IndexedDB: fsync after transactions.
[chromium-blink-merge.git] / cc / base / math_util.cc
blob8abfa90f0b31ca301824859546258fbb8f9074fd
1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/base/math_util.h"
7 #include <algorithm>
8 #include <cmath>
9 #include <limits>
11 #include "base/values.h"
12 #include "ui/gfx/quad_f.h"
13 #include "ui/gfx/rect.h"
14 #include "ui/gfx/rect_conversions.h"
15 #include "ui/gfx/rect_f.h"
16 #include "ui/gfx/transform.h"
17 #include "ui/gfx/vector2d_f.h"
19 namespace cc {
21 const double MathUtil::kPiDouble = 3.14159265358979323846;
22 const float MathUtil::kPiFloat = 3.14159265358979323846f;
24 static HomogeneousCoordinate ProjectHomogeneousPoint(
25 const gfx::Transform& transform,
26 const gfx::PointF& p) {
27 // In this case, the layer we are trying to project onto is perpendicular to
28 // ray (point p and z-axis direction) that we are trying to project. This
29 // happens when the layer is rotated so that it is infinitesimally thin, or
30 // when it is co-planar with the camera origin -- i.e. when the layer is
31 // invisible anyway.
32 if (!transform.matrix().get(2, 2))
33 return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0);
35 SkMScalar z = -(transform.matrix().get(2, 0) * p.x() +
36 transform.matrix().get(2, 1) * p.y() +
37 transform.matrix().get(2, 3)) /
38 transform.matrix().get(2, 2);
39 HomogeneousCoordinate result(p.x(), p.y(), z, 1.0);
40 transform.matrix().mapMScalars(result.vec, result.vec);
41 return result;
44 static HomogeneousCoordinate MapHomogeneousPoint(
45 const gfx::Transform& transform,
46 const gfx::Point3F& p) {
47 HomogeneousCoordinate result(p.x(), p.y(), p.z(), 1.0);
48 transform.matrix().mapMScalars(result.vec, result.vec);
49 return result;
52 static HomogeneousCoordinate ComputeClippedPointForEdge(
53 const HomogeneousCoordinate& h1,
54 const HomogeneousCoordinate& h2) {
55 // Points h1 and h2 form a line in 4d, and any point on that line can be
56 // represented as an interpolation between h1 and h2:
57 // p = (1-t) h1 + (t) h2
59 // We want to compute point p such that p.w == epsilon, where epsilon is a
60 // small non-zero number. (but the smaller the number is, the higher the risk
61 // of overflow)
62 // To do this, we solve for t in the following equation:
63 // p.w = epsilon = (1-t) * h1.w + (t) * h2.w
65 // Once paramter t is known, the rest of p can be computed via
66 // p = (1-t) h1 + (t) h2.
68 // Technically this is a special case of the following assertion, but its a
69 // good idea to keep it an explicit sanity check here.
70 DCHECK_NE(h2.w(), h1.w());
71 // Exactly one of h1 or h2 (but not both) must be on the negative side of the
72 // w plane when this is called.
