Enable right clicking on the applist doodle web contents and log the data.
[chromium-blink-merge.git] / cc / resources / picture_pile.cc
blob2b15aeadb7c9ada7fee2003e0d0c465fd7a91785
1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/resources/picture_pile.h"
7 #include <algorithm>
8 #include <limits>
9 #include <vector>
11 #include "cc/base/region.h"
12 #include "cc/resources/picture_pile_impl.h"
13 #include "cc/resources/tile_task_worker_pool.h"
14 #include "skia/ext/analysis_canvas.h"
16 namespace {
17 // Layout pixel buffer around the visible layer rect to record. Any base
18 // picture that intersects the visible layer rect expanded by this distance
19 // will be recorded.
20 const int kPixelDistanceToRecord = 8000;
21 // We don't perform solid color analysis on images that have more than 10 skia
22 // operations.
23 const int kOpCountThatIsOkToAnalyze = 10;
25 // Dimensions of the tiles in this picture pile as well as the dimensions of
26 // the base picture in each tile.
27 const int kBasePictureSize = 512;
29 // Invalidation frequency settings. kInvalidationFrequencyThreshold is a value
30 // between 0 and 1 meaning invalidation frequency between 0% and 100% that
31 // indicates when to stop invalidating offscreen regions.
32 // kFrequentInvalidationDistanceThreshold defines what it means to be
33 // "offscreen" in terms of distance to visible in css pixels.
34 const float kInvalidationFrequencyThreshold = 0.75f;
35 const int kFrequentInvalidationDistanceThreshold = 512;
37 // TODO(humper): The density threshold here is somewhat arbitrary; need a
38 // way to set // this from the command line so we can write a benchmark
39 // script and find a sweet spot.
40 const float kDensityThreshold = 0.5f;
42 bool rect_sort_y(const gfx::Rect& r1, const gfx::Rect& r2) {
43 return r1.y() < r2.y() || (r1.y() == r2.y() && r1.x() < r2.x());
46 bool rect_sort_x(const gfx::Rect& r1, const gfx::Rect& r2) {
47 return r1.x() < r2.x() || (r1.x() == r2.x() && r1.y() < r2.y());
50 float PerformClustering(const std::vector<gfx::Rect>& tiles,
51 std::vector<gfx::Rect>* clustered_rects) {
52 // These variables track the record area and invalid area
53 // for the entire clustering
54 int total_record_area = 0;
55 int total_invalid_area = 0;
57 // These variables track the record area and invalid area
58 // for the current cluster being constructed.
59 gfx::Rect cur_record_rect;
60 int cluster_record_area = 0, cluster_invalid_area = 0;
62 for (std::vector<gfx::Rect>::const_iterator it = tiles.begin();
63 it != tiles.end();
64 it++) {
65 gfx::Rect invalid_tile = *it;
67 // For each tile, we consider adding the invalid tile to the
68 // current record rectangle. Only add it if the amount of empty
69 // space created is below a density threshold.
70 int tile_area = invalid_tile.width() * invalid_tile.height();
72 gfx::Rect proposed_union = cur_record_rect;
73 proposed_union.Union(invalid_tile);
74 int proposed_area = proposed_union.width() * proposed_union.height();
75 float proposed_density =
76 static_cast<float>(cluster_invalid_area + tile_area) /
77 static_cast<float>(proposed_area);
79 if (proposed_density >= kDensityThreshold) {
80 // It's okay to add this invalid tile to the
81 // current recording rectangle.
82 cur_record_rect = proposed_union;
83 cluster_record_area = proposed_area;
84 cluster_invalid_area += tile_area;
85 total_invalid_area += tile_area;
86 } else {
87 // Adding this invalid tile to the current recording rectangle
88 // would exceed our badness threshold, so put the current rectangle
89 // in the list of recording rects, and start a new one.
