1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/basictypes.h"
7 #include "base/bind_helpers.h"
8 #include "base/files/file.h"
9 #include "base/files/file_util.h"
10 #include "base/strings/string_util.h"
11 #include "base/strings/stringprintf.h"
12 #include "base/threading/platform_thread.h"
13 #include "net/base/completion_callback.h"
14 #include "net/base/io_buffer.h"
15 #include "net/base/net_errors.h"
16 #include "net/base/test_completion_callback.h"
17 #include "net/disk_cache/blockfile/backend_impl.h"
18 #include "net/disk_cache/blockfile/entry_impl.h"
19 #include "net/disk_cache/disk_cache_test_base.h"
20 #include "net/disk_cache/disk_cache_test_util.h"
21 #include "net/disk_cache/memory/mem_entry_impl.h"
22 #include "net/disk_cache/simple/simple_entry_format.h"
23 #include "net/disk_cache/simple/simple_entry_impl.h"
24 #include "net/disk_cache/simple/simple_synchronous_entry.h"
25 #include "net/disk_cache/simple/simple_test_util.h"
26 #include "net/disk_cache/simple/simple_util.h"
27 #include "testing/gtest/include/gtest/gtest.h"
30 using disk_cache::ScopedEntryPtr
;
32 // Tests that can run with different types of caches.
33 class DiskCacheEntryTest
: public DiskCacheTestWithCache
{
35 void InternalSyncIOBackground(disk_cache::Entry
* entry
);
36 void ExternalSyncIOBackground(disk_cache::Entry
* entry
);
39 void InternalSyncIO();
40 void InternalAsyncIO();
41 void ExternalSyncIO();
42 void ExternalAsyncIO();
43 void ReleaseBuffer(int stream_index
);
46 void GetTimes(int stream_index
);
47 void GrowData(int stream_index
);
48 void TruncateData(int stream_index
);
49 void ZeroLengthIO(int stream_index
);
52 void SizeChanges(int stream_index
);
53 void ReuseEntry(int size
, int stream_index
);
54 void InvalidData(int stream_index
);
55 void ReadWriteDestroyBuffer(int stream_index
);
56 void DoomNormalEntry();
57 void DoomEntryNextToOpenEntry();
58 void DoomedEntry(int stream_index
);
61 void GetAvailableRange();
63 void UpdateSparseEntry();
64 void DoomSparseEntry();
65 void PartialSparseEntry();
66 bool SimpleCacheMakeBadChecksumEntry(const std::string
& key
, int* data_size
);
67 bool SimpleCacheThirdStreamFileExists(const char* key
);
68 void SyncDoomEntry(const char* key
);
71 // This part of the test runs on the background thread.
72 void DiskCacheEntryTest::InternalSyncIOBackground(disk_cache::Entry
* entry
) {
73 const int kSize1
= 10;
74 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
75 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
78 entry
->ReadData(0, 0, buffer1
.get(), kSize1
, net::CompletionCallback()));
79 base::strlcpy(buffer1
->data(), "the data", kSize1
);
82 0, 0, buffer1
.get(), kSize1
, net::CompletionCallback(), false));
83 memset(buffer1
->data(), 0, kSize1
);
86 entry
->ReadData(0, 0, buffer1
.get(), kSize1
, net::CompletionCallback()));
87 EXPECT_STREQ("the data", buffer1
->data());
89 const int kSize2
= 5000;
90 const int kSize3
= 10000;
91 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
92 scoped_refptr
<net::IOBuffer
> buffer3(new net::IOBuffer(kSize3
));
93 memset(buffer3
->data(), 0, kSize3
);
94 CacheTestFillBuffer(buffer2
->data(), kSize2
, false);
95 base::strlcpy(buffer2
->data(), "The really big data goes here", kSize2
);
99 1, 1500, buffer2
.get(), kSize2
, net::CompletionCallback(), false));
100 memset(buffer2
->data(), 0, kSize2
);
103 1, 1511, buffer2
.get(), kSize2
, net::CompletionCallback()));
104 EXPECT_STREQ("big data goes here", buffer2
->data());
107 entry
->ReadData(1, 0, buffer2
.get(), kSize2
, net::CompletionCallback()));
108 EXPECT_EQ(0, memcmp(buffer2
->data(), buffer3
->data(), 1500));
111 1, 5000, buffer2
.get(), kSize2
, net::CompletionCallback()));
115 1, 6500, buffer2
.get(), kSize2
, net::CompletionCallback()));
118 entry
->ReadData(1, 0, buffer3
.get(), kSize3
, net::CompletionCallback()));
121 1, 0, buffer3
.get(), 8192, net::CompletionCallback(), false));
124 entry
->ReadData(1, 0, buffer3
.get(), kSize3
, net::CompletionCallback()));
125 EXPECT_EQ(8192, entry
->GetDataSize(1));
127 // We need to delete the memory buffer on this thread.
128 EXPECT_EQ(0, entry
->WriteData(
129 0, 0, NULL
, 0, net::CompletionCallback(), true));
130 EXPECT_EQ(0, entry
->WriteData(
131 1, 0, NULL
, 0, net::CompletionCallback(), true));
134 // We need to support synchronous IO even though it is not a supported operation
135 // from the point of view of the disk cache's public interface, because we use
136 // it internally, not just by a few tests, but as part of the implementation
137 // (see sparse_control.cc, for example).
138 void DiskCacheEntryTest::InternalSyncIO() {
139 disk_cache::Entry
* entry
= NULL
;
140 ASSERT_EQ(net::OK
, CreateEntry("the first key", &entry
));
141 ASSERT_TRUE(NULL
!= entry
);
143 // The bulk of the test runs from within the callback, on the cache thread.