73 DCHECK(h1.ShouldBeClipped() ^ h2.ShouldBeClipped());
75 // ...or any positive non-zero small epsilon
76 SkMScalar w = 0.00001f;
77 SkMScalar t = (w - h1.w()) / (h2.w() - h1.w());
79 SkMScalar x = (SK_MScalar1 - t) * h1.x() + t * h2.x();
80 SkMScalar y = (SK_MScalar1 - t) * h1.y() + t * h2.y();
81 SkMScalar z = (SK_MScalar1 - t) * h1.z() + t * h2.z();
83 return HomogeneousCoordinate(x, y, z, w);
86 static inline void ExpandBoundsToIncludePoint(float* xmin,
87 float* xmax,
88 float* ymin,
89 float* ymax,
90 const gfx::PointF& p) {
91 *xmin = std::min(p.x(), *xmin);
92 *xmax = std::max(p.x(), *xmax);
93 *ymin = std::min(p.y(), *ymin);
94 *ymax = std::max(p.y(), *ymax);
97 static inline void AddVertexToClippedQuad(const gfx::PointF& new_vertex,
98 gfx::PointF clipped_quad[8],
99 int* num_vertices_in_clipped_quad) {
100 clipped_quad[*num_vertices_in_clipped_quad] = new_vertex;
101 (*num_vertices_in_clipped_quad)++;
104 gfx::Rect MathUtil::MapClippedRect(const gfx::Transform& transform,
105 const gfx::Rect& src_rect) {
106 return gfx::ToEnclosingRect(MapClippedRect(transform, gfx::RectF(src_rect)));
109 gfx::RectF MathUtil::MapClippedRect(const gfx::Transform& transform,
110 const gfx::RectF& src_rect) {
111 if (transform.IsIdentityOrTranslation()) {
112 return src_rect +
113 gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)),
114 SkMScalarToFloat(transform.matrix().get(1, 3)));
117 // Apply the transform, but retain the result in homogeneous coordinates.
119 SkMScalar quad[4 * 2]; // input: 4 x 2D points
120 quad[0] = src_rect.x();
121 quad[1] = src_rect.y();
122 quad[2] = src_rect.right();
123 quad[3] = src_rect.y();
124 quad[4] = src_rect.right();
125 quad[5] = src_rect.bottom();
126 quad[6] = src_rect.x();
127 quad[7] = src_rect.bottom();
129 SkMScalar result[4 * 4]; // output: 4 x 4D homogeneous points
130 transform.matrix().map2(quad, 4, result);
132 HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]);
133 HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]);
134 HomogeneousCoordinate hc2(result[8], result[9], result[10], result[11]);
135 HomogeneousCoordinate hc3(result[12], result[13], result[14], result[15]);
136 return ComputeEnclosingClippedRect(hc0, hc1, hc2, hc3);
139 gfx::RectF MathUtil::ProjectClippedRect(const gfx::Transform& transform,
140 const gfx::RectF& src_rect) {
141 if (transform.IsIdentityOrTranslation()) {
142 return src_rect +
143 gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)),
144 SkMScalarToFloat(transform.matrix().get(1, 3)));
147 // Perform the projection, but retain the result in homogeneous coordinates.
148 gfx::QuadF q = gfx::QuadF(src_rect);
149 HomogeneousCoordinate h1 = ProjectHomogeneousPoint(transform, q.p1());
150 HomogeneousCoordinate h2 = ProjectHomogeneousPoint(transform, q.p2());
151 HomogeneousCoordinate h3 = ProjectHomogeneousPoint(transform, q.p3());
152 HomogeneousCoordinate h4 = ProjectHomogeneousPoint(transform, q.p4());
154 return ComputeEnclosingClippedRect(h1, h2, h3, h4);
157 void MathUtil::MapClippedQuad(const gfx::Transform& transform,
158 const gfx::QuadF& src_quad,
159 gfx::PointF clipped_quad[8],
160 int* num_vertices_in_clipped_quad) {
161 HomogeneousCoordinate h1 =
162 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1()));
163 HomogeneousCoordinate h2 =
164 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2()));
165 HomogeneousCoordinate h3 =
166 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3()));
167 HomogeneousCoordinate h4 =
168 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4()));
170 // The order of adding the vertices to the array is chosen so that
171 // clockwise / counter-clockwise orientation is retained.