90 clustered_rects->push_back(cur_record_rect);
91 total_record_area += cluster_record_area;
92 cur_record_rect = invalid_tile;
93 cluster_invalid_area = tile_area;
94 cluster_record_area = tile_area;
98 DCHECK(!cur_record_rect.IsEmpty());
99 clustered_rects->push_back(cur_record_rect);
100 total_record_area += cluster_record_area;;
102 DCHECK_NE(total_record_area, 0);
104 return static_cast<float>(total_invalid_area) /
105 static_cast<float>(total_record_area);
108 void ClusterTiles(const std::vector<gfx::Rect>& invalid_tiles,
109 std::vector<gfx::Rect>* record_rects) {
110 TRACE_EVENT1("cc", "ClusterTiles",
111 "count",
112 invalid_tiles.size());
113 if (invalid_tiles.size() <= 1) {
114 // Quickly handle the special case for common
115 // single-invalidation update, and also the less common
116 // case of no tiles passed in.
117 *record_rects = invalid_tiles;
118 return;
121 // Sort the invalid tiles by y coordinate.
122 std::vector<gfx::Rect> invalid_tiles_vertical = invalid_tiles;
123 std::sort(invalid_tiles_vertical.begin(),
124 invalid_tiles_vertical.end(),
125 rect_sort_y);
127 std::vector<gfx::Rect> vertical_clustering;
128 float vertical_density =
129 PerformClustering(invalid_tiles_vertical, &vertical_clustering);
131 // If vertical density is optimal, then we can return early.
132 if (vertical_density == 1.f) {
133 *record_rects = vertical_clustering;
134 return;
137 // Now try again with a horizontal sort, see which one is best
138 std::vector<gfx::Rect> invalid_tiles_horizontal = invalid_tiles;
139 std::sort(invalid_tiles_horizontal.begin(),
140 invalid_tiles_horizontal.end(),
141 rect_sort_x);
143 std::vector<gfx::Rect> horizontal_clustering;
144 float horizontal_density =
145 PerformClustering(invalid_tiles_horizontal, &horizontal_clustering);
147 if (vertical_density < horizontal_density) {
148 *record_rects = horizontal_clustering;
149 return;
152 *record_rects = vertical_clustering;
155 #ifdef NDEBUG
156 const bool kDefaultClearCanvasSetting = false;
157 #else
158 const bool kDefaultClearCanvasSetting = true;
159 #endif
161 } // namespace
163 namespace cc {
165 PicturePile::PicturePile(float min_contents_scale,
166 const gfx::Size& tile_grid_size)
167 : min_contents_scale_(0),
168 slow_down_raster_scale_factor_for_debug_(0),
169 has_any_recordings_(false),
170 clear_canvas_with_debug_color_(kDefaultClearCanvasSetting),
171 requires_clear_(true),
172 is_solid_color_(false),
173 solid_color_(SK_ColorTRANSPARENT),
174 background_color_(SK_ColorTRANSPARENT),
175 pixel_record_distance_(kPixelDistanceToRecord),
176 is_suitable_for_gpu_rasterization_(true) {
177 tiling_.SetMaxTextureSize(gfx::Size(kBasePictureSize, kBasePictureSize));
178 SetMinContentsScale(min_contents_scale);
179 SetTileGridSize(tile_grid_size);
182 PicturePile::~PicturePile() {
185 bool PicturePile::UpdateAndExpandInvalidation(
186 ContentLayerClient* painter,
187 Region* invalidation,
188 const gfx::Size& layer_size,
189 const gfx::Rect& visible_layer_rect,
190 int frame_number,
191 RecordingSource::RecordingMode recording_mode) {
192 gfx::Rect interest_rect = visible_layer_rect;
193 interest_rect.Inset(-pixel_record_distance_, -pixel_record_distance_);
194 recorded_viewport_ = interest_rect;
195 recorded_viewport_.Intersect(gfx::Rect(layer_size));
197 bool updated = ApplyInvalidationAndResize(interest_rect, invalidation,
198 layer_size, frame_number);
199 std::vector<gfx::Rect> invalid_tiles;
200 GetInvalidTileRects(interest_rect, invalidation, visible_layer_rect,
