Blink roll 25b6bd3a7a131ffe68d809546ad1a20707915cdc:3a503f41ae42e5b79cfcd2ff10e65afde...
[chromium-blink-merge.git] / net / disk_cache / blockfile / backend_impl.cc
blob20995b711ab2bddb1ded021804d1616b39853357
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/disk_cache/blockfile/backend_impl.h"
7 #include "base/bind.h"
8 #include "base/bind_helpers.h"
9 #include "base/files/file.h"
10 #include "base/files/file_path.h"
11 #include "base/files/file_util.h"
12 #include "base/hash.h"
13 #include "base/message_loop/message_loop.h"
14 #include "base/metrics/field_trial.h"
15 #include "base/metrics/histogram.h"
16 #include "base/metrics/stats_counters.h"
17 #include "base/rand_util.h"
18 #include "base/single_thread_task_runner.h"
19 #include "base/strings/string_util.h"
20 #include "base/strings/stringprintf.h"
21 #include "base/sys_info.h"
22 #include "base/threading/thread_restrictions.h"
23 #include "base/time/time.h"
24 #include "base/timer/timer.h"
25 #include "net/base/net_errors.h"
26 #include "net/disk_cache/blockfile/disk_format.h"
27 #include "net/disk_cache/blockfile/entry_impl.h"
28 #include "net/disk_cache/blockfile/errors.h"
29 #include "net/disk_cache/blockfile/experiments.h"
30 #include "net/disk_cache/blockfile/file.h"
31 #include "net/disk_cache/blockfile/histogram_macros.h"
32 #include "net/disk_cache/blockfile/webfonts_histogram.h"
33 #include "net/disk_cache/cache_util.h"
35 // Provide a BackendImpl object to macros from histogram_macros.h.
36 #define CACHE_UMA_BACKEND_IMPL_OBJ this
38 using base::Time;
39 using base::TimeDelta;
40 using base::TimeTicks;
42 namespace {
44 const char* kIndexName = "index";
46 // Seems like ~240 MB correspond to less than 50k entries for 99% of the people.
47 // Note that the actual target is to keep the index table load factor under 55%
48 // for most users.
49 const int k64kEntriesStore = 240 * 1000 * 1000;
50 const int kBaseTableLen = 64 * 1024;
52 // Avoid trimming the cache for the first 5 minutes (10 timer ticks).
53 const int kTrimDelay = 10;
55 int DesiredIndexTableLen(int32 storage_size) {
56 if (storage_size <= k64kEntriesStore)
57 return kBaseTableLen;
58 if (storage_size <= k64kEntriesStore * 2)
59 return kBaseTableLen * 2;
60 if (storage_size <= k64kEntriesStore * 4)
61 return kBaseTableLen * 4;
62 if (storage_size <= k64kEntriesStore * 8)
63 return kBaseTableLen * 8;
65 // The biggest storage_size for int32 requires a 4 MB table.
66 return kBaseTableLen * 16;
69 int MaxStorageSizeForTable(int table_len) {
70 return table_len * (k64kEntriesStore / kBaseTableLen);
73 size_t GetIndexSize(int table_len) {
74 size_t table_size = sizeof(disk_cache::CacheAddr) * table_len;
75 return sizeof(disk_cache::IndexHeader) + table_size;
78 // ------------------------------------------------------------------------
80 // Sets group for the current experiment. Returns false if the files should be
81 // discarded.
82 bool InitExperiment(disk_cache::IndexHeader* header, bool cache_created) {
83 if (header->experiment == disk_cache::EXPERIMENT_OLD_FILE1 ||
84 header->experiment == disk_cache::EXPERIMENT_OLD_FILE2) {
85 // Discard current cache.
86 return false;
89 if (base::FieldTrialList::FindFullName("SimpleCacheTrial") ==
90 "ExperimentControl") {
91 if (cache_created) {
92 header->experiment = disk_cache::EXPERIMENT_SIMPLE_CONTROL;
93 return true;
95 return header->experiment == disk_cache::EXPERIMENT_SIMPLE_CONTROL;
98 header->experiment = disk_cache::NO_EXPERIMENT;
99 return true;
102 // A callback to perform final cleanup on the background thread.
103 void FinalCleanupCallback(disk_cache::BackendImpl* backend) {
104 backend->CleanupCache();
107 } // namespace
109 // ------------------------------------------------------------------------
111 namespace disk_cache {
113 BackendImpl::BackendImpl(
114 const base::FilePath& path,
115 const scoped_refptr<base::SingleThreadTaskRunner>& cache_thread,
116 net::NetLog* net_log)
117 : background_queue_(this, cache_thread),
118 path_(path),
119 block_files_(path),
120 mask_(0),
121 max_size_(0),
122 up_ticks_(0),
123 cache_type_(net::DISK_CACHE),
124 uma_report_(0),
125 user_flags_(0),
126 init_(false),
127 restarted_(false),
128 unit_test_(false),
129 read_only_(false),
130 disabled_(false),
131 new_eviction_(false),
132 first_timer_(true),
133 user_load_(false),
134 net_log_(net_log),
135 done_(true, false),
136 ptr_factory_(this) {
139 BackendImpl::BackendImpl(
140 const base::FilePath& path,
141 uint32 mask,
142 const scoped_refptr<base::SingleThreadTaskRunner>& cache_thread,
143 net::NetLog* net_log)
144 : background_queue_(this, cache_thread),
145 path_(path),
146 block_files_(path),
147 mask_(mask),
148 max_size_(0),
149 up_ticks_(0),
150 cache_type_(net::DISK_CACHE),
151 uma_report_(0),
152 user_flags_(kMask),
153 init_(false),
154 restarted_(false),
155 unit_test_(false),
156 read_only_(false),
157 disabled_(false),
158 new_eviction_(false),
159 first_timer_(true),
160 user_load_(false),
161 net_log_(net_log),
162 done_(true, false),
163 ptr_factory_(this) {
166 BackendImpl::~BackendImpl() {
167 if (user_flags_ & kNoRandom) {
168 // This is a unit test, so we want to be strict about not leaking entries
169 // and completing all the work.
170 background_queue_.WaitForPendingIO();
171 } else {
172 // This is most likely not a test, so we want to do as little work as
173 // possible at this time, at the price of leaving dirty entries behind.
174 background_queue_.DropPendingIO();
177 if (background_queue_.BackgroundIsCurrentThread()) {
178 // Unit tests may use the same thread for everything.
179 CleanupCache();
180 } else {
181 background_queue_.background_thread()->PostTask(
182 FROM_HERE, base::Bind(&FinalCleanupCallback, base::Unretained(this)));
183 // http://crbug.com/74623
184 base::ThreadRestrictions::ScopedAllowWait allow_wait;
185 done_.Wait();
189 int BackendImpl::Init(const CompletionCallback& callback) {
190 background_queue_.Init(callback);
191 return net::ERR_IO_PENDING;
194 int BackendImpl::SyncInit() {
195 #if defined(NET_BUILD_STRESS_CACHE)
196 // Start evictions right away.
197 up_ticks_ = kTrimDelay * 2;
198 #endif
199 DCHECK(!init_);
200 if (init_)
201 return net::ERR_FAILED;
203 bool create_files = false;
204 if (!InitBackingStore(&create_files)) {
205 ReportError(ERR_STORAGE_ERROR);
206 return net::ERR_FAILED;
209 num_refs_ = num_pending_io_ = max_refs_ = 0;
210 entry_count_ = byte_count_ = 0;
212 bool should_create_timer = false;
213 if (!restarted_) {
214 buffer_bytes_ = 0;
215 trace_object_ = TraceObject::GetTraceObject();
216 should_create_timer = true;
219 init_ = true;
220 Trace("Init");
222 if (data_->header.experiment != NO_EXPERIMENT &&
223 cache_type_ != net::DISK_CACHE) {
224 // No experiment for other caches.
225 return net::ERR_FAILED;
228 if (!(user_flags_ & kNoRandom)) {
229 // The unit test controls directly what to test.
230 new_eviction_ = (cache_type_ == net::DISK_CACHE);
233 if (!CheckIndex()) {
234 ReportError(ERR_INIT_FAILED);
235 return net::ERR_FAILED;
238 if (!restarted_ && (create_files || !data_->header.num_entries))
239 ReportError(ERR_CACHE_CREATED);
241 if (!(user_flags_ & kNoRandom) && cache_type_ == net::DISK_CACHE &&
242 !InitExperiment(&data_->header, create_files)) {
243 return net::ERR_FAILED;
246 // We don't care if the value overflows. The only thing we care about is that
247 // the id cannot be zero, because that value is used as "not dirty".
248 // Increasing the value once per second gives us many years before we start
249 // having collisions.
250 data_->header.this_id++;
251 if (!data_->header.this_id)
252 data_->header.this_id++;
254 bool previous_crash = (data_->header.crash != 0);
255 data_->header.crash = 1;
257 if (!block_files_.Init(create_files))
258 return net::ERR_FAILED;
260 // We want to minimize the changes to cache for an AppCache.
261 if (cache_type() == net::APP_CACHE) {
262 DCHECK(!new_eviction_);
263 read_only_ = true;
264 } else if (cache_type() == net::SHADER_CACHE) {
265 DCHECK(!new_eviction_);
268 eviction_.Init(this);
270 // stats_ and rankings_ may end up calling back to us so we better be enabled.