144 RunTaskForTest(base::Bind(&DiskCacheEntryTest::InternalSyncIOBackground
,
145 base::Unretained(this),
152 EXPECT_EQ(0, cache_
->GetEntryCount());
155 TEST_F(DiskCacheEntryTest
, InternalSyncIO
) {
160 TEST_F(DiskCacheEntryTest
, MemoryOnlyInternalSyncIO
) {
166 void DiskCacheEntryTest::InternalAsyncIO() {
167 disk_cache::Entry
* entry
= NULL
;
168 ASSERT_EQ(net::OK
, CreateEntry("the first key", &entry
));
169 ASSERT_TRUE(NULL
!= entry
);
171 // Avoid using internal buffers for the test. We have to write something to
172 // the entry and close it so that we flush the internal buffer to disk. After
173 // that, IO operations will be really hitting the disk. We don't care about
174 // the content, so just extending the entry is enough (all extensions zero-
176 EXPECT_EQ(0, WriteData(entry
, 0, 15 * 1024, NULL
, 0, false));
177 EXPECT_EQ(0, WriteData(entry
, 1, 15 * 1024, NULL
, 0, false));
179 ASSERT_EQ(net::OK
, OpenEntry("the first key", &entry
));
181 MessageLoopHelper helper
;
182 // Let's verify that each IO goes to the right callback object.
183 CallbackTest
callback1(&helper
, false);
184 CallbackTest
callback2(&helper
, false);
185 CallbackTest
callback3(&helper
, false);
186 CallbackTest
callback4(&helper
, false);
187 CallbackTest
callback5(&helper
, false);
188 CallbackTest
callback6(&helper
, false);
189 CallbackTest
callback7(&helper
, false);
190 CallbackTest
callback8(&helper
, false);
191 CallbackTest
callback9(&helper
, false);
192 CallbackTest
callback10(&helper
, false);
193 CallbackTest
callback11(&helper
, false);
194 CallbackTest
callback12(&helper
, false);
195 CallbackTest
callback13(&helper
, false);
197 const int kSize1
= 10;
198 const int kSize2
= 5000;
199 const int kSize3
= 10000;
200 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
201 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
202 scoped_refptr
<net::IOBuffer
> buffer3(new net::IOBuffer(kSize3
));
203 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
204 CacheTestFillBuffer(buffer2
->data(), kSize2
, false);
205 CacheTestFillBuffer(buffer3
->data(), kSize3
, false);
213 base::Bind(&CallbackTest::Run
, base::Unretained(&callback1
))));
214 base::strlcpy(buffer1
->data(), "the data", kSize1
);
216 int ret
= entry
->WriteData(
221 base::Bind(&CallbackTest::Run
, base::Unretained(&callback2
)),
223 EXPECT_TRUE(10 == ret
|| net::ERR_IO_PENDING
== ret
);
224 if (net::ERR_IO_PENDING
== ret
)
227 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
228 memset(buffer2
->data(), 0, kSize2
);
229 ret
= entry
->ReadData(
234 base::Bind(&CallbackTest::Run
, base::Unretained(&callback3
)));
235 EXPECT_TRUE(10 == ret
|| net::ERR_IO_PENDING
== ret
);
236 if (net::ERR_IO_PENDING
== ret
)
239 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
240 EXPECT_STREQ("the data", buffer2
->data());
242 base::strlcpy(buffer2
->data(), "The really big data goes here", kSize2
);
243 ret
= entry
->WriteData(
248 base::Bind(&CallbackTest::Run
, base::Unretained(&callback4
)),
250 EXPECT_TRUE(5000 == ret
|| net::ERR_IO_PENDING
== ret
);
251 if (net::ERR_IO_PENDING
== ret
)
254 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
255 memset(buffer3
->data(), 0, kSize3
);
256 ret
= entry
->ReadData(
261 base::Bind(&CallbackTest::Run
, base::Unretained(&callback5
)));
262 EXPECT_TRUE(4989 == ret
|| net::ERR_IO_PENDING
== ret
);
263 if (net::ERR_IO_PENDING
== ret
)
266 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
267 EXPECT_STREQ("big data goes here", buffer3
->data());
268 ret
= entry
->ReadData(
273 base::Bind(&CallbackTest::Run
, base::Unretained(&callback6
)));
274 EXPECT_TRUE(5000 == ret
|| net::ERR_IO_PENDING
== ret
);
275 if (net::ERR_IO_PENDING
== ret
)
278 memset(buffer3
->data(), 0, kSize3
);
280 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
281 EXPECT_EQ(0, memcmp(buffer2
->data(), buffer3
->data(), 1500));
282 ret
= entry
->ReadData(
287 base::Bind(&CallbackTest::Run
, base::Unretained(&callback7
)));
288 EXPECT_TRUE(1500 == ret
|| net::ERR_IO_PENDING
== ret
);
289 if (net::ERR_IO_PENDING
== ret
)
292 ret
= entry
->ReadData(
297 base::Bind(&CallbackTest::Run
, base::Unretained(&callback9
)));
298 EXPECT_TRUE(6500 == ret
|| net::ERR_IO_PENDING
== ret
);
299 if (net::ERR_IO_PENDING
== ret
)
302 ret
= entry
->WriteData(
307 base::Bind(&CallbackTest::Run
, base::Unretained(&callback10
)),
309 EXPECT_TRUE(8192 == ret
|| net::ERR_IO_PENDING
== ret
);
310 if (net::ERR_IO_PENDING
== ret
)
313 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
314 ret
= entry
->ReadData(
319 base::Bind(&CallbackTest::Run
, base::Unretained(&callback11
)));
320 EXPECT_TRUE(8192 == ret
|| net::ERR_IO_PENDING
== ret
);
321 if (net::ERR_IO_PENDING
== ret
)
324 EXPECT_EQ(8192, entry
->GetDataSize(1));
326 ret
= entry
->ReadData(
331 base::Bind(&CallbackTest::Run
, base::Unretained(&callback12
)));
332 EXPECT_TRUE(10 == ret
|| net::ERR_IO_PENDING
== ret
);
333 if (net::ERR_IO_PENDING
== ret
)
336 ret
= entry
->ReadData(
341 base::Bind(&CallbackTest::Run
, base::Unretained(&callback13
)));
342 EXPECT_TRUE(5000 == ret
|| net::ERR_IO_PENDING
== ret
);
343 if (net::ERR_IO_PENDING
== ret
)
346 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
348 EXPECT_FALSE(helper
.callback_reused_error());
353 EXPECT_EQ(0, cache_
->GetEntryCount());
356 TEST_F(DiskCacheEntryTest
, InternalAsyncIO
) {
361 TEST_F(DiskCacheEntryTest
, MemoryOnlyInternalAsyncIO
) {
367 // This part of the test runs on the background thread.