201 frame_number, &invalid_tiles);
202 std::vector<gfx::Rect> record_rects;
203 ClusterTiles(invalid_tiles, &record_rects);
205 if (record_rects.empty())
206 return updated;
208 CreatePictures(painter, recording_mode, record_rects);
210 DetermineIfSolidColor();
212 has_any_recordings_ = true;
213 DCHECK(CanRasterSlowTileCheck(recorded_viewport_));
214 return true;
217 bool PicturePile::ApplyInvalidationAndResize(const gfx::Rect& interest_rect,
218 Region* invalidation,
219 const gfx::Size& layer_size,
220 int frame_number) {
221 bool updated = false;
223 Region synthetic_invalidation;
224 gfx::Size old_tiling_size = GetSize();
225 if (old_tiling_size != layer_size) {
226 tiling_.SetTilingSize(layer_size);
227 updated = true;
230 gfx::Rect interest_rect_over_tiles =
231 tiling_.ExpandRectToTileBounds(interest_rect);
233 if (old_tiling_size != layer_size) {
234 gfx::Size min_tiling_size(
235 std::min(GetSize().width(), old_tiling_size.width()),
236 std::min(GetSize().height(), old_tiling_size.height()));
237 gfx::Size max_tiling_size(
238 std::max(GetSize().width(), old_tiling_size.width()),
239 std::max(GetSize().height(), old_tiling_size.height()));
241 has_any_recordings_ = false;
243 // Drop recordings that are outside the new or old layer bounds or that
244 // changed size. Newly exposed areas are considered invalidated.
245 // Previously exposed areas that are now outside of bounds also need to
246 // be invalidated, as they may become part of raster when scale < 1.
247 std::vector<PictureMapKey> to_erase;
248 int min_toss_x = tiling_.num_tiles_x();
249 if (max_tiling_size.width() > min_tiling_size.width()) {
250 min_toss_x =
251 tiling_.FirstBorderTileXIndexFromSrcCoord(min_tiling_size.width());
253 int min_toss_y = tiling_.num_tiles_y();
254 if (max_tiling_size.height() > min_tiling_size.height()) {
255 min_toss_y =
256 tiling_.FirstBorderTileYIndexFromSrcCoord(min_tiling_size.height());
258 for (const auto& key_picture_pair : picture_map_) {
259 const PictureMapKey& key = key_picture_pair.first;
260 if (key.first < min_toss_x && key.second < min_toss_y) {
261 has_any_recordings_ |= !!key_picture_pair.second.GetPicture();
262 continue;
264 to_erase.push_back(key);
267 for (size_t i = 0; i < to_erase.size(); ++i)
268 picture_map_.erase(to_erase[i]);
270 // If a recording is dropped and not re-recorded below, invalidate that
271 // full recording to cause any raster tiles that would use it to be
272 // dropped.
273 // If the recording will be replaced below, invalidate newly exposed
274 // areas and previously exposed areas to force raster tiles that include the
275 // old recording to know there is new recording to display.
276 gfx::Rect min_tiling_rect_over_tiles =
277 tiling_.ExpandRectToTileBounds(gfx::Rect(min_tiling_size));
278 if (min_toss_x < tiling_.num_tiles_x()) {
279 // The bounds which we want to invalidate are the tiles along the old
280 // edge of the pile when expanding, or the new edge of the pile when
281 // shrinking. In either case, it's the difference of the two, so we'll
282 // call this bounding box the DELTA EDGE RECT.
284 // In the picture below, the delta edge rect would be the bounding box of
285 // tiles {h,i,j}. |min_toss_x| would be equal to the horizontal index of
286 // the same tiles.
288 // min pile edge-v max pile edge-v
289 // ---------------+ - - - - - - - -+
290 // mmppssvvyybbeeh|h .
291 // mmppssvvyybbeeh|h .
292 // nnqqttwwzzccffi|i .
293 // nnqqttwwzzccffi|i .