173 *num_vertices_in_clipped_quad = 0;
175 if (!h1.ShouldBeClipped()) {
176 AddVertexToClippedQuad(
177 h1.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
180 if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) {
181 AddVertexToClippedQuad(
182 ComputeClippedPointForEdge(h1, h2).CartesianPoint2d(),
183 clipped_quad,
184 num_vertices_in_clipped_quad);
187 if (!h2.ShouldBeClipped()) {
188 AddVertexToClippedQuad(
189 h2.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
192 if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) {
193 AddVertexToClippedQuad(
194 ComputeClippedPointForEdge(h2, h3).CartesianPoint2d(),
195 clipped_quad,
196 num_vertices_in_clipped_quad);
199 if (!h3.ShouldBeClipped()) {
200 AddVertexToClippedQuad(
201 h3.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
204 if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) {
205 AddVertexToClippedQuad(
206 ComputeClippedPointForEdge(h3, h4).CartesianPoint2d(),
207 clipped_quad,
208 num_vertices_in_clipped_quad);
211 if (!h4.ShouldBeClipped()) {
212 AddVertexToClippedQuad(
213 h4.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
216 if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) {
217 AddVertexToClippedQuad(
218 ComputeClippedPointForEdge(h4, h1).CartesianPoint2d(),
219 clipped_quad,
220 num_vertices_in_clipped_quad);
223 DCHECK_LE(*num_vertices_in_clipped_quad, 8);
226 gfx::RectF MathUtil::ComputeEnclosingRectOfVertices(
227 const gfx::PointF vertices[],
228 int num_vertices) {
229 if (num_vertices < 2)
230 return gfx::RectF();
232 float xmin = std::numeric_limits<float>::max();
233 float xmax = -std::numeric_limits<float>::max();
234 float ymin = std::numeric_limits<float>::max();
235 float ymax = -std::numeric_limits<float>::max();
237 for (int i = 0; i < num_vertices; ++i)
238 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, vertices[i]);
240 return gfx::RectF(gfx::PointF(xmin, ymin),
241 gfx::SizeF(xmax - xmin, ymax - ymin));
244 gfx::RectF MathUtil::ComputeEnclosingClippedRect(
245 const HomogeneousCoordinate& h1,
246 const HomogeneousCoordinate& h2,
247 const HomogeneousCoordinate& h3,
248 const HomogeneousCoordinate& h4) {
249 // This function performs clipping as necessary and computes the enclosing 2d
250 // gfx::RectF of the vertices. Doing these two steps simultaneously allows us
251 // to avoid the overhead of storing an unknown number of clipped vertices.
253 // If no vertices on the quad are clipped, then we can simply return the
254 // enclosing rect directly.
255 bool something_clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
256 h3.ShouldBeClipped() || h4.ShouldBeClipped();
257 if (!something_clipped) {
258 gfx::QuadF mapped_quad = gfx::QuadF(h1.CartesianPoint2d(),
259 h2.CartesianPoint2d(),
260 h3.CartesianPoint2d(),
261 h4.CartesianPoint2d());
262 return mapped_quad.BoundingBox();
265 bool everything_clipped = h1.ShouldBeClipped() && h2.ShouldBeClipped() &&
266 h3.ShouldBeClipped() && h4.ShouldBeClipped();
267 if (everything_clipped)
268 return gfx::RectF();
270 float xmin = std::numeric_limits<float>::max();
271 float xmax = -std::numeric_limits<float>::max();
272 float ymin = std::numeric_limits<float>::max();
273 float ymax = -std::numeric_limits<float>::max();
275 if (!h1.ShouldBeClipped())
276 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
277 h1.CartesianPoint2d());
279 if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped())
280 ExpandBoundsToIncludePoint(&xmin,
281 &xmax,
282 &ymin,
283 &ymax,
284 ComputeClippedPointForEdge(h1, h2)
285 .CartesianPoint2d());
287 if (!h2.ShouldBeClipped())
