break;
279 case OT_SD: // Scalar Double-Precision Floating-Point Value
280 case OT_PD: // Unaligned packed double-precision floating point value
281 operand_bytes_ += OS_DOUBLE_PRECISION_FLOATING;
282 break;
283 case OT_SS:
284 // Scalar element of a 128-bit packed single-precision
285 // floating data.
286 // We simply return enItUnknown since we don't have to support
287 // floating point
288 succeeded = false;
289 break;
290 case OT_V: // Word or doubleword, depending on operand-size attribute.
291 if (operand_is_32_bits_)
292 operand_bytes_ += OS_DOUBLE_WORD;
293 else
294 operand_bytes_ += OS_WORD;
295 break;
296 case OT_W: // Word, regardless of operand-size attribute.
297 operand_bytes_ += OS_WORD;
298 break;
300 // Can safely ignore these.
301 case OT_A: // Two one-word operands in memory or two double-word
302 // operands in memory
303 case OT_PI: // Quadword MMX technology register (e.g. mm0)
304 case OT_SI: // Doubleword integer register (e.g., eax)
305 break;
307 default:
308 break;
310 break;
312 default:
313 break;
316 return succeeded;
319 bool MiniDisassembler::ProcessModrm(unsigned char* start_byte,
320 unsigned int& size) {
321 // If we don't need to decode, we just return the size of the ModR/M
322 // byte (there is never a SIB byte in this case).
323 if (!should_decode_modrm_) {
324 size++;
325 return true;
328 // We never care about the reg field, only the combination of the mod
329 // and r/m fields, so let's start by packing those fields together into
330 // 5 bits.
331 unsigned char modrm = (*start_byte);
332 unsigned char mod = modrm & 0xC0; // mask out top two bits to get mod field
333 modrm = modrm & 0x07; // mask out bottom 3 bits to get r/m field
334 mod = mod >> 3; // shift the mod field to the right place
335 modrm = mod | modrm; // combine the r/m and mod fields as discussed
336 mod = mod >> 3; // shift the mod field to bits 2..0
338 // Invariant: modrm contains the mod field in bits 4..3 and the r/m field
339 // in bits 2..0, and mod contains the mod field in bits 2..0
341 const ModrmEntry* modrm_entry = 0;
342 if (address_is_32_bits_)
343 modrm_entry = &s_ia32_modrm_map_[modrm];
344 else
345 modrm_entry = &s_ia16_modrm_map_[modrm];
347 // Invariant: modrm_entry points to information that we need to decode
348 // the ModR/M byte.
350 // Add to the count of operand bytes, if the ModR/M byte indicates
351 // that some operands are encoded in the instruction.
352 if (modrm_entry->is_encoded_in_instruction_)
353 operand_bytes_ += modrm_entry->operand_size_;
355 // Process the SIB byte if necessary, and return the count
356 // of ModR/M and SIB bytes.
357 if (modrm_entry->use_sib_byte_) {
358 size++;
359 return ProcessSib(start_byte + 1, mod, size);
360 } else {
361 size++;
362 return true;
366 bool MiniDisassembler::ProcessSib(unsigned char* start_byte,
367 unsigned char mod,
368 unsigned int& size) {
369 // get the mod field from the 2..0 bits of the SIB byte
370 unsigned char sib_base = (*start_byte) & 0x07;
371 if (0x05 == sib_base) {
372 switch (mod) {
373 case 0x00: // mod == 00
374 case 0x02: // mod == 10
375 operand_bytes_ += OS_DOUBLE_WORD;
376 break;
377 case 0x01: // mod == 01
378 operand_bytes_ += OS_BYTE;
379 break;
380 case 0x03: // mod == 11
381 // According to the IA-32 docs, there does not seem to be a disp
382 // value for this value of mod
383 default:
384 break;
388 size++;
389 return true;
392 }; // namespace sidestep