294 // oorruuxxaaddggj|j .
295 // oorruuxxaaddggj|j .
296 // ---------------+ - - - - - - - -+ <- min pile edge
297 // .
298 // - - - - - - - - - - - - - - - -+ <- max pile edge
300 // If you were to slide a vertical beam from the left edge of the
301 // delta edge rect toward the right, it would either hit the right edge
302 // of the delta edge rect, or the interest rect (expanded to the bounds
303 // of the tiles it touches). The same is true for a beam parallel to
304 // any of the four edges, sliding across the delta edge rect. We use
305 // the union of these four rectangles generated by these beams to
306 // determine which part of the delta edge rect is outside of the expanded
307 // interest rect.
309 // Case 1: Intersect rect is outside the delta edge rect. It can be
310 // either on the left or the right. The |left_rect| and |right_rect|,
311 // cover this case, one will be empty and one will cover the full
312 // delta edge rect. In the picture below, |left_rect| would cover the
313 // delta edge rect, and |right_rect| would be empty.
314 // +----------------------+ |^^^^^^^^^^^^^^^|
315 // |===> DELTA EDGE RECT | | |
316 // |===> | | INTEREST RECT |
317 // |===> | | |
318 // |===> | | |
319 // +----------------------+ |vvvvvvvvvvvvvvv|
321 // Case 2: Interest rect is inside the delta edge rect. It will always
322 // fill the entire delta edge rect horizontally since the old edge rect
323 // is a single tile wide, and the interest rect has been expanded to the
324 // bounds of the tiles it touches. In this case the |left_rect| and
325 // |right_rect| will be empty, but the case is handled by the |top_rect|
326 // and |bottom_rect|. In the picture below, neither the |top_rect| nor
327 // |bottom_rect| would empty, they would each cover the area of the old
328 // edge rect outside the expanded interest rect.
329 // +-----------------+
330 // |:::::::::::::::::|
331 // |:::::::::::::::::|
332 // |vvvvvvvvvvvvvvvvv|
333 // | |
334 // +-----------------+
335 // | INTEREST RECT |
336 // | |
337 // +-----------------+
338 // | |
339 // | DELTA EDGE RECT |
340 // +-----------------+
342 // Lastly, we need to consider tiles inside the expanded interest rect.
343 // For those tiles, we want to invalidate exactly the newly exposed
344 // pixels. In the picture below the tiles in the delta edge rect have
345 // been resized and the area covered by periods must be invalidated. The
346 // |exposed_rect| will cover exactly that area.
347 // v-min pile edge
348 // +---------+-------+
349 // | ........|
350 // | ........|
351 // | DELTA EDGE.RECT.|
352 // | ........|
353 // | ........|
354 // | ........|
355 // | ........|
356 // | ........|
357 // | ........|
358 // +---------+-------+
360 int left = tiling_.TilePositionX(min_toss_x);
361 int right = left + tiling_.TileSizeX(min_toss_x);
362 int top = min_tiling_rect_over_tiles.y();
363 int bottom = min_tiling_rect_over_tiles.bottom();
365 int left_until = std::min(interest_rect_over_tiles.x(), right);
366 int right_until = std::max(interest_rect_over_tiles.right(), left);
367 int top_until = std::min(interest_rect_over_tiles.y(), bottom);
368 int bottom_until = std::max(interest_rect_over_tiles.bottom(), top);
370 int exposed_left = min_tiling_size.width();
371 int exposed_left_until = max_tiling_size.width();
372 int exposed_top = top;
373 int exposed_bottom = max_tiling_size.height();
374 DCHECK_GE(exposed_left, left);
376 gfx::Rect left_rect(left, top, left_until - left, bottom - top);
377 gfx::Rect right_rect(right_until, top, right - right_until, bottom - top);
378 gfx::Rect top_rect(left, top, right - left, top_until - top);
379 gfx::Rect bottom_rect(
380 left, bottom_until, right - left, bottom - bottom_until);
381 gfx::Rect exposed_rect(exposed_left,
382 exposed_top,
383 exposed_left_until - exposed_left,
384 exposed_bottom - exposed_top);
385 synthetic_invalidation.Union(left_rect);
386 synthetic_invalidation.Union(right_rect);
387 synthetic_invalidation.Union(top_rect);
388 synthetic_invalidation.Union(bottom_rect);
389 synthetic_invalidation.Union(exposed_rect);
391 if (min_toss_y < tiling_.num_tiles_y()) {
392 // The same thing occurs here as in the case above, but the invalidation
393 // rect is the bounding box around the bottom row of tiles in the min
394 // pile. This would be tiles {o,r,u,x,a,d,g,j} in the above picture.