288 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
289 h2.CartesianPoint2d());
291 if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped())
292 ExpandBoundsToIncludePoint(&xmin,
293 &xmax,
294 &ymin,
295 &ymax,
296 ComputeClippedPointForEdge(h2, h3)
297 .CartesianPoint2d());
299 if (!h3.ShouldBeClipped())
300 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
301 h3.CartesianPoint2d());
303 if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped())
304 ExpandBoundsToIncludePoint(&xmin,
305 &xmax,
306 &ymin,
307 &ymax,
308 ComputeClippedPointForEdge(h3, h4)
309 .CartesianPoint2d());
311 if (!h4.ShouldBeClipped())
312 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
313 h4.CartesianPoint2d());
315 if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped())
316 ExpandBoundsToIncludePoint(&xmin,
317 &xmax,
318 &ymin,
319 &ymax,
320 ComputeClippedPointForEdge(h4, h1)
321 .CartesianPoint2d());
323 return gfx::RectF(gfx::PointF(xmin, ymin),
324 gfx::SizeF(xmax - xmin, ymax - ymin));
327 gfx::QuadF MathUtil::MapQuad(const gfx::Transform& transform,
328 const gfx::QuadF& q,
329 bool* clipped) {
330 if (transform.IsIdentityOrTranslation()) {
331 gfx::QuadF mapped_quad(q);
332 mapped_quad +=
333 gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)),
334 SkMScalarToFloat(transform.matrix().get(1, 3)));
335 *clipped = false;
336 return mapped_quad;
339 HomogeneousCoordinate h1 =
340 MapHomogeneousPoint(transform, gfx::Point3F(q.p1()));
341 HomogeneousCoordinate h2 =
342 MapHomogeneousPoint(transform, gfx::Point3F(q.p2()));
343 HomogeneousCoordinate h3 =
344 MapHomogeneousPoint(transform, gfx::Point3F(q.p3()));
345 HomogeneousCoordinate h4 =
346 MapHomogeneousPoint(transform, gfx::Point3F(q.p4()));
348 *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
349 h3.ShouldBeClipped() || h4.ShouldBeClipped();
351 // Result will be invalid if clipped == true. But, compute it anyway just in
352 // case, to emulate existing behavior.
353 return gfx::QuadF(h1.CartesianPoint2d(),
354 h2.CartesianPoint2d(),
355 h3.CartesianPoint2d(),
356 h4.CartesianPoint2d());
359 gfx::PointF MathUtil::MapPoint(const gfx::Transform& transform,
360 const gfx::PointF& p,
361 bool* clipped) {
362 HomogeneousCoordinate h = MapHomogeneousPoint(transform, gfx::Point3F(p));
364 if (h.w() > 0) {
365 *clipped = false;
366 return h.CartesianPoint2d();
369 // The cartesian coordinates will be invalid after dividing by w.
370 *clipped = true;
372 // Avoid dividing by w if w == 0.
373 if (!h.w())
374 return gfx::PointF();
376 // This return value will be invalid because clipped == true, but (1) users of
377 // this code should be ignoring the return value when clipped == true anyway,
378 // and (2) this behavior is more consistent with existing behavior of WebKit
379 // transforms if the user really does not ignore the return value.
380 return h.CartesianPoint2d();
383 gfx::Point3F MathUtil::MapPoint(const gfx::Transform& transform,
384 const gfx::Point3F& p,
385 bool* clipped) {
386 HomogeneousCoordinate h = MapHomogeneousPoint(transform, p);
388 if (h.w() > 0) {
389 *clipped = false;
390 return h.CartesianPoint3d();
393 // The cartesian coordinates will be invalid after dividing by w.
394 *clipped = true;
396 // Avoid dividing by w if w == 0.
397 if (!h.w())
398 return gfx::Point3F();
400 // This return value will be invalid because clipped == true, but (1) users of
401 // this code should be ignoring the return value when clipped == true anyway,
402 // and (2) this behavior is more consistent with existing behavior of WebKit
403 // transforms if the user really does not ignore the return value.