368 void DiskCacheEntryTest::ExternalSyncIOBackground(disk_cache::Entry
* entry
) {
369 const int kSize1
= 17000;
370 const int kSize2
= 25000;
371 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
372 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
373 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
374 CacheTestFillBuffer(buffer2
->data(), kSize2
, false);
375 base::strlcpy(buffer1
->data(), "the data", kSize1
);
378 0, 0, buffer1
.get(), kSize1
, net::CompletionCallback(), false));
379 memset(buffer1
->data(), 0, kSize1
);
382 entry
->ReadData(0, 0, buffer1
.get(), kSize1
, net::CompletionCallback()));
383 EXPECT_STREQ("the data", buffer1
->data());
385 base::strlcpy(buffer2
->data(), "The really big data goes here", kSize2
);
389 1, 10000, buffer2
.get(), kSize2
, net::CompletionCallback(), false));
390 memset(buffer2
->data(), 0, kSize2
);
393 1, 10011, buffer2
.get(), kSize2
, net::CompletionCallback()));
394 EXPECT_STREQ("big data goes here", buffer2
->data());
397 entry
->ReadData(1, 0, buffer2
.get(), kSize2
, net::CompletionCallback()));
400 1, 30000, buffer2
.get(), kSize2
, net::CompletionCallback()));
404 1, 35000, buffer2
.get(), kSize2
, net::CompletionCallback()));
407 entry
->ReadData(1, 0, buffer1
.get(), kSize1
, net::CompletionCallback()));
411 1, 20000, buffer1
.get(), kSize1
, net::CompletionCallback(), false));
412 EXPECT_EQ(37000, entry
->GetDataSize(1));
414 // We need to delete the memory buffer on this thread.
415 EXPECT_EQ(0, entry
->WriteData(
416 0, 0, NULL
, 0, net::CompletionCallback(), true));
417 EXPECT_EQ(0, entry
->WriteData(
418 1, 0, NULL
, 0, net::CompletionCallback(), true));
421 void DiskCacheEntryTest::ExternalSyncIO() {
422 disk_cache::Entry
* entry
;
423 ASSERT_EQ(net::OK
, CreateEntry("the first key", &entry
));
425 // The bulk of the test runs from within the callback, on the cache thread.
426 RunTaskForTest(base::Bind(&DiskCacheEntryTest::ExternalSyncIOBackground
,
427 base::Unretained(this),
433 EXPECT_EQ(0, cache_
->GetEntryCount());
436 TEST_F(DiskCacheEntryTest
, ExternalSyncIO
) {
441 TEST_F(DiskCacheEntryTest
, ExternalSyncIONoBuffer
) {
443 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
447 TEST_F(DiskCacheEntryTest
, MemoryOnlyExternalSyncIO
) {
453 void DiskCacheEntryTest::ExternalAsyncIO() {
454 disk_cache::Entry
* entry
;
455 ASSERT_EQ(net::OK
, CreateEntry("the first key", &entry
));
459 MessageLoopHelper helper
;
460 // Let's verify that each IO goes to the right callback object.
461 CallbackTest
callback1(&helper
, false);
462 CallbackTest
callback2(&helper
, false);
463 CallbackTest
callback3(&helper
, false);
464 CallbackTest
callback4(&helper
, false);
465 CallbackTest
callback5(&helper
, false);
466 CallbackTest
callback6(&helper
, false);
467 CallbackTest
callback7(&helper
, false);
468 CallbackTest
callback8(&helper
, false);
469 CallbackTest
callback9(&helper
, false);
471 const int kSize1
= 17000;
472 const int kSize2
= 25000;
473 const int kSize3
= 25000;
474 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
475 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
476 scoped_refptr
<net::IOBuffer
> buffer3(new net::IOBuffer(kSize3
));
477 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
478 CacheTestFillBuffer(buffer2
->data(), kSize2
, false);
479 CacheTestFillBuffer(buffer3
->data(), kSize3
, false);
480 base::strlcpy(buffer1
->data(), "the data", kSize1
);
481 int ret
= entry
->WriteData(
486 base::Bind(&CallbackTest::Run
, base::Unretained(&callback1
)),
488 EXPECT_TRUE(17000 == ret
|| net::ERR_IO_PENDING
== ret
);
489 if (net::ERR_IO_PENDING
== ret
)
492 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
494 memset(buffer2
->data(), 0, kSize1
);
495 ret
= entry
->ReadData(
500 base::Bind(&CallbackTest::Run
, base::Unretained(&callback2
)));
501 EXPECT_TRUE(17000 == ret
|| net::ERR_IO_PENDING
== ret
);
502 if (net::ERR_IO_PENDING
== ret
)
505 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
506 EXPECT_STREQ("the data", buffer2
->data());
508 base::strlcpy(buffer2
->data(), "The really big data goes here", kSize2
);
509 ret
= entry
->WriteData(
514 base::Bind(&CallbackTest::Run
, base::Unretained(&callback3
)),
516 EXPECT_TRUE(25000 == ret
|| net::ERR_IO_PENDING
== ret
);
517 if (net::ERR_IO_PENDING
== ret
)
520 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
522 memset(buffer3
->data(), 0, kSize3
);
523 ret
= entry
->ReadData(
528 base::Bind(&CallbackTest::Run
, base::Unretained(&callback4
)));
529 EXPECT_TRUE(24989 == ret
|| net::ERR_IO_PENDING
== ret
);
530 if (net::ERR_IO_PENDING
== ret
)
533 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
534 EXPECT_STREQ("big data goes here", buffer3
->data());
535 ret
= entry
->ReadData(
540 base::Bind(&CallbackTest::Run
, base::Unretained(&callback5
)));
541 EXPECT_TRUE(25000 == ret
|| net::ERR_IO_PENDING
== ret
);
542 if (net::ERR_IO_PENDING
== ret
)
545 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
546 memset(buffer3
->data(), 0, kSize3
);
547 EXPECT_EQ(0, memcmp(buffer2
->data(), buffer3
->data(), 10000));
548 ret
= entry
->ReadData(
553 base::Bind(&CallbackTest::Run
, base::Unretained(&callback6
)));
554 EXPECT_TRUE(5000 == ret
|| net::ERR_IO_PENDING
== ret
);
555 if (net::ERR_IO_PENDING
== ret
)
564 base::Bind(&CallbackTest::Run
, base::Unretained(&callback7
))));
565 ret
= entry
->ReadData(
570 base::Bind(&CallbackTest::Run
, base::Unretained(&callback8
)));
571 EXPECT_TRUE(17000 == ret
|| net::ERR_IO_PENDING
== ret
);
572 if (net::ERR_IO_PENDING
== ret
)
574 ret
= entry
->WriteData(
579 base::Bind(&CallbackTest::Run
, base::Unretained(&callback9
)),
581 EXPECT_TRUE(17000 == ret
|| net::ERR_IO_PENDING
== ret
);
582 if (net::ERR_IO_PENDING
== ret
)
585 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
586 EXPECT_EQ(37000, entry
->GetDataSize(1));
588 EXPECT_FALSE(helper
.callback_reused_error());
593 EXPECT_EQ(0, cache_
->GetEntryCount());
596 TEST_F(DiskCacheEntryTest
, ExternalAsyncIO
) {
601 TEST_F(DiskCacheEntryTest
, ExternalAsyncIONoBuffer
) {
603 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
607 TEST_F(DiskCacheEntryTest
, MemoryOnlyExternalAsyncIO
) {
613 // Tests that IOBuffers are not referenced after IO completes.