271 disabled_ = false;
272 if (!InitStats())
273 return net::ERR_FAILED;
275 disabled_ = !rankings_.Init(this, new_eviction_);
277 #if defined(STRESS_CACHE_EXTENDED_VALIDATION)
278 trace_object_->EnableTracing(false);
279 int sc = SelfCheck();
280 if (sc < 0 && sc != ERR_NUM_ENTRIES_MISMATCH)
281 NOTREACHED();
282 trace_object_->EnableTracing(true);
283 #endif
285 if (previous_crash) {
286 ReportError(ERR_PREVIOUS_CRASH);
287 } else if (!restarted_) {
288 ReportError(ERR_NO_ERROR);
291 FlushIndex();
293 if (!disabled_ && should_create_timer) {
294 // Create a recurrent timer of 30 secs.
295 int timer_delay = unit_test_ ? 1000 : 30000;
296 timer_.reset(new base::RepeatingTimer<BackendImpl>());
297 timer_->Start(FROM_HERE, TimeDelta::FromMilliseconds(timer_delay), this,
298 &BackendImpl::OnStatsTimer);
301 return disabled_ ? net::ERR_FAILED : net::OK;
304 void BackendImpl::CleanupCache() {
305 Trace("Backend Cleanup");
306 eviction_.Stop();
307 timer_.reset();
309 if (init_) {
310 StoreStats();
311 if (data_)
312 data_->header.crash = 0;
314 if (user_flags_ & kNoRandom) {
315 // This is a net_unittest, verify that we are not 'leaking' entries.
316 File::WaitForPendingIO(&num_pending_io_);
317 DCHECK(!num_refs_);
318 } else {
319 File::DropPendingIO();
322 block_files_.CloseFiles();
323 FlushIndex();
324 index_ = NULL;
325 ptr_factory_.InvalidateWeakPtrs();
326 done_.Signal();
329 // ------------------------------------------------------------------------
331 int BackendImpl::SyncOpenEntry(const std::string& key, Entry** entry) {
332 DCHECK(entry);
333 *entry = OpenEntryImpl(key);
334 return (*entry) ? net::OK : net::ERR_FAILED;
337 int BackendImpl::SyncCreateEntry(const std::string& key, Entry** entry) {
338 DCHECK(entry);
339 *entry = CreateEntryImpl(key);
340 return (*entry) ? net::OK : net::ERR_FAILED;
343 int BackendImpl::SyncDoomEntry(const std::string& key) {
344 if (disabled_)
345 return net::ERR_FAILED;
347 EntryImpl* entry = OpenEntryImpl(key);
348 if (!entry)
349 return net::ERR_FAILED;
351 entry->DoomImpl();
352 entry->Release();
353 return net::OK;
356 int BackendImpl::SyncDoomAllEntries() {
357 // This is not really an error, but it is an interesting condition.
358 ReportError(ERR_CACHE_DOOMED);
359 stats_.OnEvent(Stats::DOOM_CACHE);
360 if (!num_refs_) {
361 RestartCache(false);
362 return disabled_ ? net::ERR_FAILED : net::OK;
363 } else {
364 if (disabled_)
365 return net::ERR_FAILED;
367 eviction_.TrimCache(true);
368 return net::OK;
372 int BackendImpl::SyncDoomEntriesBetween(const base::Time initial_time,
373 const base::Time end_time) {
374 DCHECK_NE(net::APP_CACHE, cache_type_);
375 if (end_time.is_null())
376 return SyncDoomEntriesSince(initial_time);
378 DCHECK(end_time >= initial_time);
380 if (disabled_)
381 return net::ERR_FAILED;
383 EntryImpl* node;
384 scoped_ptr<Rankings::Iterator> iterator(new Rankings::Iterator());
385 EntryImpl* next = OpenNextEntryImpl(iterator.get());
386 if (!next)
387 return net::OK;
389 while (next) {
390 node = next;
391 next = OpenNextEntryImpl(iterator.get());
393 if (node->GetLastUsed() >= initial_time &&
394 node->GetLastUsed() < end_time) {
395 node->DoomImpl();
396 } else if (node->GetLastUsed() < initial_time) {
397 if (next)
398 next->Release();
399 next = NULL;
400 SyncEndEnumeration(iterator.Pass());
403 node->Release();
406 return net::OK;
409 // We use OpenNextEntryImpl to retrieve elements from the cache, until we get
410 // entries that are too old.
411 int BackendImpl::SyncDoomEntriesSince(const base::Time initial_time) {
412 DCHECK_NE(net::APP_CACHE, cache_type_);
413 if (disabled_)
414 return net::ERR_FAILED;
416 stats_.OnEvent(Stats::DOOM_RECENT);
417 for (;;) {
418 scoped_ptr<Rankings::Iterator> iterator(new Rankings::Iterator());
419 EntryImpl* entry = OpenNextEntryImpl(iterator.get());
420 if (!entry)
421 return net::OK;
423 if (initial_time > entry->GetLastUsed()) {
424 entry->Release();
425 SyncEndEnumeration(iterator.Pass());
426 return net::OK;
429 entry->DoomImpl();
430 entry->Release();
431 SyncEndEnumeration(iterator.Pass()); // The doom invalidated the iterator.
435 int BackendImpl::SyncOpenNextEntry(Rankings::Iterator* iterator,
436 Entry** next_entry) {
437 *next_entry = OpenNextEntryImpl(iterator);
438 return (*next_entry) ? net::OK : net::ERR_FAILED;
441 void BackendImpl::SyncEndEnumeration(scoped_ptr<Rankings::Iterator> iterator) {
442 iterator->Reset();
445 void BackendImpl::SyncOnExternalCacheHit(const std::string& key) {
446 if (disabled_)
447 return;
449 uint32 hash = base::Hash(key);
450 bool error;
451 EntryImpl* cache_entry = MatchEntry(key, hash, false, Addr(), &error);
452 if (cache_entry) {
453 if (ENTRY_NORMAL == cache_entry->entry()->Data()->state) {
454 UpdateRank(cache_entry, cache_type() == net::SHADER_CACHE);
456 cache_entry->Release();
460 EntryImpl* BackendImpl::OpenEntryImpl(const std::string& key) {
461 if (disabled_)
462 return NULL;
464 TimeTicks start = TimeTicks::Now();
465 uint32 hash = base::Hash(key);
466 Trace("Open hash 0x%x", hash);
468 bool error;
469 EntryImpl* cache_entry = MatchEntry(key, hash, false, Addr(), &error);
470 if (cache_entry && ENTRY_NORMAL != cache_entry->entry()->Data()->state) {
471 // The entry was already evicted.
472 cache_entry->Release();
473 cache_entry = NULL;
474 web_fonts_histogram::RecordEvictedEntry(key);
475 } else if (!cache_entry) {
476 web_fonts_histogram::RecordCacheMiss(key);
479 int current_size = data_->header.num_bytes / (1024 * 1024);
480 int64 total_hours = stats_.GetCounter(Stats::TIMER) / 120;
481 int64 no_use_hours = stats_.GetCounter(Stats::LAST_REPORT_TIMER) / 120;
482 int64 use_hours = total_hours - no_use_hours;
484 if (!cache_entry) {
485 CACHE_UMA(AGE_MS, "OpenTime.Miss", 0, start);
486 CACHE_UMA(COUNTS_10000, "AllOpenBySize.Miss", 0, current_size);
487 CACHE_UMA(HOURS, "AllOpenByTotalHours.Miss", 0, total_hours);
488 CACHE_UMA(HOURS, "AllOpenByUseHours.Miss", 0, use_hours);
489 stats_.OnEvent(Stats::OPEN_MISS);
490 return NULL;
493 eviction_.OnOpenEntry(cache_entry);
494 entry_count_++;
496 Trace("Open hash 0x%x end: 0x%x", hash,
497 cache_entry->entry()->address().value());
498 CACHE_UMA(AGE_MS, "OpenTime", 0, start);
499 CACHE_UMA(COUNTS_10000, "AllOpenBySize.Hit", 0, current_size);
500 CACHE_UMA(HOURS, "AllOpenByTotalHours.Hit", 0, total_hours);
501 CACHE_UMA(HOURS, "AllOpenByUseHours.Hit", 0, use_hours);
502 stats_.OnEvent(Stats::OPEN_HIT);
503 web_fonts_histogram::RecordCacheHit(cache_entry);
504 SIMPLE_STATS_COUNTER("disk_cache.hit");
505 return cache_entry;
508 EntryImpl* BackendImpl::CreateEntryImpl(const std::string& key) {
509 if (disabled_ || key.empty())
510 return NULL;
512 TimeTicks start = TimeTicks::Now();
513 uint32 hash = base::Hash(key);
514 Trace("Create hash 0x%x", hash);
516 scoped_refptr<EntryImpl> parent;
517 Addr entry_address(data_->table[hash & mask_]);
518 if (entry_address.is_initialized()) {
519 // We have an entry already. It could be the one we are looking for, or just
520 // a hash conflict.
521 bool error;
522 EntryImpl* old_entry = MatchEntry(key, hash, false, Addr(), &error);
523 if (old_entry)
524 return ResurrectEntry(old_entry);
526 EntryImpl* parent_entry = MatchEntry(key, hash, true, Addr(), &error);
527 DCHECK(!error);
528 if (parent_entry) {
529 parent.swap(&parent_entry);
530 } else if (data_->table[hash & mask_]) {
531 // We should have corrected the problem.