396 int top = tiling_.TilePositionY(min_toss_y);
397 int bottom = top + tiling_.TileSizeY(min_toss_y);
398 int left = min_tiling_rect_over_tiles.x();
399 int right = min_tiling_rect_over_tiles.right();
401 int top_until = std::min(interest_rect_over_tiles.y(), bottom);
402 int bottom_until = std::max(interest_rect_over_tiles.bottom(), top);
403 int left_until = std::min(interest_rect_over_tiles.x(), right);
404 int right_until = std::max(interest_rect_over_tiles.right(), left);
406 int exposed_top = min_tiling_size.height();
407 int exposed_top_until = max_tiling_size.height();
408 int exposed_left = left;
409 int exposed_right = max_tiling_size.width();
410 DCHECK_GE(exposed_top, top);
412 gfx::Rect left_rect(left, top, left_until - left, bottom - top);
413 gfx::Rect right_rect(right_until, top, right - right_until, bottom - top);
414 gfx::Rect top_rect(left, top, right - left, top_until - top);
415 gfx::Rect bottom_rect(
416 left, bottom_until, right - left, bottom - bottom_until);
417 gfx::Rect exposed_rect(exposed_left,
418 exposed_top,
419 exposed_right - exposed_left,
420 exposed_top_until - exposed_top);
421 synthetic_invalidation.Union(left_rect);
422 synthetic_invalidation.Union(right_rect);
423 synthetic_invalidation.Union(top_rect);
424 synthetic_invalidation.Union(bottom_rect);
425 synthetic_invalidation.Union(exposed_rect);
429 // Detect cases where the full pile is invalidated, in this situation we
430 // can just drop/invalidate everything.
431 if (invalidation->Contains(gfx::Rect(old_tiling_size)) ||
432 invalidation->Contains(gfx::Rect(GetSize()))) {
433 for (auto& it : picture_map_)
434 updated = it.second.Invalidate(frame_number) || updated;
435 } else {
436 // Expand invalidation that is on tiles that aren't in the interest rect and
437 // will not be re-recorded below. These tiles are no longer valid and should
438 // be considerered fully invalid, so we can know to not keep around raster
439 // tiles that intersect with these recording tiles.
440 Region invalidation_expanded_to_full_tiles;
442 for (Region::Iterator i(*invalidation); i.has_rect(); i.next()) {
443 gfx::Rect invalid_rect = i.rect();
445 // This rect covers the bounds (excluding borders) of all tiles whose
446 // bounds (including borders) touch the |interest_rect|. This matches
447 // the iteration of the |invalid_rect| below which includes borders when
448 // calling Invalidate() on pictures.
449 gfx::Rect invalid_rect_outside_interest_rect_tiles =
450 tiling_.ExpandRectToTileBounds(invalid_rect);
451 // We subtract the |interest_rect_over_tiles| which represents the bounds
452 // of tiles that will be re-recorded below. This matches the iteration of
453 // |interest_rect| below which includes borders.
454 // TODO(danakj): We should have a Rect-subtract-Rect-to-2-rects operator
455 // instead of using Rect::Subtract which gives you the bounding box of the
456 // subtraction.