614 void DiskCacheEntryTest::ReleaseBuffer(int stream_index
) {
615 disk_cache::Entry
* entry
= NULL
;
616 ASSERT_EQ(net::OK
, CreateEntry("the first key", &entry
));
617 ASSERT_TRUE(NULL
!= entry
);
619 const int kBufferSize
= 1024;
620 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kBufferSize
));
621 CacheTestFillBuffer(buffer
->data(), kBufferSize
, false);
623 net::ReleaseBufferCompletionCallback
cb(buffer
.get());
624 int rv
= entry
->WriteData(
625 stream_index
, 0, buffer
.get(), kBufferSize
, cb
.callback(), false);
626 EXPECT_EQ(kBufferSize
, cb
.GetResult(rv
));
630 TEST_F(DiskCacheEntryTest
, ReleaseBuffer
) {
632 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
636 TEST_F(DiskCacheEntryTest
, MemoryOnlyReleaseBuffer
) {
642 void DiskCacheEntryTest::StreamAccess() {
643 disk_cache::Entry
* entry
= NULL
;
644 ASSERT_EQ(net::OK
, CreateEntry("the first key", &entry
));
645 ASSERT_TRUE(NULL
!= entry
);
647 const int kBufferSize
= 1024;
648 const int kNumStreams
= 3;
649 scoped_refptr
<net::IOBuffer
> reference_buffers
[kNumStreams
];
650 for (int i
= 0; i
< kNumStreams
; i
++) {
651 reference_buffers
[i
] = new net::IOBuffer(kBufferSize
);
652 CacheTestFillBuffer(reference_buffers
[i
]->data(), kBufferSize
, false);
654 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kBufferSize
));
655 for (int i
= 0; i
< kNumStreams
; i
++) {
658 WriteData(entry
, i
, 0, reference_buffers
[i
].get(), kBufferSize
, false));
659 memset(buffer1
->data(), 0, kBufferSize
);
660 EXPECT_EQ(kBufferSize
, ReadData(entry
, i
, 0, buffer1
.get(), kBufferSize
));
662 0, memcmp(reference_buffers
[i
]->data(), buffer1
->data(), kBufferSize
));
664 EXPECT_EQ(net::ERR_INVALID_ARGUMENT
,
665 ReadData(entry
, kNumStreams
, 0, buffer1
.get(), kBufferSize
));
668 // Open the entry and read it in chunks, including a read past the end.
669 ASSERT_EQ(net::OK
, OpenEntry("the first key", &entry
));
670 ASSERT_TRUE(NULL
!= entry
);
671 const int kReadBufferSize
= 600;
672 const int kFinalReadSize
= kBufferSize
- kReadBufferSize
;
673 COMPILE_ASSERT(kFinalReadSize
< kReadBufferSize
, should_be_exactly_two_reads
);
674 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kReadBufferSize
));
675 for (int i
= 0; i
< kNumStreams
; i
++) {
676 memset(buffer2
->data(), 0, kReadBufferSize
);
677 EXPECT_EQ(kReadBufferSize
,
678 ReadData(entry
, i
, 0, buffer2
.get(), kReadBufferSize
));
681 memcmp(reference_buffers
[i
]->data(), buffer2
->data(), kReadBufferSize
));
683 memset(buffer2
->data(), 0, kReadBufferSize
);
686 ReadData(entry
, i
, kReadBufferSize
, buffer2
.get(), kReadBufferSize
));
688 memcmp(reference_buffers
[i
]->data() + kReadBufferSize
,
696 TEST_F(DiskCacheEntryTest
, StreamAccess
) {
701 TEST_F(DiskCacheEntryTest
, MemoryOnlyStreamAccess
) {
707 void DiskCacheEntryTest::GetKey() {
708 std::string
key("the first key");
709 disk_cache::Entry
* entry
;
710 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
711 EXPECT_EQ(key
, entry
->GetKey()) << "short key";
714 int seed
= static_cast<int>(Time::Now().ToInternalValue());
716 char key_buffer
[20000];
718 CacheTestFillBuffer(key_buffer
, 3000, true);
719 key_buffer
[1000] = '\0';
722 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
723 EXPECT_TRUE(key
== entry
->GetKey()) << "1000 bytes key";
726 key_buffer
[1000] = 'p';
727 key_buffer
[3000] = '\0';
729 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
730 EXPECT_TRUE(key
== entry
->GetKey()) << "medium size key";
733 CacheTestFillBuffer(key_buffer
, sizeof(key_buffer
), true);
734 key_buffer
[19999] = '\0';
737 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
738 EXPECT_TRUE(key
== entry
->GetKey()) << "long key";
741 CacheTestFillBuffer(key_buffer
, 0x4000, true);
742 key_buffer
[0x4000] = '\0';
745 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
746 EXPECT_TRUE(key
== entry
->GetKey()) << "16KB key";
750 TEST_F(DiskCacheEntryTest
, GetKey
) {
755 TEST_F(DiskCacheEntryTest
, MemoryOnlyGetKey
) {
761 void DiskCacheEntryTest::GetTimes(int stream_index
) {
762 std::string