532 NOTREACHED();
533 return NULL;
537 // The general flow is to allocate disk space and initialize the entry data,
538 // followed by saving that to disk, then linking the entry though the index
539 // and finally through the lists. If there is a crash in this process, we may
540 // end up with:
541 // a. Used, unreferenced empty blocks on disk (basically just garbage).
542 // b. Used, unreferenced but meaningful data on disk (more garbage).
543 // c. A fully formed entry, reachable only through the index.
544 // d. A fully formed entry, also reachable through the lists, but still dirty.
546 // Anything after (b) can be automatically cleaned up. We may consider saving
547 // the current operation (as we do while manipulating the lists) so that we
548 // can detect and cleanup (a) and (b).
550 int num_blocks = EntryImpl::NumBlocksForEntry(key.size());
551 if (!block_files_.CreateBlock(BLOCK_256, num_blocks, &entry_address)) {
552 LOG(ERROR) << "Create entry failed " << key.c_str();
553 stats_.OnEvent(Stats::CREATE_ERROR);
554 return NULL;
557 Addr node_address(0);
558 if (!block_files_.CreateBlock(RANKINGS, 1, &node_address)) {
559 block_files_.DeleteBlock(entry_address, false);
560 LOG(ERROR) << "Create entry failed " << key.c_str();
561 stats_.OnEvent(Stats::CREATE_ERROR);
562 return NULL;
565 scoped_refptr<EntryImpl> cache_entry(
566 new EntryImpl(this, entry_address, false));
567 IncreaseNumRefs();
569 if (!cache_entry->CreateEntry(node_address, key, hash)) {
570 block_files_.DeleteBlock(entry_address, false);
571 block_files_.DeleteBlock(node_address, false);
572 LOG(ERROR) << "Create entry failed " << key.c_str();
573 stats_.OnEvent(Stats::CREATE_ERROR);
574 return NULL;
577 cache_entry->BeginLogging(net_log_, true);
579 // We are not failing the operation; let's add this to the map.
580 open_entries_[entry_address.value()] = cache_entry.get();
582 // Save the entry.
583 cache_entry->entry()->Store();
584 cache_entry->rankings()->Store();
585 IncreaseNumEntries();
586 entry_count_++;
588 // Link this entry through the index.
589 if (parent.get()) {
590 parent->SetNextAddress(entry_address);
591 } else {
592 data_->table[hash & mask_] = entry_address.value();
595 // Link this entry through the lists.
596 eviction_.OnCreateEntry(cache_entry.get());
598 CACHE_UMA(AGE_MS, "CreateTime", 0, start);
599 stats_.OnEvent(Stats::CREATE_HIT);
600 SIMPLE_STATS_COUNTER("disk_cache.miss");
601 Trace("create entry hit ");
602 FlushIndex();
603 cache_entry->AddRef();
604 return cache_entry.get();
607 EntryImpl* BackendImpl::OpenNextEntryImpl(Rankings::Iterator* iterator) {
608 if (disabled_)
609 return NULL;
611 const int kListsToSearch = 3;
612 scoped_refptr<EntryImpl> entries[kListsToSearch];
613 if (!iterator->my_rankings) {
614 iterator->my_rankings = &rankings_;
615 bool ret = false;
617 // Get an entry from each list.
618 for (int i = 0; i < kListsToSearch; i++) {
619 EntryImpl* temp = NULL;
620 ret |= OpenFollowingEntryFromList(static_cast<Rankings::List>(i),
621 &iterator->nodes[i], &temp);
622 entries[i].swap(&temp); // The entry was already addref'd.
624 if (!ret) {
625 iterator->Reset();
626 return NULL;
628 } else {
629 // Get the next entry from the last list, and the actual entries for the
630 // elements on the other lists.
631 for (int i = 0; i < kListsToSearch; i++) {
632 EntryImpl* temp = NULL;
633 if (iterator->list == i) {
634 OpenFollowingEntryFromList(
635 iterator->list, &iterator->nodes[i], &temp);
636 } else {
637 temp = GetEnumeratedEntry(iterator->nodes[i],
638 static_cast<Rankings::List>(i));
641 entries[i].swap(&temp); // The entry was already addref'd.
645 int newest = -1;
646 int oldest = -1;
647 Time access_times[kListsToSearch];
648 for (int i = 0; i < kListsToSearch; i++) {
649 if (entries[i].get()) {
650 access_times[i] = entries[i]->GetLastUsed();
651 if (newest < 0) {
652 DCHECK_LT(oldest, 0);
653 newest = oldest = i;
654 continue;
656 if (access_times[i] > access_times[newest])
657 newest = i;
658 if (access_times[i] < access_times[oldest])
659 oldest = i;
663 if (newest < 0 || oldest < 0) {
664 iterator->Reset();
665 return NULL;
668 EntryImpl* next_entry;
669 next_entry = entries[newest].get();
670 iterator->list = static_cast<Rankings::List>(newest);
671 next_entry->AddRef();
672 return next_entry;
675 bool BackendImpl::SetMaxSize(int max_bytes) {
676 COMPILE_ASSERT(sizeof(max_bytes) == sizeof(max_size_), unsupported_int_model);
677 if (max_bytes < 0)
678 return false;
680 // Zero size means use the default.
681 if (!max_bytes)
682 return true;
684 // Avoid a DCHECK later on.
685 if (max_bytes >= kint32max - kint32max / 10)
686 max_bytes = kint32max - kint32max / 10 - 1;
688 user_flags_ |= kMaxSize;
689 max_size_ = max_bytes;
690 return true;
693 void BackendImpl::SetType(net::CacheType type) {
694 DCHECK_NE(net::MEMORY_CACHE, type);
695 cache_type_ = type;
698 base::FilePath BackendImpl::GetFileName(Addr address) const {
699 if (!address.is_separate_file() || !address.is_initialized()) {
700 NOTREACHED();
701 return base::FilePath();
704 std::string tmp = base::StringPrintf("f_%06x", address.FileNumber());
705 return path_.AppendASCII(tmp);
708 MappedFile* BackendImpl::File(Addr address) {
709 if (disabled_)
710 return NULL;
711 return block_files_.GetFile(address);
714 base::WeakPtr<InFlightBackendIO> BackendImpl::GetBackgroundQueue() {
715 return background_queue_.GetWeakPtr();
718 bool BackendImpl::CreateExternalFile(Addr* address) {
719 int file_number = data_->header.last_file + 1;
720 Addr file_address(0);
721 bool success = false;
722 for (int i = 0; i < 0x0fffffff; i++, file_number++) {
723 if (!file_address.SetFileNumber(file_number)) {
724 file_number = 1;
725 continue;
727 base::FilePath name = GetFileName(file_address);
728 int flags = base::File::FLAG_READ | base::File::FLAG_WRITE |
729 base::File::FLAG_CREATE | base::File::FLAG_EXCLUSIVE_WRITE;
730 base::File file(name, flags);
731 if (!file.IsValid()) {
732 base::File::Error error = file.error_details();
733 if (error != base::File::FILE_ERROR_EXISTS) {
734 LOG(ERROR) << "Unable to create file: " << error;
735 return false;
737 continue;
740 success = true;
741 break;
744 DCHECK(success);
745 if (!success)
746 return false;
748 data_->header.last_file = file_number;
749 address->set_value(file_address.value());
750 return true;
753 bool BackendImpl::CreateBlock(FileType block_type, int block_count,
754 Addr* block_address) {
755 return block_files_.CreateBlock(block_type, block_count, block_address);
758 void BackendImpl::DeleteBlock(Addr block_address, bool deep) {
759 block_files_.DeleteBlock(block_address, deep);
762 LruData* BackendImpl::GetLruData() {
763 return &data_->header.lru;
766 void BackendImpl::UpdateRank(EntryImpl* entry, bool modified) {
767 if (read_only_ || (!modified && cache_type() == net::SHADER_CACHE))
768 return;
769 eviction_.UpdateRank(entry, modified);
772 void BackendImpl::RecoveredEntry(CacheRankingsBlock* rankings) {
773 Addr address(rankings->Data()->contents);
774 EntryImpl* cache_entry = NULL;
775 if (NewEntry(address, &cache_entry)) {
776 STRESS_NOTREACHED();
777 return;
780 uint32 hash = cache_entry->GetHash();
781 cache_entry->Release();
783 // Anything on the table means that this entry is there.
784 if (data_->table[hash & mask_])
785 return;
787 data_->table[hash & mask_] = address.value();
788 FlushIndex();
791 void BackendImpl::InternalDoomEntry(EntryImpl* entry) {
792 uint32 hash = entry->GetHash();
793 std::string key = entry->GetKey();
794 Addr entry_addr = entry->entry()->address();
795 bool error;
796 EntryImpl* parent_entry = MatchEntry(key, hash, true, entry_addr, &error);
797 CacheAddr child(entry->GetNextAddress());
799 Trace("Doom entry 0x%p", entry);
801 if (!entry->doomed()) {
802 // We may have doomed this entry from within MatchEntry.