457 invalid_rect_outside_interest_rect_tiles.Subtract(
458 interest_rect_over_tiles);
459 invalidation_expanded_to_full_tiles.Union(
460 invalid_rect_outside_interest_rect_tiles);
462 // Split this inflated invalidation across tile boundaries and apply it
463 // to all tiles that it touches.
464 bool include_borders = true;
465 for (TilingData::Iterator iter(&tiling_, invalid_rect, include_borders);
466 iter;
467 ++iter) {
468 const PictureMapKey& key = iter.index();
470 PictureMap::iterator picture_it = picture_map_.find(key);
471 if (picture_it == picture_map_.end())
472 continue;
474 // Inform the grid cell that it has been invalidated in this frame.
475 updated = picture_it->second.Invalidate(frame_number) || updated;
476 // Invalidate drops the picture so the whole tile better be invalidated
477 // if it won't be re-recorded below.
478 DCHECK_IMPLIES(!tiling_.TileBounds(key.first, key.second)
479 .Intersects(interest_rect_over_tiles),
480 invalidation_expanded_to_full_tiles.Contains(
481 tiling_.TileBounds(key.first, key.second)));
484 invalidation->Union(invalidation_expanded_to_full_tiles);
487 invalidation->Union(synthetic_invalidation);
488 return updated;
491 void PicturePile::GetInvalidTileRects(const gfx::Rect& interest_rect,
492 Region* invalidation,
493 const gfx::Rect& visible_layer_rect,
494 int frame_number,
495 std::vector<gfx::Rect>* invalid_tiles) {
496 // Make a list of all invalid tiles; we will attempt to
497 // cluster these into multiple invalidation regions.
498 bool include_borders = true;
499 for (TilingData::Iterator it(&tiling_, interest_rect, include_borders); it;
500 ++it) {
501 const PictureMapKey& key = it.index();
502 PictureInfo& info = picture_map_[key];
504 gfx::Rect rect = PaddedRect(key);
505 int distance_to_visible =
506 rect.ManhattanInternalDistance(visible_layer_rect);
508 if (info.NeedsRecording(frame_number, distance_to_visible)) {
509 gfx::Rect tile = tiling_.TileBounds(key.first, key.second);
510 invalid_tiles->push_back(tile);
511 } else if (!info.GetPicture()) {
512 if (recorded_viewport_.Intersects(rect)) {
513 // Recorded viewport is just an optimization for a fully recorded
514 // interest rect. In this case, a tile in that rect has declined
515 // to be recorded (probably due to frequent invalidations).
516 // TODO(enne): Shrink the recorded_viewport_ rather than clearing.
517 recorded_viewport_ = gfx::Rect();
520 // If a tile in the interest rect is not recorded, the entire tile needs
521 // to be considered invalid, so that we know not to keep around raster
522 // tiles that intersect this recording tile.
523 invalidation->Union(tiling_.TileBounds(it.index_x(), it.index_y()));
528 void PicturePile::CreatePictures(ContentLayerClient* painter,
529 RecordingSource::RecordingMode recording_mode,
530 const std::vector<gfx::Rect>& record_rects) {
531 for (const auto& record_rect : record_rects) {
532 gfx::Rect padded_record_rect = PadRect(record_rect);
534 int repeat_count = std::max(1, slow_down_raster_scale_factor_for_debug_);
535 scoped_refptr<Picture> picture;
537 // Note: Currently, gathering of pixel refs when using a single
538 // raster thread doesn't provide any benefit. This might change
539 // in the future but we avoid it for now to reduce the cost of
540 // Picture::Create.
541 bool gather_pixel_refs = TileTaskWorkerPool::GetNumWorkerThreads() > 1;
543 for (int i = 0; i < repeat_count; i++) {
544 picture = Picture::Create(padded_record_rect, painter, tile_grid_size_,
545 gather_pixel_refs, recording_mode);
546 // Note the '&&' with previous is-suitable state.
547 // This means that once a picture-pile becomes unsuitable for gpu
548 // rasterization due to some content, it will continue to be unsuitable
549 // even if that content is replaced by gpu-friendly content.
