1 // Copyright 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/trees/layer_sorter.h"
12 #include "base/logging.h"
13 #include "cc/base/math_util.h"
14 #include "cc/layers/render_surface_impl.h"
15 #include "ui/gfx/transform.h"
19 // This epsilon is used to determine if two layers are too close to each other
20 // to be able to tell which is in front of the other. It's a relative epsilon
21 // so it is robust to changes in scene scale. This value was chosen by picking
22 // a value near machine epsilon and then increasing it until the flickering on
23 // the test scene went away.
24 const float k_layer_epsilon
= 1e-4f
;
26 inline static float PerpProduct(const gfx::Vector2dF
& u
,
27 const gfx::Vector2dF
& v
) {
28 return u
.x() * v
.y() - u
.y() * v
.x();
31 // Tests if two edges defined by their endpoints (a,b) and (c,d) intersect.
32 // Returns true and the point of intersection if they do and false otherwise.
33 static bool EdgeEdgeTest(const gfx::PointF
& a
,
38 gfx::Vector2dF u
= b
- a
;
39 gfx::Vector2dF v
= d
- c
;
40 gfx::Vector2dF w
= a
- c
;
42 float denom
= PerpProduct(u
, v
);
44 // If denom == 0 then the edges are parallel. While they could be overlapping
45 // we don't bother to check here as the we'll find their intersections from
46 // the corner to quad tests.
50 float s
= PerpProduct(v
, w
) / denom
;
51 if (s
< 0.f
|| s
> 1.f
)
54 float t
= PerpProduct(u
, w
) / denom
;
55 if (t
< 0.f
|| t
> 1.f
)
63 GraphNode::GraphNode(LayerImpl
* layer_impl
)
65 incoming_edge_weight(0.f
) {}
67 GraphNode::~GraphNode() {}
69 LayerSorter::LayerSorter()
72 LayerSorter::~LayerSorter() {}
74 static float CheckFloatingPointNumericAccuracy(float a
, float b
) {
75 float abs_dif
= std::abs(b
- a
);
76 float abs_max
= std::max(std::abs(b
), std::abs(a
));
77 // Check to see if we've got a result with a reasonable amount of error.
78 return abs_dif
/ abs_max
;
81 // Checks whether layer "a" draws on top of layer "b". The weight value returned
82 // is an indication of the maximum z-depth difference between the layers or zero
83 // if the layers are found to be intesecting (some features are in front and
85 LayerSorter::ABCompareResult
LayerSorter::CheckOverlap(LayerShape
* a
,
91 // Early out if the projected bounds don't overlap.
92 if (!a
->projected_bounds
.Intersects(b
->projected_bounds
))
95 gfx::PointF aPoints
[4] = { a
->projected_quad
.p1(),
96 a
->projected_quad
.p2(),
97 a
->projected_quad
.p3(),
98 a
->projected_quad
.p4() };
99 gfx::PointF bPoints
[4] = { b
->projected_quad
.p1(),
100 b
->projected_quad
.p2(),
101 b
->projected_quad
.p3(),
102 b
->projected_quad
.p4() };
104 // Make a list of points that inside both layer quad projections.
105 std::vector
<gfx::PointF
> overlap_points
;
107 // Check all four corners of one layer against the other layer's quad.
108 for (int i
= 0; i
< 4; ++i
) {
109 if (a
->projected_quad
.Contains(bPoints
[i
]))
110 overlap_points
.push_back(bPoints
[i
]);
111 if (b
->projected_quad
.Contains(aPoints
[i
]))
112 overlap_points
.push_back(aPoints
[i
]);
115 // Check all the edges of one layer for intersection with the other layer's
118 for (int ea
= 0; ea
< 4; ++ea
)
119 for (int eb
= 0; eb
< 4; ++eb
)
120 if (EdgeEdgeTest(aPoints
[ea
], aPoints
[(ea
+ 1) % 4],
121 bPoints
[eb
], bPoints
[(eb
+ 1) % 4],
123 overlap_points
.push_back(r
);
125 if (overlap_points
.empty())
128 // Check the corresponding layer depth value for all overlap points to
129 // determine which layer is in front.
130 float max_positive
= 0.f
;
131 float max_negative
= 0.f
;
133 // This flag tracks the existance of a numerically accurate seperation
134 // between two layers. If there is no accurate seperation, the layers
135 // cannot be effectively sorted.