803 eviction_.OnDoomEntry(entry);
804 entry->InternalDoom();
805 if (!new_eviction_) {
806 DecreaseNumEntries();
808 stats_.OnEvent(Stats::DOOM_ENTRY);
811 if (parent_entry) {
812 parent_entry->SetNextAddress(Addr(child));
813 parent_entry->Release();
814 } else if (!error) {
815 data_->table[hash & mask_] = child;
818 FlushIndex();
821 #if defined(NET_BUILD_STRESS_CACHE)
823 CacheAddr BackendImpl::GetNextAddr(Addr address) {
824 EntriesMap::iterator it = open_entries_.find(address.value());
825 if (it != open_entries_.end()) {
826 EntryImpl* this_entry = it->second;
827 return this_entry->GetNextAddress();
829 DCHECK(block_files_.IsValid(address));
830 DCHECK(!address.is_separate_file() && address.file_type() == BLOCK_256);
832 CacheEntryBlock entry(File(address), address);
833 CHECK(entry.Load());
834 return entry.Data()->next;
837 void BackendImpl::NotLinked(EntryImpl* entry) {
838 Addr entry_addr = entry->entry()->address();
839 uint32 i = entry->GetHash() & mask_;
840 Addr address(data_->table[i]);
841 if (!address.is_initialized())
842 return;
844 for (;;) {
845 DCHECK(entry_addr.value() != address.value());
846 address.set_value(GetNextAddr(address));
847 if (!address.is_initialized())
848 break;
851 #endif // NET_BUILD_STRESS_CACHE
853 // An entry may be linked on the DELETED list for a while after being doomed.
854 // This function is called when we want to remove it.
855 void BackendImpl::RemoveEntry(EntryImpl* entry) {
856 #if defined(NET_BUILD_STRESS_CACHE)
857 NotLinked(entry);
858 #endif
859 if (!new_eviction_)
860 return;
862 DCHECK_NE(ENTRY_NORMAL, entry->entry()->Data()->state);
864 Trace("Remove entry 0x%p", entry);
865 eviction_.OnDestroyEntry(entry);
866 DecreaseNumEntries();
869 void BackendImpl::OnEntryDestroyBegin(Addr address) {
870 EntriesMap::iterator it = open_entries_.find(address.value());
871 if (it != open_entries_.end())
872 open_entries_.erase(it);
875 void BackendImpl::OnEntryDestroyEnd() {
876 DecreaseNumRefs();
877 if (data_->header.num_bytes > max_size_ && !read_only_ &&
878 (up_ticks_ > kTrimDelay || user_flags_ & kNoRandom))
879 eviction_.TrimCache(false);
882 EntryImpl* BackendImpl::GetOpenEntry(CacheRankingsBlock* rankings) const {
883 DCHECK(rankings->HasData());
884 EntriesMap::const_iterator it =
885 open_entries_.find(rankings->Data()->contents);
886 if (it != open_entries_.end()) {
887 // We have this entry in memory.
888 return it->second;
891 return NULL;
894 int32 BackendImpl::GetCurrentEntryId() const {
895 return data_->header.this_id;
898 int BackendImpl::MaxFileSize() const {
899 return cache_type() == net::PNACL_CACHE ? max_size_ : max_size_ / 8;
902 void BackendImpl::ModifyStorageSize(int32 old_size, int32 new_size) {
903 if (disabled_ || old_size == new_size)
904 return;
905 if (old_size > new_size)
906 SubstractStorageSize(old_size - new_size);
907 else
908 AddStorageSize(new_size - old_size);
910 FlushIndex();
912 // Update the usage statistics.
913 stats_.ModifyStorageStats(old_size, new_size);
916 void BackendImpl::TooMuchStorageRequested(int32 size) {
917 stats_.ModifyStorageStats(0, size);
920 bool BackendImpl::IsAllocAllowed(int current_size, int new_size) {
921 DCHECK_GT(new_size, current_size);
922 if (user_flags_ & kNoBuffering)
923 return false;
925 int to_add = new_size - current_size;
926 if (buffer_bytes_ + to_add > MaxBuffersSize())
927 return false;
929 buffer_bytes_ += to_add;
930 CACHE_UMA(COUNTS_50000, "BufferBytes", 0, buffer_bytes_ / 1024);
931 return true;
934 void BackendImpl::BufferDeleted(int size) {
935 buffer_bytes_ -= size;
936 DCHECK_GE(size, 0);
939 bool BackendImpl::IsLoaded() const {
940 CACHE_UMA(COUNTS, "PendingIO", 0, num_pending_io_);
941 if (user_flags_ & kNoLoadProtection)
942 return false;
944 return (num_pending_io_ > 5 || user_load_);
947 std::string BackendImpl::HistogramName(const char* name, int experiment) const {
948 if (!experiment)
949 return base::StringPrintf("DiskCache.%d.%s", cache_type_, name);
950 return base::StringPrintf("DiskCache.%d.%s_%d", cache_type_,
951 name, experiment);
954 base::WeakPtr<BackendImpl> BackendImpl::GetWeakPtr() {
955 return ptr_factory_.GetWeakPtr();
958 // We want to remove biases from some histograms so we only send data once per
959 // week.
960 bool BackendImpl::ShouldReportAgain() {
961 if (uma_report_)
962 return uma_report_ == 2;
964 uma_report_++;
965 int64 last_report = stats_.GetCounter(Stats::LAST_REPORT);
966 Time last_time = Time::FromInternalValue(last_report);
967 if (!last_report || (Time::Now() - last_time).InDays() >= 7) {
968 stats_.SetCounter(Stats::LAST_REPORT, Time::Now().ToInternalValue());
969 uma_report_++;
970 return true;
972 return false;
975 void BackendImpl::FirstEviction() {
976 DCHECK(data_->header.create_time);
977 if (!GetEntryCount())
978 return; // This is just for unit tests.
980 Time create_time = Time::FromInternalValue(data_->header.create_time);
981 CACHE_UMA(AGE, "FillupAge", 0, create_time);
983 int64 use_time = stats_.GetCounter(Stats::TIMER);
984 CACHE_UMA(HOURS, "FillupTime", 0, static_cast<int>(use_time / 120));
985 CACHE_UMA(PERCENTAGE, "FirstHitRatio", 0, stats_.GetHitRatio());
987 if (!use_time)
988 use_time = 1;
989 CACHE_UMA(COUNTS_10000, "FirstEntryAccessRate", 0,
990 static_cast<int>(data_->header.num_entries / use_time));
991 CACHE_UMA(COUNTS, "FirstByteIORate", 0,
992 static_cast<int>((data_->header.num_bytes / 1024) / use_time));
994 int avg_size = data_->header.num_bytes / GetEntryCount();
995 CACHE_UMA(COUNTS, "FirstEntrySize", 0, avg_size);
997 int large_entries_bytes = stats_.GetLargeEntriesSize();
998 int large_ratio = large_entries_bytes * 100 / data_->header.num_bytes;
999 CACHE_UMA(PERCENTAGE, "FirstLargeEntriesRatio", 0, large_ratio);
1001 if (new_eviction_) {
1002 CACHE_UMA(PERCENTAGE, "FirstResurrectRatio", 0, stats_.GetResurrectRatio());
1003 CACHE_UMA(PERCENTAGE, "FirstNoUseRatio", 0,
1004 data_->header.lru.sizes[0] * 100 / data_->header.num_entries);
1005 CACHE_UMA(PERCENTAGE, "FirstLowUseRatio", 0,
1006 data_->header.lru.sizes[1] * 100 / data_->header.num_entries);
1007 CACHE_UMA(PERCENTAGE, "FirstHighUseRatio", 0,
1008 data_->header.lru.sizes[2] * 100 / data_->header.num_entries);
1011 stats_.ResetRatios();
1014 void BackendImpl::CriticalError(int error) {
1015 STRESS_NOTREACHED();
1016 LOG(ERROR) << "Critical error found " << error;
1017 if (disabled_)
1018 return;
1020 stats_.OnEvent(Stats::FATAL_ERROR);
1021 LogStats();
1022 ReportError(error);
1024 // Setting the index table length to an invalid value will force re-creation
1025 // of the cache files.
1026 data_->header.table_len = 1;
1027 disabled_ = true;
1029 if (!num_refs_)
1030 base::MessageLoop::current()->PostTask(
1031 FROM_HERE, base::Bind(&BackendImpl::RestartCache, GetWeakPtr(), true));
1034 void BackendImpl::ReportError(int error) {
1035 STRESS_DCHECK(!error || error == ERR_PREVIOUS_CRASH ||
1036 error == ERR_CACHE_CREATED);
1038 // We transmit positive numbers, instead of direct error codes.
1039 DCHECK_LE(error, 0);
1040 CACHE_UMA(CACHE_ERROR, "Error", 0, error * -1);
1043 void BackendImpl::OnEvent(Stats::Counters an_event) {
1044 stats_.OnEvent(an_event);
1047 void BackendImpl::OnRead(int32 bytes) {
1048 DCHECK_GE(bytes, 0);
1049 byte_count_ += bytes;
1050 if (byte_count_ < 0)
1051 byte_count_ = kint32max;
1054 void BackendImpl::OnWrite(int32 bytes) {
1055 // We use the same implementation as OnRead... just log the number of bytes.
1056 OnRead(bytes);
1059 void BackendImpl::OnStatsTimer() {
1060 if (disabled_)
1061 return;
1063 stats_.OnEvent(Stats::TIMER);
1064 int64 time = stats_.GetCounter(Stats::TIMER);
1065 int64 current = stats_.GetCounter(Stats::OPEN_ENTRIES);
1067 // OPEN_ENTRIES is a sampled average of the number of open entries, avoiding
1068 // the bias towards 0.