key("the first key");
763 disk_cache::Entry
* entry
;
765 Time t1
= Time::Now();
766 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
767 EXPECT_TRUE(entry
->GetLastModified() >= t1
);
768 EXPECT_TRUE(entry
->GetLastModified() == entry
->GetLastUsed());
771 Time t2
= Time::Now();
772 EXPECT_TRUE(t2
> t1
);
773 EXPECT_EQ(0, WriteData(entry
, stream_index
, 200, NULL
, 0, false));
774 if (type_
== net::APP_CACHE
) {
775 EXPECT_TRUE(entry
->GetLastModified() < t2
);
777 EXPECT_TRUE(entry
->GetLastModified() >= t2
);
779 EXPECT_TRUE(entry
->GetLastModified() == entry
->GetLastUsed());
782 Time t3
= Time::Now();
783 EXPECT_TRUE(t3
> t2
);
784 const int kSize
= 200;
785 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
786 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 0, buffer
.get(), kSize
));
787 if (type_
== net::APP_CACHE
) {
788 EXPECT_TRUE(entry
->GetLastUsed() < t2
);
789 EXPECT_TRUE(entry
->GetLastModified() < t2
);
790 } else if (type_
== net::SHADER_CACHE
) {
791 EXPECT_TRUE(entry
->GetLastUsed() < t3
);
792 EXPECT_TRUE(entry
->GetLastModified() < t3
);
794 EXPECT_TRUE(entry
->GetLastUsed() >= t3
);
795 EXPECT_TRUE(entry
->GetLastModified() < t3
);
800 TEST_F(DiskCacheEntryTest
, GetTimes
) {
805 TEST_F(DiskCacheEntryTest
, MemoryOnlyGetTimes
) {
811 TEST_F(DiskCacheEntryTest
, AppCacheGetTimes
) {
812 SetCacheType(net::APP_CACHE
);
817 TEST_F(DiskCacheEntryTest
, ShaderCacheGetTimes
) {
818 SetCacheType(net::SHADER_CACHE
);
823 void DiskCacheEntryTest::GrowData(int stream_index
) {
824 std::string
key1("the first key");
825 disk_cache::Entry
* entry
;
826 ASSERT_EQ(net::OK
, CreateEntry(key1
, &entry
));
828 const int kSize
= 20000;
829 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
830 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize
));
831 CacheTestFillBuffer(buffer1
->data(), kSize
, false);
832 memset(buffer2
->data(), 0, kSize
);
834 base::strlcpy(buffer1
->data(), "the data", kSize
);
835 EXPECT_EQ(10, WriteData(entry
, stream_index
, 0, buffer1
.get(), 10, false));
836 EXPECT_EQ(10, ReadData(entry
, stream_index
, 0, buffer2
.get(), 10));
837 EXPECT_STREQ("the data", buffer2
->data());
838 EXPECT_EQ(10, entry
->GetDataSize(stream_index
));
841 WriteData(entry
, stream_index
, 0, buffer1
.get(), 2000, false));
842 EXPECT_EQ(2000, entry
->GetDataSize(stream_index
));
843 EXPECT_EQ(2000, ReadData(entry
, stream_index
, 0, buffer2
.get(), 2000));
844 EXPECT_TRUE(!memcmp(buffer1
->data(), buffer2
->data(), 2000));
847 WriteData(entry
, stream_index
, 0, buffer1
.get(), kSize
, false));
848 EXPECT_EQ(20000, entry
->GetDataSize(stream_index
));
849 EXPECT_EQ(20000, ReadData(entry
, stream_index
, 0, buffer2
.get(), kSize
));
850 EXPECT_TRUE(!memcmp(buffer1
->data(), buffer2
->data(), kSize
));
853 memset(buffer2
->data(), 0, kSize
);
854 std::string
key2("Second key");
855 ASSERT_EQ(net::OK
, CreateEntry(key2
, &entry
));
856 EXPECT_EQ(10, WriteData(entry
, stream_index
, 0, buffer1
.get(), 10, false));
857 EXPECT_EQ(10, entry
->GetDataSize(stream_index
));
860 // Go from an internal address to a bigger block size.
861 ASSERT_EQ(net::OK
, OpenEntry(key2
, &entry
));
863 WriteData(entry
, stream_index
, 0, buffer1
.get(), 2000, false));
864 EXPECT_EQ(2000, entry
->GetDataSize(stream_index
));
865 EXPECT_EQ(2000, ReadData(entry
, stream_index
, 0, buffer2
.get(), 2000));
866 EXPECT_TRUE(!memcmp(buffer1
->data(), buffer2
->data(), 2000));
868 memset(buffer2
->data(), 0, kSize
);
870 // Go from an internal address to an external one.
871 ASSERT_EQ(net::OK
, OpenEntry(key2
, &entry
));
873 WriteData(entry
, stream_index
, 0, buffer1
.get(), kSize
, false));
874 EXPECT_EQ(20000, entry
->GetDataSize(stream_index
));
875 EXPECT_EQ(20000, ReadData(entry
, stream_index
, 0, buffer2
.get(), kSize
));
876 EXPECT_TRUE(!memcmp(buffer1
->data(), buffer2
->data(), kSize
));
879 // Double check the size from disk.
880 ASSERT_EQ(net::OK
, OpenEntry(key2
, &entry
));
881 EXPECT_EQ(20000, entry
->GetDataSize(stream_index
));
883 // Now extend the entry without actual data.