404 return h.CartesianPoint3d();
407 gfx::QuadF MathUtil::ProjectQuad(const gfx::Transform& transform,
408 const gfx::QuadF& q,
409 bool* clipped) {
410 gfx::QuadF projected_quad;
411 bool clipped_point;
412 projected_quad.set_p1(ProjectPoint(transform, q.p1(), &clipped_point));
413 *clipped = clipped_point;
414 projected_quad.set_p2(ProjectPoint(transform, q.p2(), &clipped_point));
415 *clipped |= clipped_point;
416 projected_quad.set_p3(ProjectPoint(transform, q.p3(), &clipped_point));
417 *clipped |= clipped_point;
418 projected_quad.set_p4(ProjectPoint(transform, q.p4(), &clipped_point));
419 *clipped |= clipped_point;
421 return projected_quad;
424 gfx::PointF MathUtil::ProjectPoint(const gfx::Transform& transform,
425 const gfx::PointF& p,
426 bool* clipped) {
427 HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p);
429 if (h.w() > 0) {
430 // The cartesian coordinates will be valid in this case.
431 *clipped = false;
432 return h.CartesianPoint2d();
435 // The cartesian coordinates will be invalid after dividing by w.
436 *clipped = true;
438 // Avoid dividing by w if w == 0.
439 if (!h.w())
440 return gfx::PointF();
442 // This return value will be invalid because clipped == true, but (1) users of
443 // this code should be ignoring the return value when clipped == true anyway,
444 // and (2) this behavior is more consistent with existing behavior of WebKit
445 // transforms if the user really does not ignore the return value.
446 return h.CartesianPoint2d();
449 gfx::RectF MathUtil::ScaleRectProportional(const gfx::RectF& input_outer_rect,
450 const gfx::RectF& scale_outer_rect,
451 const gfx::RectF& scale_inner_rect) {
452 gfx::RectF output_inner_rect = input_outer_rect;
453 float scale_rect_to_input_scale_x =
454 scale_outer_rect.width() / input_outer_rect.width();
455 float scale_rect_to_input_scale_y =
456 scale_outer_rect.height() / input_outer_rect.height();
458 gfx::Vector2dF top_left_diff =
459 scale_inner_rect.origin() - scale_outer_rect.origin();
460 gfx::Vector2dF bottom_right_diff =
461 scale_inner_rect.bottom_right() - scale_outer_rect.bottom_right();
462 output_inner_rect.Inset(top_left_diff.x() / scale_rect_to_input_scale_x,
463 top_left_diff.y() / scale_rect_to_input_scale_y,
464 -bottom_right_diff.x() / scale_rect_to_input_scale_x,
465 -bottom_right_diff.y() / scale_rect_to_input_scale_y);
466 return output_inner_rect;
469 static inline float ScaleOnAxis(double a, double b, double c) {
470 if (!b && !c)
471 return a;
472 if (!a && !c)
473 return b;
474 if (!a && !b)
475 return c;
477 // Do the sqrt as a double to not lose precision.
478 return static_cast<float>(std::sqrt(a * a + b * b + c * c));
481 gfx::Vector2dF MathUtil::ComputeTransform2dScaleComponents(
482 const gfx::Transform& transform,
483 float fallback_value) {
484 if (transform.HasPerspective())
485 return gfx::Vector2dF(fallback_value, fallback_value);
486 float x_scale = ScaleOnAxis(transform.matrix().getDouble(0, 0),
487 transform.matrix().getDouble(1, 0),
488 transform.matrix().getDouble(2, 0));
489 float y_scale = ScaleOnAxis(transform.matrix().getDouble(0, 1),
490 transform.matrix().getDouble(1, 1),
491 transform.matrix().getDouble(2, 1));
492 return gfx::Vector2dF(x_scale, y_scale);
495 float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF& v1,
496 const gfx::Vector2dF& v2) {
497 double dot_product = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length();
498 // Clamp to compensate for rounding errors.