1069 if (num_refs_ && (current != num_refs_)) {
1070 int64 diff = (num_refs_ - current) / 50;
1071 if (!diff)
1072 diff = num_refs_ > current ? 1 : -1;
1073 current = current + diff;
1074 stats_.SetCounter(Stats::OPEN_ENTRIES, current);
1075 stats_.SetCounter(Stats::MAX_ENTRIES, max_refs_);
1078 CACHE_UMA(COUNTS, "NumberOfReferences", 0, num_refs_);
1080 CACHE_UMA(COUNTS_10000, "EntryAccessRate", 0, entry_count_);
1081 CACHE_UMA(COUNTS, "ByteIORate", 0, byte_count_ / 1024);
1083 // These values cover about 99.5% of the population (Oct 2011).
1084 user_load_ = (entry_count_ > 300 || byte_count_ > 7 * 1024 * 1024);
1085 entry_count_ = 0;
1086 byte_count_ = 0;
1087 up_ticks_++;
1089 if (!data_)
1090 first_timer_ = false;
1091 if (first_timer_) {
1092 first_timer_ = false;
1093 if (ShouldReportAgain())
1094 ReportStats();
1097 // Save stats to disk at 5 min intervals.
1098 if (time % 10 == 0)
1099 StoreStats();
1102 void BackendImpl::IncrementIoCount() {
1103 num_pending_io_++;
1106 void BackendImpl::DecrementIoCount() {
1107 num_pending_io_--;
1110 void BackendImpl::SetUnitTestMode() {
1111 user_flags_ |= kUnitTestMode;
1112 unit_test_ = true;
1115 void BackendImpl::SetUpgradeMode() {
1116 user_flags_ |= kUpgradeMode;
1117 read_only_ = true;
1120 void BackendImpl::SetNewEviction() {
1121 user_flags_ |= kNewEviction;
1122 new_eviction_ = true;
1125 void BackendImpl::SetFlags(uint32 flags) {
1126 user_flags_ |= flags;
1129 void BackendImpl::ClearRefCountForTest() {
1130 num_refs_ = 0;
1133 int BackendImpl::FlushQueueForTest(const CompletionCallback& callback) {
1134 background_queue_.FlushQueue(callback);
1135 return net::ERR_IO_PENDING;
1138 int BackendImpl::RunTaskForTest(const base::Closure& task,
1139 const CompletionCallback& callback) {
1140 background_queue_.RunTask(task, callback);
1141 return net::ERR_IO_PENDING;
1144 void BackendImpl::TrimForTest(bool empty) {
1145 eviction_.SetTestMode();
1146 eviction_.TrimCache(empty);
1149 void BackendImpl::TrimDeletedListForTest(bool empty) {
1150 eviction_.SetTestMode();
1151 eviction_.TrimDeletedList(empty);
1154 base::RepeatingTimer<BackendImpl>* BackendImpl::GetTimerForTest() {
1155 return timer_.get();
1158 int BackendImpl::SelfCheck() {
1159 if (!init_) {
1160 LOG(ERROR) << "Init failed";
1161 return ERR_INIT_FAILED;
1164 int num_entries = rankings_.SelfCheck();
1165 if (num_entries < 0) {
1166 LOG(ERROR) << "Invalid rankings list, error " << num_entries;
1167 #if !defined(NET_BUILD_STRESS_CACHE)
1168 return num_entries;
1169 #endif
1172 if (num_entries != data_->header.num_entries) {
1173 LOG(ERROR) << "Number of entries mismatch";
1174 #if !defined(NET_BUILD_STRESS_CACHE)
1175 return ERR_NUM_ENTRIES_MISMATCH;
1176 #endif
1179 return CheckAllEntries();
1182 void BackendImpl::FlushIndex() {
1183 if (index_.get() && !disabled_)
1184 index_->Flush();
1187 // ------------------------------------------------------------------------
1189 net::CacheType BackendImpl::GetCacheType() const {
1190 return cache_type_;
1193 int32 BackendImpl::GetEntryCount() const {
1194 if (!index_.get() || disabled_)
1195 return 0;
1196 // num_entries includes entries already evicted.
1197 int32 not_deleted = data_->header.num_entries -
1198 data_->header.lru.sizes[Rankings::DELETED];
1200 if (not_deleted < 0) {
1201 NOTREACHED();
1202 not_deleted = 0;
1205 return not_deleted;
1208 int BackendImpl::OpenEntry(const std::string& key, Entry** entry,
1209 const CompletionCallback& callback) {
1210 DCHECK(!callback.is_null());
1211 background_queue_.OpenEntry(key, entry, callback);
1212 return net::ERR_IO_PENDING;
1215 int BackendImpl::CreateEntry(const std::string& key, Entry** entry,
1216 const CompletionCallback& callback) {
1217 DCHECK(!callback.is_null());
1218 background_queue_.CreateEntry(key, entry, callback);
1219 return net::ERR_IO_PENDING;
1222 int BackendImpl::DoomEntry(const std::string& key,
1223 const CompletionCallback& callback) {
1224 DCHECK(!callback.is_null());
1225 background_queue_.DoomEntry(key, callback);
1226 return net::ERR_IO_PENDING;
1229 int BackendImpl::DoomAllEntries(const CompletionCallback& callback) {
1230 DCHECK(!callback.is_null());
1231 background_queue_.DoomAllEntries(callback);
1232 return net::ERR_IO_PENDING;
1235 int BackendImpl::DoomEntriesBetween(const base::Time initial_time,
1236 const base::Time end_time,
1237 const CompletionCallback& callback) {
1238 DCHECK(!callback.is_null());
1239 background_queue_.DoomEntriesBetween(initial_time, end_time, callback);
1240 return net::ERR_IO_PENDING;
1243 int BackendImpl::DoomEntriesSince(const base::Time initial_time,
1244 const CompletionCallback& callback) {
1245 DCHECK(!callback.is_null());
1246 background_queue_.DoomEntriesSince(initial_time, callback);
1247 return net::ERR_IO_PENDING;
1250 class BackendImpl::IteratorImpl : public Backend::Iterator {
1251 public:
1252 explicit IteratorImpl(base::WeakPtr<InFlightBackendIO> background_queue)
1253 : background_queue_(background_queue),
1254 iterator_(new Rankings::Iterator()) {
1257 ~IteratorImpl() override {
1258 if (background_queue_)
1259 background_queue_->EndEnumeration(iterator_.Pass());
1262 int OpenNextEntry(Entry** next_entry,
1263 const net::CompletionCallback& callback) override {
1264 if (!background_queue_)
1265 return net::ERR_FAILED;
1266 background_queue_->OpenNextEntry(iterator_.get(), next_entry, callback);
1267 return net::ERR_IO_PENDING;
1270 private:
1271 const base::WeakPtr<InFlightBackendIO> background_queue_;
1272 scoped_ptr<Rankings::Iterator> iterator_;
1275 scoped_ptr<Backend::Iterator> BackendImpl::CreateIterator() {
1276 return scoped_ptr<Backend::Iterator>(new IteratorImpl(GetBackgroundQueue()));
1279 void BackendImpl::GetStats(StatsItems* stats) {
1280 if (disabled_)
1281 return;
1283 std::pair<std::string, std::string> item;
1285 item.first = "Entries";
1286 item.second = base::StringPrintf("%d", data_->header.num_entries);
1287 stats->push_back(item);
1289 item.first = "Pending IO";
1290 item.second = base::StringPrintf("%d", num_pending_io_);
1291 stats->push_back(item);
1293 item.first = "Max size";
1294 item.second = base::StringPrintf("%d", max_size_);
1295 stats->push_back(item);
1297 item.first = "Current size";
1298 item.second = base::StringPrintf("%d", data_->header.num_bytes);
1299 stats->push_back(item);
1301 item.first = "Cache type";
1302 item.second = "Blockfile Cache";
1303 stats->push_back(item);
1305 stats_.GetItems(stats);
1308 void BackendImpl::OnExternalCacheHit(const std::string& key) {
1309 background_queue_.OnExternalCacheHit(key);
1312 // ------------------------------------------------------------------------
1314 // We just created a new file so we're going to write the header and set the
1315 // file length to include the hash table (zero filled).
1316 bool BackendImpl::CreateBackingStore(disk_cache::File* file) {
1317 AdjustMaxCacheSize(0);
1319 IndexHeader header;
1320 header.table_len = DesiredIndexTableLen(max_size_);
1322 // We need file version 2.1 for the new eviction algorithm.
1323 if (new_eviction_)
1324 header.version = 0x20001;
1326 header.create_time = Time::Now().ToInternalValue();
1328 if (!file->Write(&header, sizeof(header), 0))
1329 return false;
1331 return file->SetLength(GetIndexSize(header.table_len));
1334 bool BackendImpl::InitBackingStore(bool* file_created) {
1335 if (!base::CreateDirectory(path_))
1336 return false;
1338 base::FilePath index_name = path_.AppendASCII(kIndexName);
1340 int flags = base::File::FLAG_READ | base::File::FLAG_WRITE |
1341 base::File::FLAG_OPEN_ALWAYS | base::File::FLAG_EXCLUSIVE_WRITE;
1342 base::File base_file(index_name, flags);
1343 if (!base_file.IsValid())
1344 return false;
1346 bool ret = true;
1347 *file_created = base_file.created();
1349 scoped_refptr<disk_cache::File> file(new disk_cache::File(base_file.Pass()));
1350 if (*file_created)
1351 ret = CreateBackingStore(file.get());
1353 file = NULL;
1354 if (!ret)
1355 return false;
1357 index_ = new MappedFile();
1358 data_ = static_cast<Index*>(index_->Init(index_name, 0));
1359 if (!data_) {
1360 LOG(ERROR) << "Unable to map Index file";
1361 return false;
1364 if (index_->GetLength() < sizeof(Index)) {
1365 // We verify this again on CheckIndex() but it's easier to make sure now
1366 // that the header is there.