550 // This is an optimization to avoid iterating though all pictures in
551 // the pile after each invalidation.
552 if (is_suitable_for_gpu_rasterization_) {
553 const char* reason = nullptr;
554 is_suitable_for_gpu_rasterization_ &=
555 picture->IsSuitableForGpuRasterization(&reason);
557 if (!is_suitable_for_gpu_rasterization_) {
558 TRACE_EVENT_INSTANT1("cc", "GPU Rasterization Veto",
559 TRACE_EVENT_SCOPE_THREAD, "reason", reason);
564 bool found_tile_for_recorded_picture = false;
566 bool include_borders = true;
567 for (TilingData::Iterator it(&tiling_, padded_record_rect, include_borders);
568 it; ++it) {
569 const PictureMapKey& key = it.index();
570 gfx::Rect tile = PaddedRect(key);
571 if (padded_record_rect.Contains(tile)) {
572 PictureInfo& info = picture_map_[key];
573 info.SetPicture(picture);
574 found_tile_for_recorded_picture = true;
577 DCHECK(found_tile_for_recorded_picture);
581 scoped_refptr<RasterSource> PicturePile::CreateRasterSource(
582 bool can_use_lcd_text) const {
583 return scoped_refptr<RasterSource>(
584 PicturePileImpl::CreateFromPicturePile(this, can_use_lcd_text));
587 gfx::Size PicturePile::GetSize() const {
588 return tiling_.tiling_size();
591 void PicturePile::SetEmptyBounds() {
592 tiling_.SetTilingSize(gfx::Size());
593 Clear();
596 void PicturePile::SetMinContentsScale(float min_contents_scale) {
597 DCHECK(min_contents_scale);
598 if (min_contents_scale_ == min_contents_scale)
599 return;
601 // Picture contents are played back scaled. When the final contents scale is
602 // less than 1 (i.e. low res), then multiple recorded pixels will be used
603 // to raster one final pixel. To avoid splitting a final pixel across
604 // pictures (which would result in incorrect rasterization due to blending), a
605 // buffer margin is added so that any picture can be snapped to integral
606 // final pixels.
608 // For example, if a 1/4 contents scale is used, then that would be 3 buffer
609 // pixels, since that's the minimum number of pixels to add so that resulting
610 // content can be snapped to a four pixel aligned grid.
611 int buffer_pixels = static_cast<int>(ceil(1 / min_contents_scale) - 1);
612 buffer_pixels = std::max(0, buffer_pixels);
613 SetBufferPixels(buffer_pixels);
614 min_contents_scale_ = min_contents_scale;
617 void PicturePile::SetSlowdownRasterScaleFactor(int factor) {
618 slow_down_raster_scale_factor_for_debug_ = factor;
621 void PicturePile::SetBackgroundColor(SkColor background_color) {
622 background_color_ = background_color;
625 void PicturePile::SetRequiresClear(bool requires_clear) {
626 requires_clear_ = requires_clear;
629 bool PicturePile::IsSuitableForGpuRasterization() const {
630 return is_suitable_for_gpu_rasterization_;
633 void PicturePile::SetTileGridSize(const gfx::Size& tile_grid_size) {
634 DCHECK_GT(tile_grid_size.width(), 0);
635 DCHECK_GT(tile_grid_size.height(), 0);
637 tile_grid_size_ = tile_grid_size;
640 void PicturePile::SetUnsuitableForGpuRasterizationForTesting() {
641 is_suitable_for_gpu_rasterization_ = false;
644 gfx::Size PicturePile::GetTileGridSizeForTesting() const {
645 return tile_grid_size_;
648 bool PicturePile::CanRasterSlowTileCheck(const gfx::Rect& layer_rect) const {
649 bool include_borders = false;
650 for (TilingData::Iterator tile_iter(&tiling_, layer_rect, include_borders);
651 tile_iter; ++tile_iter) {
652 PictureMap::const_iterator map_iter = picture_map_.find(tile_iter.index());
653 if (map_iter == picture_map_.end())
654 return false;
655 if (!map_iter->second.GetPicture())
656 return false;
658 return true;
661 void PicturePile::DetermineIfSolidColor() {
662 is_solid_color_ = false;
663 solid_color_ = SK_ColorTRANSPARENT;
665 if (picture_map_.empty()) {
666 return;
669 PictureMap::const_iterator it = picture_map_.begin();
670 const Picture* picture = it->second.GetPicture();
672 // Missing recordings due to frequent invalidations or being too far away
673 // from the interest rect will cause the a null picture to exist.