884 EXPECT_EQ(0, WriteData(entry
, stream_index
, 45500, buffer1
.get(), 0, false));
887 // And check again from disk.
888 ASSERT_EQ(net::OK
, OpenEntry(key2
, &entry
));
889 EXPECT_EQ(45500, entry
->GetDataSize(stream_index
));
893 TEST_F(DiskCacheEntryTest
, GrowData
) {
898 TEST_F(DiskCacheEntryTest
, GrowDataNoBuffer
) {
900 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
904 TEST_F(DiskCacheEntryTest
, MemoryOnlyGrowData
) {
910 void DiskCacheEntryTest::TruncateData(int stream_index
) {
911 std::string
key("the first key");
912 disk_cache::Entry
* entry
;
913 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
915 const int kSize1
= 20000;
916 const int kSize2
= 20000;
917 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
918 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
920 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
921 memset(buffer2
->data(), 0, kSize2
);
923 // Simple truncation:
924 EXPECT_EQ(200, WriteData(entry
, stream_index
, 0, buffer1
.get(), 200, false));
925 EXPECT_EQ(200, entry
->GetDataSize(stream_index
));
926 EXPECT_EQ(100, WriteData(entry
, stream_index
, 0, buffer1
.get(), 100, false));
927 EXPECT_EQ(200, entry
->GetDataSize(stream_index
));
928 EXPECT_EQ(100, WriteData(entry
, stream_index
, 0, buffer1
.get(), 100, true));
929 EXPECT_EQ(100, entry
->GetDataSize(stream_index
));
930 EXPECT_EQ(0, WriteData(entry
, stream_index
, 50, buffer1
.get(), 0, true));
931 EXPECT_EQ(50, entry
->GetDataSize(stream_index
));
932 EXPECT_EQ(0, WriteData(entry
, stream_index
, 0, buffer1
.get(), 0, true));
933 EXPECT_EQ(0, entry
->GetDataSize(stream_index
));
935 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
937 // Go to an external file.
939 WriteData(entry
, stream_index
, 0, buffer1
.get(), 20000, true));
940 EXPECT_EQ(20000, entry
->GetDataSize(stream_index
));
941 EXPECT_EQ(20000, ReadData(entry
, stream_index
, 0, buffer2
.get(), 20000));
942 EXPECT_TRUE(!memcmp(buffer1
->data(), buffer2
->data(), 20000));
943 memset(buffer2
->data(), 0, kSize2
);
945 // External file truncation
947 WriteData(entry
, stream_index
, 0, buffer1
.get(), 18000, false));
948 EXPECT_EQ(20000, entry
->GetDataSize(stream_index
));
950 WriteData(entry
, stream_index
, 0, buffer1
.get(), 18000, true));
951 EXPECT_EQ(18000, entry
->GetDataSize(stream_index
));
952 EXPECT_EQ(0, WriteData(entry
, stream_index
, 17500, buffer1
.get(), 0, true));
953 EXPECT_EQ(17500, entry
->GetDataSize(stream_index
));
955 // And back to an internal block.
957 WriteData(entry
, stream_index
, 1000, buffer1
.get(), 600, true));
958 EXPECT_EQ(1600, entry
->GetDataSize(stream_index
));
959 EXPECT_EQ(600, ReadData(entry
, stream_index
, 1000, buffer2
.get(), 600));
960 EXPECT_TRUE(!memcmp(buffer1
->data(), buffer2
->data(), 600));
961 EXPECT_EQ(1000, ReadData(entry
, stream_index
, 0, buffer2
.get(), 1000));
962 EXPECT_TRUE(!memcmp(buffer1
->data(), buffer2
->data(), 1000))
963 << "Preserves previous data";
965 // Go from external file to zero length.
967 WriteData(entry
, stream_index
, 0, buffer1
.get(), 20000, true));
968 EXPECT_EQ(20000, entry
->GetDataSize(stream_index
));
969 EXPECT_EQ(0, WriteData(entry
, stream_index
, 0, buffer1
.get(), 0, true));
970 EXPECT_EQ(0, entry
->GetDataSize(stream_index
));
975 TEST_F(DiskCacheEntryTest
, TruncateData
) {
980 TEST_F(DiskCacheEntryTest
, TruncateDataNoBuffer
) {
982 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
986 TEST_F(DiskCacheEntryTest
, MemoryOnlyTruncateData
) {
992 void DiskCacheEntryTest::ZeroLengthIO(int stream_index
) {
993 std::string
key("the first key");
994 disk_cache::Entry
* entry
;
995 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
997 EXPECT_EQ(0, ReadData(entry
, stream_index
, 0, NULL
, 0));
998 EXPECT_EQ(0, WriteData(entry
, stream_index
, 0, NULL
, 0, false));
1000 // This write should extend the entry.
1001 EXPECT_EQ(0, WriteData(entry
, stream_index
, 1000, NULL
, 0, false));
1002 EXPECT_EQ(0, ReadData(entry
, stream_index
, 500, NULL
, 0));
1003 EXPECT_EQ(0, ReadData(entry
, stream_index
, 2000, NULL
, 0));
1004 EXPECT_EQ(1000, entry
->GetDataSize(stream_index
));
1006 EXPECT_EQ(0, WriteData(entry
, stream_index
, 100000, NULL
, 0, true));
1007 EXPECT_EQ(0, ReadData(entry
, stream_index
, 50000, NULL
, 0));
1008 EXPECT_EQ(100000, entry
->GetDataSize(stream_index
));
1010 // Let's verify the actual content.
1011 const int kSize
= 20;
1012 const char zeros
[kSize
] = {};
1013 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
1015 CacheTestFillBuffer(buffer
->data(), kSize
, false);
1016 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 500, buffer
.get(), kSize
));
1017 EXPECT_TRUE(!memcmp(buffer
->data(), zeros
, kSize
));
1019 CacheTestFillBuffer(buffer
->data(), kSize
, false);
1020 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 5000, buffer
.get(), kSize
));
1021 EXPECT_TRUE(!memcmp(buffer
->data(), zeros
, kSize
));
1023 CacheTestFillBuffer(buffer
->data(), kSize
, false);
1024 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 50000, buffer
.get(), kSize
));
1025 EXPECT_TRUE(!memcmp(buffer
->data(), zeros
, kSize
));
1030 TEST_F(DiskCacheEntryTest
, ZeroLengthIO
) {
1035 TEST_F(DiskCacheEntryTest
, ZeroLengthIONoBuffer
) {
1037 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
1041 TEST_F(DiskCacheEntryTest
, MemoryOnlyZeroLengthIO
) {
1042 SetMemoryOnlyMode();
1047 // Tests that we handle the content correctly when buffering, a feature of the
1048 // standard cache that permits fast responses to certain reads.