1367 LOG(ERROR) << "Corrupt Index file";
1368 return false;
1371 return true;
1374 // The maximum cache size will be either set explicitly by the caller, or
1375 // calculated by this code.
1376 void BackendImpl::AdjustMaxCacheSize(int table_len) {
1377 if (max_size_)
1378 return;
1380 // If table_len is provided, the index file exists.
1381 DCHECK(!table_len || data_->header.magic);
1383 // The user is not setting the size, let's figure it out.
1384 int64 available = base::SysInfo::AmountOfFreeDiskSpace(path_);
1385 if (available < 0) {
1386 max_size_ = kDefaultCacheSize;
1387 return;
1390 if (table_len)
1391 available += data_->header.num_bytes;
1393 max_size_ = PreferredCacheSize(available);
1395 if (!table_len)
1396 return;
1398 // If we already have a table, adjust the size to it.
1399 int current_max_size = MaxStorageSizeForTable(table_len);
1400 if (max_size_ > current_max_size)
1401 max_size_= current_max_size;
1404 bool BackendImpl::InitStats() {
1405 Addr address(data_->header.stats);
1406 int size = stats_.StorageSize();
1408 if (!address.is_initialized()) {
1409 FileType file_type = Addr::RequiredFileType(size);
1410 DCHECK_NE(file_type, EXTERNAL);
1411 int num_blocks = Addr::RequiredBlocks(size, file_type);
1413 if (!CreateBlock(file_type, num_blocks, &address))
1414 return false;
1416 data_->header.stats = address.value();
1417 return stats_.Init(NULL, 0, address);
1420 if (!address.is_block_file()) {
1421 NOTREACHED();
1422 return false;
1425 // Load the required data.
1426 size = address.num_blocks() * address.BlockSize();
1427 MappedFile* file = File(address);
1428 if (!file)
1429 return false;
1431 scoped_ptr<char[]> data(new char[size]);
1432 size_t offset = address.start_block() * address.BlockSize() +
1433 kBlockHeaderSize;
1434 if (!file->Read(data.get(), size, offset))
1435 return false;
1437 if (!stats_.Init(data.get(), size, address))
1438 return false;
1439 if (cache_type_ == net::DISK_CACHE && ShouldReportAgain())
1440 stats_.InitSizeHistogram();
1441 return true;
1444 void BackendImpl::StoreStats() {
1445 int size = stats_.StorageSize();
1446 scoped_ptr<char[]> data(new char[size]);
1447 Addr address;
1448 size = stats_.SerializeStats(data.get(), size, &address);
1449 DCHECK(size);
1450 if (!address.is_initialized())
1451 return;
1453 MappedFile* file = File(address);
1454 if (!file)
1455 return;
1457 size_t offset = address.start_block() * address.BlockSize() +
1458 kBlockHeaderSize;
1459 file->Write(data.get(), size, offset); // ignore result.
1462 void BackendImpl::RestartCache(bool failure) {
1463 int64 errors = stats_.GetCounter(Stats::FATAL_ERROR);
1464 int64 full_dooms = stats_.GetCounter(Stats::DOOM_CACHE);
1465 int64 partial_dooms = stats_.GetCounter(Stats::DOOM_RECENT);
1466 int64 last_report = stats_.GetCounter(Stats::LAST_REPORT);
1468 PrepareForRestart();
1469 if (failure) {
1470 DCHECK(!num_refs_);
1471 DCHECK(!open_entries_.size());
1472 DelayedCacheCleanup(path_);
1473 } else {
1474 DeleteCache(path_, false);
1477 // Don't call Init() if directed by the unit test: we are simulating a failure
1478 // trying to re-enable the cache.
1479 if (unit_test_)
1480 init_ = true; // Let the destructor do proper cleanup.
1481 else if (SyncInit() == net::OK) {
1482 stats_.SetCounter(Stats::FATAL_ERROR, errors);
1483 stats_.SetCounter(Stats::DOOM_CACHE, full_dooms);
1484 stats_.SetCounter(Stats::DOOM_RECENT, partial_dooms);
1485 stats_.SetCounter(Stats::LAST_REPORT, last_report);
1489 void BackendImpl::PrepareForRestart() {
1490 // Reset the mask_ if it was not given by the user.
1491 if (!(user_flags_ & kMask))
1492 mask_ = 0;
1494 if (!(user_flags_ & kNewEviction))
1495 new_eviction_ = false;
1497 disabled_ = true;
1498 data_->header.crash = 0;
1499 index_->Flush();
1500 index_ = NULL;
1501 data_ = NULL;
1502 block_files_.CloseFiles();
1503 rankings_.Reset();
1504 init_ = false;
1505 restarted_ = true;
1508 int BackendImpl::NewEntry(Addr address, EntryImpl** entry) {
1509 EntriesMap::iterator it = open_entries_.find(address.value());
1510 if (it != open_entries_.end()) {
1511 // Easy job. This entry is already in memory.
1512 EntryImpl* this_entry = it->second;
1513 this_entry->AddRef();
1514 *entry = this_entry;
1515 return 0;
1518 STRESS_DCHECK(block_files_.IsValid(address));
1520 if (!address.SanityCheckForEntryV2()) {
1521 LOG(WARNING) << "Wrong entry address.";
1522 STRESS_NOTREACHED();
1523 return ERR_INVALID_ADDRESS;
1526 scoped_refptr<EntryImpl> cache_entry(
1527 new EntryImpl(this, address, read_only_));
1528 IncreaseNumRefs();
1529 *entry = NULL;
1531 TimeTicks start = TimeTicks::Now();
1532 if (!cache_entry->entry()->Load())
1533 return ERR_READ_FAILURE;
1535 if (IsLoaded()) {
1536 CACHE_UMA(AGE_MS, "LoadTime", 0, start);
1539 if (!cache_entry->SanityCheck()) {
1540 LOG(WARNING) << "Messed up entry found.";
1541 STRESS_NOTREACHED();
1542 return ERR_INVALID_ENTRY;
1545 STRESS_DCHECK(block_files_.IsValid(
1546 Addr(cache_entry->entry()->Data()->rankings_node)));
1548 if (!cache_entry->LoadNodeAddress())
1549 return ERR_READ_FAILURE;
1551 if (!rankings_.SanityCheck(cache_entry->rankings(), false)) {
1552 STRESS_NOTREACHED();
1553 cache_entry->SetDirtyFlag(0);
1554 // Don't remove this from the list (it is not linked properly). Instead,
1555 // break the link back to the entry because it is going away, and leave the
1556 // rankings node to be deleted if we find it through a list.
1557 rankings_.SetContents(cache_entry->rankings(), 0);
1558 } else if (!rankings_.DataSanityCheck(cache_entry->rankings(), false)) {
1559 STRESS_NOTREACHED();
1560 cache_entry->SetDirtyFlag(0);
1561 rankings_.SetContents(cache_entry->rankings(), address.value());
1564 if (!cache_entry->DataSanityCheck()) {
1565 LOG(WARNING) << "Messed up entry found.";
1566 cache_entry->SetDirtyFlag(0);
1567 cache_entry->FixForDelete();
1570 // Prevent overwriting the dirty flag on the destructor.
1571 cache_entry->SetDirtyFlag(GetCurrentEntryId());
1573 if (cache_entry->dirty()) {
1574 Trace("Dirty entry 0x%p 0x%x", reinterpret_cast<void*>(cache_entry.get()),
1575 address.value());
1578 open_entries_[address.value()] = cache_entry.get();
1580 cache_entry->BeginLogging(net_log_, false);
1581 cache_entry.swap(entry);
1582 return 0;
1585 EntryImpl* BackendImpl::MatchEntry(const std::string& key, uint32 hash,
1586 bool find_parent, Addr entry_addr,
1587 bool* match_error) {
1588 Addr address(data_->table[hash & mask_]);
1589 scoped_refptr<EntryImpl> cache_entry, parent_entry;
1590 EntryImpl* tmp = NULL;
1591 bool found = false;
1592 std::set<CacheAddr> visited;
1593 *match_error = false;
1595 for (;;) {
1596 if (disabled_)
1597 break;
1599 if (visited.find(address.value()) != visited.end()) {
1600 // It's possible for a buggy version of the code to write a loop. Just
1601 // break it.
1602 Trace("Hash collision loop 0x%x", address.value());
1603 address.set_value(0);
1604 parent_entry->SetNextAddress(address);
1606 visited.insert(address.value());
1608 if (!address.is_initialized()) {
1609 if (find_parent)
1610 found = true;
1611 break;
1614 int error = NewEntry(address, &tmp);
1615 cache_entry.swap(&tmp);
1617 if (error || cache_entry->dirty()) {
1618 // This entry is dirty on disk (it was not properly closed): we cannot
1619 // trust it.