499 dot_product = std::max(-1.0, std::min(1.0, dot_product));
500 return static_cast<float>(Rad2Deg(std::acos(dot_product)));
503 gfx::Vector2dF MathUtil::ProjectVector(const gfx::Vector2dF& source,
504 const gfx::Vector2dF& destination) {
505 float projected_length =
506 gfx::DotProduct(source, destination) / destination.LengthSquared();
507 return gfx::Vector2dF(projected_length * destination.x(),
508 projected_length * destination.y());
511 scoped_ptr<base::Value> MathUtil::AsValue(gfx::Size s) {
512 scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
513 res->SetDouble("width", s.width());
514 res->SetDouble("height", s.height());
515 return res.PassAs<base::Value>();
518 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::SizeF& s) {
519 scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
520 res->SetDouble("width", s.width());
521 res->SetDouble("height", s.height());
522 return res.PassAs<base::Value>();
525 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Rect& r) {
526 scoped_ptr<base::ListValue> res(new base::ListValue());
527 res->AppendInteger(r.x());
528 res->AppendInteger(r.y());
529 res->AppendInteger(r.width());
530 res->AppendInteger(r.height());
531 return res.PassAs<base::Value>();
534 bool MathUtil::FromValue(const base::Value* raw_value, gfx::Rect* out_rect) {
535 const base::ListValue* value = NULL;
536 if (!raw_value->GetAsList(&value))
537 return false;
539 if (value->GetSize() != 4)
540 return false;
542 int x, y, w, h;
543 bool ok = true;
544 ok &= value->GetInteger(0, &x);
545 ok &= value->GetInteger(1, &y);
546 ok &= value->GetInteger(2, &w);
547 ok &= value->GetInteger(3, &h);
548 if (!ok)
549 return false;
551 *out_rect = gfx::Rect(x, y, w, h);
552 return true;
555 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::PointF& pt) {
556 scoped_ptr<base::ListValue> res(new base::ListValue());
557 res->AppendDouble(pt.x());
558 res->AppendDouble(pt.y());
559 return res.PassAs<base::Value>();
562 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::QuadF& q) {
563 scoped_ptr<base::ListValue> res(new base::ListValue());
564 res->AppendDouble(q.p1().x());
565 res->AppendDouble(q.p1().y());
566 res->AppendDouble(q.p2().x());
567 res->AppendDouble(q.p2().y());
568 res->AppendDouble(q.p3().x());
569 res->AppendDouble(q.p3().y());
570 res->AppendDouble(q.p4().x());
571 res->AppendDouble(q.p4().y());
572 return res.PassAs<base::Value>();
575 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::RectF& rect) {
576 scoped_ptr<base::ListValue> res(new base::ListValue());
577 res->AppendDouble(rect.x());
578 res->AppendDouble(rect.y());
579 res->AppendDouble(rect.width());
580 res->AppendDouble(rect.height());
581 return res.PassAs<base::Value>();
584 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Transform& transform) {
585 scoped_ptr<base::ListValue> res(new base::ListValue());
586 const SkMatrix44& m = transform.matrix();
587 for (int row = 0; row < 4; ++row) {
588 for (int col = 0; col < 4; ++col)
589 res->AppendDouble(m.getDouble(row, col));
591 return res.PassAs<base::Value>();
594 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::BoxF& box) {
595 scoped_ptr<base::ListValue> res(new base::ListValue());
596 res->AppendInteger(box.x());
597 res->AppendInteger(box.y());
598 res->AppendInteger(box.z());
599 res->AppendInteger(box.width());
600 res->AppendInteger(box.height());
601 res->AppendInteger(box.depth());
602 return res.PassAs<base::Value>();
605 scoped_ptr<base::Value> MathUtil::AsValueSafely(double value) {
606 return scoped_ptr<base::Value>(base::Value::CreateDoubleValue(
607 std::min(value, std::numeric_limits<double>::max())));
610 scoped_ptr<base::Value> MathUtil::AsValueSafely(float value) {
611 return scoped_ptr<base::Value>(base::Value::CreateDoubleValue(
612 std::min(value, std::numeric_limits<float>::max())));
615 } // namespace cc