1049 void DiskCacheEntryTest::Buffering() {
1050 std::string
key("the first key");
1051 disk_cache::Entry
* entry
;
1052 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1054 const int kSize
= 200;
1055 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
1056 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize
));
1057 CacheTestFillBuffer(buffer1
->data(), kSize
, true);
1058 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1060 EXPECT_EQ(kSize
, WriteData(entry
, 1, 0, buffer1
.get(), kSize
, false));
1063 // Write a little more and read what we wrote before.
1064 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1065 EXPECT_EQ(kSize
, WriteData(entry
, 1, 5000, buffer1
.get(), kSize
, false));
1066 EXPECT_EQ(kSize
, ReadData(entry
, 1, 0, buffer2
.get(), kSize
));
1067 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1069 // Now go to an external file.
1070 EXPECT_EQ(kSize
, WriteData(entry
, 1, 18000, buffer1
.get(), kSize
, false));
1073 // Write something else and verify old data.
1074 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1075 EXPECT_EQ(kSize
, WriteData(entry
, 1, 10000, buffer1
.get(), kSize
, false));
1076 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1077 EXPECT_EQ(kSize
, ReadData(entry
, 1, 5000, buffer2
.get(), kSize
));
1078 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1079 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1080 EXPECT_EQ(kSize
, ReadData(entry
, 1, 0, buffer2
.get(), kSize
));
1081 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1082 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1083 EXPECT_EQ(kSize
, ReadData(entry
, 1, 18000, buffer2
.get(), kSize
));
1084 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1086 // Extend the file some more.
1087 EXPECT_EQ(kSize
, WriteData(entry
, 1, 23000, buffer1
.get(), kSize
, false));
1090 // And now make sure that we can deal with data in both places (ram/disk).
1091 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1092 EXPECT_EQ(kSize
, WriteData(entry
, 1, 17000, buffer1
.get(), kSize
, false));
1094 // We should not overwrite the data at 18000 with this.
1095 EXPECT_EQ(kSize
, WriteData(entry
, 1, 19000, buffer1
.get(), kSize
, false));
1096 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1097 EXPECT_EQ(kSize
, ReadData(entry
, 1, 18000, buffer2
.get(), kSize
));
1098 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1099 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1100 EXPECT_EQ(kSize
, ReadData(entry
, 1, 17000, buffer2
.get(), kSize
));
1101 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1103 EXPECT_EQ(kSize
, WriteData(entry
, 1, 22900, buffer1
.get(), kSize
, false));
1104 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1105 EXPECT_EQ(100, ReadData(entry
, 1, 23000, buffer2
.get(), kSize
));
1106 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data() + 100, 100));
1108 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1109 EXPECT_EQ(100, ReadData(entry
, 1, 23100, buffer2
.get(), kSize
));
1110 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data() + 100, 100));
1112 // Extend the file again and read before without closing the entry.
1113 EXPECT_EQ(kSize
, WriteData(entry
, 1, 25000, buffer1
.get(), kSize
, false));
1114 EXPECT_EQ(kSize
, WriteData(entry
, 1, 45000, buffer1
.get(), kSize
, false));
1115 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1116 EXPECT_EQ(kSize
, ReadData(entry
, 1, 25000, buffer2
.get(), kSize
));
1117 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1118 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1119 EXPECT_EQ(kSize
, ReadData(entry
, 1, 45000, buffer2
.get(), kSize
));
1120 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1125 TEST_F(DiskCacheEntryTest
, Buffering
) {
1130 TEST_F(DiskCacheEntryTest
, BufferingNoBuffer
) {
1132 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
1136 // Checks that entries are zero length when created.
1137 void DiskCacheEntryTest::SizeAtCreate() {
1138 const char key
[] = "the first key";
1139 disk_cache::Entry
* entry
;
1140 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1142 const int kNumStreams
= 3;
1143 for (int i
= 0; i
< kNumStreams
; ++i
)
1144 EXPECT_EQ(0, entry
->GetDataSize(i
));
1148 TEST_F(DiskCacheEntryTest
, SizeAtCreate
) {
1153 TEST_F(DiskCacheEntryTest
, MemoryOnlySizeAtCreate
) {
1154 SetMemoryOnlyMode();
1159 // Some extra tests to make sure that buffering works properly when changing
1161 void DiskCacheEntryTest::SizeChanges(int stream_index
) {
1162 std::string
key("the first key");
1163 disk_cache::Entry
* entry
;
1164 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1166 const int kSize
= 200;
1167 const char zeros
[kSize
] = {};
1168 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
1169 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize
));
1170 CacheTestFillBuffer(buffer1
->data(), kSize
, true);
1171 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1174 WriteData(entry
, stream_index
, 0, buffer1
.get(), kSize
, true));
1176 WriteData(entry
, stream_index
, 17000, buffer1
.get(), kSize
, true));
1178 WriteData(entry
, stream_index
, 23000, buffer1
.get(), kSize
, true));
1181 // Extend the file and read between the old size and the new write.
1182 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1183 EXPECT_EQ(23000 + kSize
, entry
->GetDataSize(stream_index
));
1185 WriteData(entry
, stream_index
, 25000, buffer1
.get(), kSize
, true));
1186 EXPECT_EQ(25000 + kSize
, entry
->GetDataSize(stream_index
));
1187 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 24000, buffer2
.get(), kSize
));
1188 EXPECT_TRUE(!memcmp(buffer2
->data(), zeros
, kSize
));
1190 // Read at the end of the old file size.