1620 Addr child(0);
1621 if (!error)
1622 child.set_value(cache_entry->GetNextAddress());
1624 if (parent_entry.get()) {
1625 parent_entry->SetNextAddress(child);
1626 parent_entry = NULL;
1627 } else {
1628 data_->table[hash & mask_] = child.value();
1631 Trace("MatchEntry dirty %d 0x%x 0x%x", find_parent, entry_addr.value(),
1632 address.value());
1634 if (!error) {
1635 // It is important to call DestroyInvalidEntry after removing this
1636 // entry from the table.
1637 DestroyInvalidEntry(cache_entry.get());
1638 cache_entry = NULL;
1639 } else {
1640 Trace("NewEntry failed on MatchEntry 0x%x", address.value());
1643 // Restart the search.
1644 address.set_value(data_->table[hash & mask_]);
1645 visited.clear();
1646 continue;
1649 DCHECK_EQ(hash & mask_, cache_entry->entry()->Data()->hash & mask_);
1650 if (cache_entry->IsSameEntry(key, hash)) {
1651 if (!cache_entry->Update())
1652 cache_entry = NULL;
1653 found = true;
1654 if (find_parent && entry_addr.value() != address.value()) {
1655 Trace("Entry not on the index 0x%x", address.value());
1656 *match_error = true;
1657 parent_entry = NULL;
1659 break;
1661 if (!cache_entry->Update())
1662 cache_entry = NULL;
1663 parent_entry = cache_entry;
1664 cache_entry = NULL;
1665 if (!parent_entry.get())
1666 break;
1668 address.set_value(parent_entry->GetNextAddress());
1671 if (parent_entry.get() && (!find_parent || !found))
1672 parent_entry = NULL;
1674 if (find_parent && entry_addr.is_initialized() && !cache_entry.get()) {
1675 *match_error = true;
1676 parent_entry = NULL;
1679 if (cache_entry.get() && (find_parent || !found))
1680 cache_entry = NULL;
1682 find_parent ? parent_entry.swap(&tmp) : cache_entry.swap(&tmp);
1683 FlushIndex();
1684 return tmp;
1687 bool BackendImpl::OpenFollowingEntryFromList(Rankings::List list,
1688 CacheRankingsBlock** from_entry,
1689 EntryImpl** next_entry) {
1690 if (disabled_)
1691 return false;
1693 if (!new_eviction_ && Rankings::NO_USE != list)
1694 return false;
1696 Rankings::ScopedRankingsBlock rankings(&rankings_, *from_entry);
1697 CacheRankingsBlock* next_block = rankings_.GetNext(rankings.get(), list);
1698 Rankings::ScopedRankingsBlock next(&rankings_, next_block);
1699 *from_entry = NULL;
1701 *next_entry = GetEnumeratedEntry(next.get(), list);
1702 if (!*next_entry)
1703 return false;
1705 *from_entry = next.release();
1706 return true;
1709 EntryImpl* BackendImpl::GetEnumeratedEntry(CacheRankingsBlock* next,
1710 Rankings::List list) {
1711 if (!next || disabled_)
1712 return NULL;
1714 EntryImpl* entry;
1715 int rv = NewEntry(Addr(next->Data()->contents), &entry);
1716 if (rv) {
1717 STRESS_NOTREACHED();
1718 rankings_.Remove(next, list, false);
1719 if (rv == ERR_INVALID_ADDRESS) {
1720 // There is nothing linked from the index. Delete the rankings node.
1721 DeleteBlock(next->address(), true);
1723 return NULL;
1726 if (entry->dirty()) {
1727 // We cannot trust this entry.
1728 InternalDoomEntry(entry);
1729 entry->Release();
1730 return NULL;
1733 if (!entry->Update()) {
1734 STRESS_NOTREACHED();
1735 entry->Release();
1736 return NULL;
1739 // Note that it is unfortunate (but possible) for this entry to be clean, but
1740 // not actually the real entry. In other words, we could have lost this entry
1741 // from the index, and it could have been replaced with a newer one. It's not
1742 // worth checking that this entry is "the real one", so we just return it and
1743 // let the enumeration continue; this entry will be evicted at some point, and
1744 // the regular path will work with the real entry. With time, this problem
1745 // will disasappear because this scenario is just a bug.
1747 // Make sure that we save the key for later.
1748 entry->GetKey();
1750 return entry;
1753 EntryImpl* BackendImpl::ResurrectEntry(EntryImpl* deleted_entry) {
1754 if (ENTRY_NORMAL == deleted_entry->entry()->Data()->state) {
1755 deleted_entry->Release();
1756 stats_.OnEvent(Stats::CREATE_MISS);
1757 Trace("create entry miss ");
1758 return NULL;
1761 // We are attempting to create an entry and found out that the entry was
1762 // previously deleted.
1764 eviction_.OnCreateEntry(deleted_entry);
1765 entry_count_++;
1767 stats_.OnEvent(Stats::RESURRECT_HIT);
1768 Trace("Resurrect entry hit ");
1769 return deleted_entry;
1772 void BackendImpl::DestroyInvalidEntry(EntryImpl* entry) {
1773 LOG(WARNING) << "Destroying invalid entry.";
1774 Trace("Destroying invalid entry 0x%p", entry);
1776 entry->SetPointerForInvalidEntry(GetCurrentEntryId());
1778 eviction_.OnDoomEntry(entry);
1779 entry->InternalDoom();
1781 if (!new_eviction_)
1782 DecreaseNumEntries();
1783 stats_.OnEvent(Stats::INVALID_ENTRY);
1786 void BackendImpl::AddStorageSize(int32 bytes) {
1787 data_->header.num_bytes += bytes;
1788 DCHECK_GE(data_->header.num_bytes, 0);
1791 void BackendImpl::SubstractStorageSize(int32 bytes) {
1792 data_->header.num_bytes -= bytes;
1793 DCHECK_GE(data_->header.num_bytes, 0);
1796 void BackendImpl::IncreaseNumRefs() {
1797 num_refs_++;
1798 if (max_refs_ < num_refs_)
1799 max_refs_ = num_refs_;
1802 void BackendImpl::DecreaseNumRefs() {
1803 DCHECK(num_refs_);
1804 num_refs_--;
1806 if (!num_refs_ && disabled_)
1807 base::MessageLoop::current()->PostTask(
1808 FROM_HERE, base::Bind(&BackendImpl::RestartCache, GetWeakPtr(), true));
1811 void BackendImpl::IncreaseNumEntries() {
1812 data_->header.num_entries++;
1813 DCHECK_GT(data_->header.num_entries, 0);
1816 void BackendImpl::DecreaseNumEntries() {
1817 data_->header.num_entries--;
1818 if (data_->header.num_entries < 0) {
1819 NOTREACHED();
1820 data_->header.num_entries = 0;
1824 void BackendImpl::LogStats() {
1825 StatsItems stats;
1826 GetStats(&stats);
1828 for (size_t index = 0; index < stats.size(); index++)
1829 VLOG(1) << stats[index].first << ": " << stats[index].second;
1832 void BackendImpl::ReportStats() {
1833 CACHE_UMA(COUNTS, "Entries", 0, data_->header.num_entries);
1835 int current_size = data_->header.num_bytes / (1024 * 1024);
1836 int max_size = max_size_ / (1024 * 1024);
1837 int hit_ratio_as_percentage = stats_.GetHitRatio();
1839 CACHE_UMA(COUNTS_10000, "Size2", 0, current_size);
1840 // For any bin in HitRatioBySize2, the hit ratio of caches of that size is the
1841 // ratio of that bin's total count to the count in the same bin in the Size2
1842 // histogram.
1843 if (base::RandInt(0, 99) < hit_ratio_as_percentage)
1844 CACHE_UMA(COUNTS_10000, "HitRatioBySize2", 0, current_size);
1845 CACHE_UMA(COUNTS_10000, "MaxSize2", 0, max_size);
1846 if (!max_size)
1847 max_size++;
1848 CACHE_UMA(PERCENTAGE, "UsedSpace", 0, current_size * 100 / max_size);
1850 CACHE_UMA(COUNTS_10000, "AverageOpenEntries2", 0,
1851 static_cast<int>(stats_.GetCounter(Stats::OPEN_ENTRIES)));
1852 CACHE_UMA(COUNTS_10000, "MaxOpenEntries2", 0,
1853 static_cast<int>(stats_.GetCounter(Stats::MAX_ENTRIES)));
1854 stats_.SetCounter(Stats::MAX_ENTRIES, 0);
1856 CACHE_UMA(COUNTS_10000, "TotalFatalErrors", 0,
1857 static_cast<int>(stats_.GetCounter(Stats::FATAL_ERROR)));
1858 CACHE_UMA(COUNTS_10000, "TotalDoomCache", 0,
1859 static_cast<int>(stats_.GetCounter(Stats::DOOM_CACHE)));
1860 CACHE_UMA(COUNTS_10000, "TotalDoomRecentEntries", 0,
1861 static_cast<int>(stats_.GetCounter(Stats::DOOM_RECENT)));
1862 stats_.SetCounter(Stats::FATAL_ERROR, 0);
1863 stats_.SetCounter(Stats::DOOM_CACHE, 0);
1864 stats_.SetCounter(Stats::DOOM_RECENT, 0);
1866 int age = (Time::Now() -
1867 Time::FromInternalValue(data_->header.create_time)).InHours();
1868 if (age)
1869 CACHE_UMA(HOURS, "FilesAge", 0, age);
1871 int64 total_hours = stats_.GetCounter(Stats::TIMER) / 120;
1872 if (!data_->header.create_time || !data_->header.lru.filled) {
1873 int cause = data_->header.create_time ? 0 : 1;
1874 if (!data_->header.lru.filled)
1875 cause |= 2;
1876 CACHE_UMA(CACHE_ERROR, "ShortReport", 0, cause);
1877 CACHE_UMA(HOURS, "TotalTimeNotFull", 0, static_cast<int>(total_hours));
1878 return;
1881 // This is an up to date client that will report FirstEviction() data. After
1882 // that event, start reporting this:
1884 CACHE_UMA(HOURS, "TotalTime", 0, static_cast<int>(total_hours));
1885 // For any bin in HitRatioByTotalTime, the hit ratio of caches of that total
1886 // time is the ratio of that bin's total count to the count in the same bin in
1887 // the TotalTime histogram.