136 bool accurate
= false;
138 for (size_t o
= 0; o
< overlap_points
.size(); o
++) {
139 float za
= a
->LayerZFromProjectedPoint(overlap_points
[o
]);
140 float zb
= b
->LayerZFromProjectedPoint(overlap_points
[o
]);
142 // Here we attempt to avoid numeric issues with layers that are too
143 // close together. If we have 2-sided quads that are very close
144 // together then we will draw them in document order to avoid
145 // flickering. The correct solution is for the content maker to turn
146 // on back-face culling or move the quads apart (if they're not two
147 // sides of one object).
148 if (CheckFloatingPointNumericAccuracy(za
, zb
) > k_layer_epsilon
)
151 float diff
= za
- zb
;
152 if (diff
> max_positive
)
154 if (diff
< max_negative
)
158 // If we can't tell which should come first, we use document order.
163 std::abs(max_positive
) > std::abs(max_negative
) ?
164 max_positive
: max_negative
;
166 // If the results are inconsistent (and the z difference substantial to rule
167 // out numerical errors) then the layers are intersecting. We will still
168 // return an order based on the maximum depth difference but with an edge
169 // weight of zero these layers will get priority if a graph cycle is present
170 // and needs to be broken.
171 if (max_positive
> z_threshold
&& max_negative
< -z_threshold
)
174 *weight
= std::abs(max_diff
);
176 // Maintain relative order if the layers have the same depth at all
177 // intersection points.
184 LayerShape::LayerShape() {}
186 LayerShape::LayerShape(float width
,
188 const gfx::Transform
& draw_transform
) {
189 gfx::QuadF
layer_quad(gfx::RectF(0.f
, 0.f
, width
, height
));
191 // Compute the projection of the layer quad onto the z = 0 plane.
193 gfx::PointF clipped_quad
[8];
194 int num_vertices_in_clipped_quad
;
195 MathUtil::MapClippedQuad(draw_transform
,
198 &num_vertices_in_clipped_quad
);
200 if (num_vertices_in_clipped_quad
< 3) {
201 projected_bounds
= gfx::RectF();
206 MathUtil::ComputeEnclosingRectOfVertices(clipped_quad
,
207 num_vertices_in_clipped_quad
);
209 // NOTE: it will require very significant refactoring and overhead to deal
210 // with generalized polygons or multiple quads per layer here. For the sake of
211 // layer sorting it is equally correct to take a subsection of the polygon
212 // that can be made into a quad. This will only be incorrect in the case of
213 // intersecting layers, which are not supported yet anyway.
214 projected_quad
.set_p1(clipped_quad
[0]);
215 projected_quad
.set_p2(clipped_quad
[1]);
216 projected_quad
.set_p3(clipped_quad
[2]);
217 if (num_vertices_in_clipped_quad
>= 4) {
218 projected_quad
.set_p4(clipped_quad
[3]);
220 // This will be a degenerate quad that is actually a triangle.
221 projected_quad
.set_p4(clipped_quad
[2]);
224 // Compute the normal of the layer's plane.
225 bool clipped
= false;
227 MathUtil::MapPoint(draw_transform
, gfx::Point3F(0.f
, 0.f
, 0.f
), &clipped
);
229 MathUtil::MapPoint(draw_transform
, gfx::Point3F(0.f
, 1.f
, 0.f
), &clipped
);
231 MathUtil::MapPoint(draw_transform
, gfx::Point3F(1.f
, 0.f
, 0.f
), &clipped
);
232 // TODO(shawnsingh): Deal with clipping.
233 gfx::Vector3dF c12
= c2
- c1
;
234 gfx::Vector3dF c13
= c3
- c1
;
235 layer_normal
= gfx::CrossProduct(c13
, c12
);
237 transform_origin
= c1
;
240 LayerShape::~LayerShape() {}
242 // Returns the Z coordinate of a point on the layer that projects
243 // to point p which lies on the z = 0 plane. It does it by computing the
244 // intersection of a line starting from p along the Z axis and the plane
246 float LayerShape::LayerZFromProjectedPoint(const gfx::PointF
& p
) const {
247 gfx::Vector3dF
z_axis(0.f
, 0.f
, 1.f
);
248 gfx::Vector3dF w
= gfx::Point3F(p
) - transform_origin
;
250 float d
= gfx::DotProduct(layer_normal
, z_axis
);
251 float n
= -gfx::DotProduct(layer_normal
, w
);
253 // Check if layer is parallel to the z = 0 axis which will make it
254 // invisible and hence returning zero is fine.