674 if (!picture)
675 return;
677 // Don't bother doing more work if the first image is too complicated.
678 if (picture->ApproximateOpCount() > kOpCountThatIsOkToAnalyze)
679 return;
681 // Make sure all of the mapped images point to the same picture.
682 for (++it; it != picture_map_.end(); ++it) {
683 if (it->second.GetPicture() != picture)
684 return;
687 gfx::Size layer_size = GetSize();
688 skia::AnalysisCanvas canvas(layer_size.width(), layer_size.height());
690 picture->Raster(&canvas, nullptr, Region(), 1.0f);
691 is_solid_color_ = canvas.GetColorIfSolid(&solid_color_);
694 gfx::Rect PicturePile::PaddedRect(const PictureMapKey& key) const {
695 gfx::Rect tile = tiling_.TileBounds(key.first, key.second);
696 return PadRect(tile);
699 gfx::Rect PicturePile::PadRect(const gfx::Rect& rect) const {
700 gfx::Rect padded_rect = rect;
701 padded_rect.Inset(-buffer_pixels(), -buffer_pixels(), -buffer_pixels(),
702 -buffer_pixels());
703 return padded_rect;
706 void PicturePile::Clear() {
707 picture_map_.clear();
708 recorded_viewport_ = gfx::Rect();
709 has_any_recordings_ = false;
710 is_solid_color_ = false;
713 PicturePile::PictureInfo::PictureInfo() : last_frame_number_(0) {
716 PicturePile::PictureInfo::~PictureInfo() {
719 void PicturePile::PictureInfo::AdvanceInvalidationHistory(int frame_number) {
720 DCHECK_GE(frame_number, last_frame_number_);
721 if (frame_number == last_frame_number_)
722 return;
724 invalidation_history_ <<= (frame_number - last_frame_number_);
725 last_frame_number_ = frame_number;
728 bool PicturePile::PictureInfo::Invalidate(int frame_number) {
729 AdvanceInvalidationHistory(frame_number);
730 invalidation_history_.set(0);
732 bool did_invalidate = !!picture_.get();
733 picture_ = NULL;
734 return did_invalidate;
737 bool PicturePile::PictureInfo::NeedsRecording(int frame_number,
738 int distance_to_visible) {
739 AdvanceInvalidationHistory(frame_number);
741 // We only need recording if we don't have a picture. Furthermore, we only
742 // need a recording if we're within frequent invalidation distance threshold
743 // or the invalidation is not frequent enough (below invalidation frequency
744 // threshold).
745 return !picture_.get() &&
746 ((distance_to_visible <= kFrequentInvalidationDistanceThreshold) ||
747 (GetInvalidationFrequency() < kInvalidationFrequencyThreshold));
750 void PicturePile::SetBufferPixels(int new_buffer_pixels) {
751 if (new_buffer_pixels == buffer_pixels())
752 return;
754 Clear();
755 tiling_.SetBorderTexels(new_buffer_pixels);
758 void PicturePile::PictureInfo::SetPicture(scoped_refptr<Picture> picture) {
759 picture_ = picture;
762 const Picture* PicturePile::PictureInfo::GetPicture() const {
763 return picture_.get();
766 float PicturePile::PictureInfo::GetInvalidationFrequency() const {
767 return invalidation_history_.count() /
768 static_cast<float>(INVALIDATION_FRAMES_TRACKED);
771 } // namespace cc