1888 if (base::RandInt(0, 99) < hit_ratio_as_percentage)
1889 CACHE_UMA(HOURS, "HitRatioByTotalTime", 0, implicit_cast<int>(total_hours));
1891 int64 use_hours = stats_.GetCounter(Stats::LAST_REPORT_TIMER) / 120;
1892 stats_.SetCounter(Stats::LAST_REPORT_TIMER, stats_.GetCounter(Stats::TIMER));
1894 // We may see users with no use_hours at this point if this is the first time
1895 // we are running this code.
1896 if (use_hours)
1897 use_hours = total_hours - use_hours;
1899 if (!use_hours || !GetEntryCount() || !data_->header.num_bytes)
1900 return;
1902 CACHE_UMA(HOURS, "UseTime", 0, static_cast<int>(use_hours));
1903 // For any bin in HitRatioByUseTime, the hit ratio of caches of that use time
1904 // is the ratio of that bin's total count to the count in the same bin in the
1905 // UseTime histogram.
1906 if (base::RandInt(0, 99) < hit_ratio_as_percentage)
1907 CACHE_UMA(HOURS, "HitRatioByUseTime", 0, implicit_cast<int>(use_hours));
1908 CACHE_UMA(PERCENTAGE, "HitRatio", 0, hit_ratio_as_percentage);
1910 int64 trim_rate = stats_.GetCounter(Stats::TRIM_ENTRY) / use_hours;
1911 CACHE_UMA(COUNTS, "TrimRate", 0, static_cast<int>(trim_rate));
1913 int avg_size = data_->header.num_bytes / GetEntryCount();
1914 CACHE_UMA(COUNTS, "EntrySize", 0, avg_size);
1915 CACHE_UMA(COUNTS, "EntriesFull", 0, data_->header.num_entries);
1917 CACHE_UMA(PERCENTAGE, "IndexLoad", 0,
1918 data_->header.num_entries * 100 / (mask_ + 1));
1920 int large_entries_bytes = stats_.GetLargeEntriesSize();
1921 int large_ratio = large_entries_bytes * 100 / data_->header.num_bytes;
1922 CACHE_UMA(PERCENTAGE, "LargeEntriesRatio", 0, large_ratio);
1924 if (new_eviction_) {
1925 CACHE_UMA(PERCENTAGE, "ResurrectRatio", 0, stats_.GetResurrectRatio());
1926 CACHE_UMA(PERCENTAGE, "NoUseRatio", 0,
1927 data_->header.lru.sizes[0] * 100 / data_->header.num_entries);
1928 CACHE_UMA(PERCENTAGE, "LowUseRatio", 0,
1929 data_->header.lru.sizes[1] * 100 / data_->header.num_entries);
1930 CACHE_UMA(PERCENTAGE, "HighUseRatio", 0,
1931 data_->header.lru.sizes[2] * 100 / data_->header.num_entries);
1932 CACHE_UMA(PERCENTAGE, "DeletedRatio", 0,
1933 data_->header.lru.sizes[4] * 100 / data_->header.num_entries);
1936 stats_.ResetRatios();
1937 stats_.SetCounter(Stats::TRIM_ENTRY, 0);
1939 if (cache_type_ == net::DISK_CACHE)
1940 block_files_.ReportStats();
1943 void BackendImpl::UpgradeTo2_1() {
1944 // 2.1 is basically the same as 2.0, except that new fields are actually
1945 // updated by the new eviction algorithm.
1946 DCHECK(0x20000 == data_->header.version);
1947 data_->header.version = 0x20001;
1948 data_->header.lru.sizes[Rankings::NO_USE] = data_->header.num_entries;
1951 bool BackendImpl::CheckIndex() {
1952 DCHECK(data_);
1954 size_t current_size = index_->GetLength();
1955 if (current_size < sizeof(Index)) {
1956 LOG(ERROR) << "Corrupt Index file";
1957 return false;
1960 if (new_eviction_) {
1961 // We support versions 2.0 and 2.1, upgrading 2.0 to 2.1.
1962 if (kIndexMagic != data_->header.magic ||
1963 kCurrentVersion >> 16 != data_->header.version >> 16) {
1964 LOG(ERROR) << "Invalid file version or magic";
1965 return false;
1967 if (kCurrentVersion == data_->header.version) {
1968 // We need file version 2.1 for the new eviction algorithm.
1969 UpgradeTo2_1();
1971 } else {
1972 if (kIndexMagic != data_->header.magic ||
1973 kCurrentVersion != data_->header.version) {
1974 LOG(ERROR) << "Invalid file version or magic";
1975 return false;
1979 if (!data_->header.table_len) {
1980 LOG(ERROR) << "Invalid table size";
1981 return false;
1984 if (current_size < GetIndexSize(data_->header.table_len) ||
1985 data_->header.table_len & (kBaseTableLen - 1)) {
1986 LOG(ERROR) << "Corrupt Index file";
1987 return false;
1990 AdjustMaxCacheSize(data_->header.table_len);
1992 #if !defined(NET_BUILD_STRESS_CACHE)
1993 if (data_->header.num_bytes < 0 ||
1994 (max_size_ < kint32max - kDefaultCacheSize &&
1995 data_->header.num_bytes > max_size_ + kDefaultCacheSize)) {
1996 LOG(ERROR) << "Invalid cache (current) size";
1997 return false;
1999 #endif
2001 if (data_->header.num_entries < 0) {
2002 LOG(ERROR) << "Invalid number of entries";
2003 return false;
2006 if (!mask_)
2007 mask_ = data_->header.table_len - 1;
2009 // Load the table into memory.
2010 return index_->Preload();
2013 int BackendImpl::CheckAllEntries() {
2014 int num_dirty = 0;
2015 int num_entries = 0;
2016 DCHECK(mask_ < kuint32max);
2017 for (unsigned int i = 0; i <= mask_; i++) {
2018 Addr address(data_->table[i]);
2019 if (!address.is_initialized())
2020 continue;
2021 for (;;) {
2022 EntryImpl* tmp;
2023 int ret = NewEntry(address, &tmp);
2024 if (ret) {
2025 STRESS_NOTREACHED();
2026 return ret;
2028 scoped_refptr<EntryImpl> cache_entry;
2029 cache_entry.swap(&tmp);
2031 if (cache_entry->dirty())
2032 num_dirty++;
2033 else if (CheckEntry(cache_entry.get()))
2034 num_entries++;
2035 else
2036 return ERR_INVALID_ENTRY;
2038 DCHECK_EQ(i, cache_entry->entry()->Data()->hash & mask_);
2039 address.set_value(cache_entry->GetNextAddress());
2040 if (!address.is_initialized())
2041 break;
2045 Trace("CheckAllEntries End");
2046 if (num_entries + num_dirty != data_->header.num_entries) {
2047 LOG(ERROR) << "Number of entries " << num_entries << " " << num_dirty <<
2048 " " << data_->header.num_entries;
2049 DCHECK_LT(num_entries, data_->header.num_entries);
2050 return ERR_NUM_ENTRIES_MISMATCH;
2053 return num_dirty;
2056 bool BackendImpl::CheckEntry(EntryImpl* cache_entry) {
2057 bool ok = block_files_.IsValid(cache_entry->entry()->address());
2058 ok = ok && block_files_.IsValid(cache_entry->rankings()->address());
2059 EntryStore* data = cache_entry->entry()->Data();
2060 for (size_t i = 0; i < arraysize(data->data_addr); i++) {
2061 if (data->data_addr[i]) {
2062 Addr address(data->data_addr[i]);
2063 if (address.is_block_file())
2064 ok = ok && block_files_.IsValid(address);
2068 return ok && cache_entry->rankings()->VerifyHash();
2071 int BackendImpl::MaxBuffersSize() {
2072 static int64 total_memory = base::SysInfo::AmountOfPhysicalMemory();
2073 static bool done = false;
2075 if (!done) {
2076 const int kMaxBuffersSize = 30 * 1024 * 1024;
2078 // We want to use up to 2% of the computer's memory.
2079 total_memory = total_memory * 2 / 100;
2080 if (total_memory > kMaxBuffersSize || total_memory <= 0)
2081 total_memory = kMaxBuffersSize;
2083 done = true;
2086 return static_cast<int>(total_memory);
2089 } // namespace disk_cache