258 // The intersection point would be given by:
259 // p + (n / d) * u but since we are only interested in the
260 // z coordinate and p's z coord is zero, all we need is the value of n/d.
264 void LayerSorter::CreateGraphNodes(LayerImplList::iterator first
,
265 LayerImplList::iterator last
) {
266 DVLOG(2) << "Creating graph nodes:";
267 float min_z
= FLT_MAX
;
268 float max_z
= -FLT_MAX
;
269 for (LayerImplList::const_iterator it
= first
; it
< last
; it
++) {
270 nodes_
.push_back(GraphNode(*it
));
271 GraphNode
& node
= nodes_
.at(nodes_
.size() - 1);
272 RenderSurfaceImpl
* render_surface
= node
.layer
->render_surface();
273 if (!node
.layer
->DrawsContent() && !render_surface
)
276 DVLOG(2) << "Layer " << node
.layer
->id() <<
277 " (" << node
.layer
->bounds().width() <<
278 " x " << node
.layer
->bounds().height() << ")";
280 gfx::Transform draw_transform
;
281 float layer_width
, layer_height
;
282 if (render_surface
) {
283 draw_transform
= render_surface
->draw_transform();
284 layer_width
= render_surface
->content_rect().width();
285 layer_height
= render_surface
->content_rect().height();
287 draw_transform
= node
.layer
->draw_transform();
288 layer_width
= node
.layer
->content_bounds().width();
289 layer_height
= node
.layer
->content_bounds().height();
292 node
.shape
= LayerShape(layer_width
, layer_height
, draw_transform
);
294 max_z
= std::max(max_z
, node
.shape
.transform_origin
.z());
295 min_z
= std::min(min_z
, node
.shape
.transform_origin
.z());
298 z_range_
= std::abs(max_z
- min_z
);
301 void LayerSorter::CreateGraphEdges() {
302 DVLOG(2) << "Edges:";
303 // Fraction of the total z_range below which z differences
304 // are not considered reliable.
305 const float z_threshold_factor
= 0.01f
;
306 float z_threshold
= z_range_
* z_threshold_factor
;
308 for (size_t na
= 0; na
< nodes_
.size(); na
++) {
309 GraphNode
& node_a
= nodes_
[na
];
310 if (!node_a
.layer
->DrawsContent() && !node_a
.layer
->render_surface())
312 for (size_t nb
= na
+ 1; nb
< nodes_
.size(); nb
++) {
313 GraphNode
& node_b
= nodes_
[nb
];
314 if (!node_b
.layer
->DrawsContent() && !node_b
.layer
->render_surface())
317 ABCompareResult overlap_result
= CheckOverlap(&node_a
.shape
,
321 GraphNode
* start_node
= NULL
;
322 GraphNode
* end_node
= NULL
;
323 if (overlap_result
== ABeforeB
) {
324 start_node
= &node_a
;
326 } else if (overlap_result
== BBeforeA
) {
327 start_node
= &node_b
;
332 DVLOG(2) << start_node
->layer
->id() << " -> " << end_node
->layer
->id();
333 edges_
.push_back(GraphEdge(start_node
, end_node
, weight
));
338 for (size_t i
= 0; i
< edges_
.size(); i
++) {
339 GraphEdge
& edge
= edges_
[i
];
340 active_edges_
[&edge
] = &edge
;
341 edge
.from
->outgoing
.push_back(&edge
);
342 edge
.to
->incoming
.push_back(&edge
);
343 edge
.to
->incoming_edge_weight
+= edge
.weight
;
347 // Finds and removes an edge from the list by doing a swap with the
348 // last element of the list.
349 void LayerSorter::RemoveEdgeFromList(GraphEdge
* edge
,
350 std::vector
<GraphEdge
*>* list
) {
351 std::vector
<GraphEdge
*>::iterator iter
=
352 std::find(list
->begin(), list
->end(), edge
);
353 DCHECK(iter
!= list
->end());
357 // Sorts the given list of layers such that they can be painted in a
358 // back-to-front order. Sorting produces correct results for non-intersecting
359 // layers that don't have cyclical order dependencies. Cycles and intersections
360 // are broken (somewhat) aribtrarily. Sorting of layers is done via a
361 // topological sort of a directed graph whose nodes are the layers themselves.
362 // An edge from node A to node B signifies that layer A needs to be drawn before
363 // layer B. If A and B have no dependency between each other, then we preserve
364 // the ordering of those layers as they were in the original list.
366 // The draw order between two layers is determined by projecting the two
367 // triangles making up each layer quad to the Z = 0 plane, finding points of
368 // intersection between the triangles and backprojecting those points to the
369 // plane of the layer to determine the corresponding Z coordinate. The layer
370 // with the lower Z coordinate (farther from the eye) needs to be rendered
373 // If the layer projections don't intersect, then no edges (dependencies) are
374 // created between them in the graph. HOWEVER, in this case we still need to
375 // preserve the ordering of the original list of layers, since that list should
376 // already have proper z-index ordering of layers.
378 void LayerSorter::Sort(LayerImplList::iterator first
,
379 LayerImplList::iterator last
) {
380 DVLOG(2) << "Sorting start ----";
381 CreateGraphNodes(first
, last
);
385 std::vector
<GraphNode
*> sorted_list
;
386 std::deque
<GraphNode
*> no_incoming_edge_node_list
;
388 // Find all the nodes that don't have incoming edges.
389 for (NodeList::iterator la
= nodes_
.begin(); la
< nodes_
.end(); la
++) {
390 if (!la
->incoming
.size())
391 no_incoming_edge_node_list
.push_back(&(*la
));
394 DVLOG(2) << "Sorted list: ";
395 while (active_edges_
.size() || no_incoming_edge_node_list
.size()) {
396 while (no_incoming_edge_node_list
.size()) {
397 // It is necessary to preserve the existing ordering of layers, when there
398 // are no explicit dependencies (because this existing ordering has
399 // correct z-index/layout ordering). To preserve this ordering, we process
400 // Nodes in the same order that they were added to the list.
401 GraphNode
* from_node
= no_incoming_edge_node_list
.front();
402 no_incoming_edge_node_list
.pop_front();
404 // Add it to the final list.
405 sorted_list
.push_back(from_node
);
407 DVLOG(2) << from_node
->layer
->id() << ", ";
409 // Remove all its outgoing edges from the graph.
410 for (size_t i
= 0; i
< from_node
->outgoing
.size(); i
++) {
411 GraphEdge
* outgoing_edge
= from_node
->outgoing
[i
];
413 active_edges_
.erase(outgoing_edge
);
414 RemoveEdgeFromList(outgoing_edge
, &outgoing_edge
->to
->incoming
);
415 outgoing_edge
->to
->incoming_edge_weight
-= outgoing_edge
->weight
;
417 if (!outgoing_edge
->to
->incoming
.size())
418 no_incoming_edge_node_list
.push_back(outgoing_edge
->to
);
420 from_node
->outgoing
.clear();
423 if (!active_edges_
.size())
426 // If there are still active edges but the list of nodes without incoming
427 // edges is empty then we have run into a cycle. Break the cycle by finding
428 // the node with the smallest overall incoming edge weight and use it. This
429 // will favor nodes that have zero-weight incoming edges i.e. layers that
430 // are being occluded by a layer that intersects them.
431 float min_incoming_edge_weight
= FLT_MAX
;
432 GraphNode
* next_node
= NULL
;
433 for (size_t i
= 0; i
< nodes_
.size(); i
++) {
434 if (nodes_
[i
].incoming
.size() &&
435 nodes_
[i
].incoming_edge_weight
< min_incoming_edge_weight
) {
436 min_incoming_edge_weight
= nodes_
[i
].incoming_edge_weight
;
437 next_node
= &nodes_
[i
];
441 // Remove all its incoming edges.
442 for (size_t e
= 0; e
< next_node
->incoming
.size(); e
++) {
443 GraphEdge
* incoming_edge
= next_node
->incoming
[e
];
445 active_edges_
.erase(incoming_edge
);
446 RemoveEdgeFromList(incoming_edge
, &incoming_edge
->from
->outgoing
);
448 next_node
->incoming
.clear();
449 next_node
->incoming_edge_weight
= 0.f
;
450 no_incoming_edge_node_list
.push_back(next_node
);
451 DVLOG(2) << "Breaking cycle by cleaning up incoming edges from " <<
452 next_node
->layer
->id() <<
453 " (weight = " << min_incoming_edge_weight
<< ")";
456 // Note: The original elements of the list are in no danger of having their
457 // ref count go to zero here as they are all nodes of the layer hierarchy and
458 // are kept alive by their parent nodes.
460 for (LayerImplList::iterator it
= first
; it
< last
; it
++)
461 *it
= sorted_list
[count
++]->layer
;
463 DVLOG(2) << "Sorting end ----";
467 active_edges_
.clear();