1193 ReadData(entry
, stream_index
, 23000 + kSize
- 35, buffer2
.get(), kSize
));
1194 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data() + kSize
- 35, 35));
1196 // Read slightly before the last write.
1197 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1198 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 24900, buffer2
.get(), kSize
));
1199 EXPECT_TRUE(!memcmp(buffer2
->data(), zeros
, 100));
1200 EXPECT_TRUE(!memcmp(buffer2
->data() + 100, buffer1
->data(), kSize
- 100));
1202 // Extend the entry a little more.
1204 WriteData(entry
, stream_index
, 26000, buffer1
.get(), kSize
, true));
1205 EXPECT_EQ(26000 + kSize
, entry
->GetDataSize(stream_index
));
1206 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1207 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 25900, buffer2
.get(), kSize
));
1208 EXPECT_TRUE(!memcmp(buffer2
->data(), zeros
, 100));
1209 EXPECT_TRUE(!memcmp(buffer2
->data() + 100, buffer1
->data(), kSize
- 100));
1211 // And now reduce the size.
1213 WriteData(entry
, stream_index
, 25000, buffer1
.get(), kSize
, true));
1214 EXPECT_EQ(25000 + kSize
, entry
->GetDataSize(stream_index
));
1217 ReadData(entry
, stream_index
, 25000 + kSize
- 28, buffer2
.get(), kSize
));
1218 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data() + kSize
- 28, 28));
1220 // Reduce the size with a buffer that is not extending the size.
1222 WriteData(entry
, stream_index
, 24000, buffer1
.get(), kSize
, false));
1223 EXPECT_EQ(25000 + kSize
, entry
->GetDataSize(stream_index
));
1225 WriteData(entry
, stream_index
, 24500, buffer1
.get(), kSize
, true));
1226 EXPECT_EQ(24500 + kSize
, entry
->GetDataSize(stream_index
));
1227 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 23900, buffer2
.get(), kSize
));
1228 EXPECT_TRUE(!memcmp(buffer2
->data(), zeros
, 100));
1229 EXPECT_TRUE(!memcmp(buffer2
->data() + 100, buffer1
->data(), kSize
- 100));
1231 // And now reduce the size below the old size.
1233 WriteData(entry
, stream_index
, 19000, buffer1
.get(), kSize
, true));
1234 EXPECT_EQ(19000 + kSize
, entry
->GetDataSize(stream_index
));
1235 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 18900, buffer2
.get(), kSize
));
1236 EXPECT_TRUE(!memcmp(buffer2
->data(), zeros
, 100));
1237 EXPECT_TRUE(!memcmp(buffer2
->data() + 100, buffer1
->data(), kSize
- 100));
1239 // Verify that the actual file is truncated.
1241 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1242 EXPECT_EQ(19000 + kSize
, entry
->GetDataSize(stream_index
));
1244 // Extend the newly opened file with a zero length write, expect zero fill.
1247 WriteData(entry
, stream_index
, 20000 + kSize
, buffer1
.get(), 0, false));
1249 ReadData(entry
, stream_index
, 19000 + kSize
, buffer1
.get(), kSize
));
1250 EXPECT_EQ(0, memcmp(buffer1
->data(), zeros
, kSize
));
1255 TEST_F(DiskCacheEntryTest
, SizeChanges
) {
1260 TEST_F(DiskCacheEntryTest
, SizeChangesNoBuffer
) {
1262 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
1266 // Write more than the total cache capacity but to a single entry. |size| is the
1267 // amount of bytes to write each time.
1268 void DiskCacheEntryTest::ReuseEntry(int size
, int stream_index
) {
1269 std::string
key1("the first key");
1270 disk_cache::Entry
* entry
;
1271 ASSERT_EQ(net::OK
, CreateEntry(key1
, &entry
));
1274 std::string
key2("the second key");
1275 ASSERT_EQ(net::OK
, CreateEntry(key2
, &entry
));
1277 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(size
));
1278 CacheTestFillBuffer(buffer
->data(), size
, false);
1280 for (int i
= 0; i
< 15; i
++) {
1281 EXPECT_EQ(0, WriteData(entry
, stream_index
, 0, buffer
.get(), 0, true));
1283 WriteData(entry
, stream_index
, 0, buffer
.get(), size
, false));
1285 ASSERT_EQ(net::OK
, OpenEntry(key2
, &entry
));
1289 ASSERT_EQ(net::OK
, OpenEntry(key1
, &entry
)) << "have not evicted this entry";
1293 TEST_F(DiskCacheEntryTest
, ReuseExternalEntry
) {
1294 SetMaxSize(200 * 1024);
1296 ReuseEntry(20 * 1024, 0);
1299 TEST_F(DiskCacheEntryTest
, MemoryOnlyReuseExternalEntry
) {
1300 SetMemoryOnlyMode();
1301 SetMaxSize(200 * 1024);
1303 ReuseEntry(20 * 1024, 0);
1306 TEST_F(DiskCacheEntryTest
, ReuseInternalEntry
) {
1307 SetMaxSize(100 * 1024);
1309 ReuseEntry(10 * 1024, 0);
1312 TEST_F(DiskCacheEntryTest
, MemoryOnlyReuseInternalEntry
) {
1313 SetMemoryOnlyMode();
1314 SetMaxSize(100 * 1024);
1316 ReuseEntry(10 * 1024, 0);
1319 // Reading somewhere that was not written should return zeros.
1320 void DiskCacheEntryTest::InvalidData(int stream_index
) {
1321 std::string
key("the first key");
1322 disk_cache::Entry
* entry
;
1323 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1325 const int kSize1
= 20000;
1326 const int kSize2
= 20000;
1327 const int kSize3
= 20000;
1328 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
1329 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
1330 scoped_refptr
<net::IOBuffer
> buffer3(new net::IOBuffer(kSize3
));
1332 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
1333 memset(buffer2
->data(), 0, kSize2
);
1335 // Simple data grow:
1337 WriteData(entry
, stream_index
, 400, buffer1
.get(), 200, false));
1338 EXPECT_EQ(600, entry
->GetDataSize(stream_index
));
1339 EXPECT_EQ(100, ReadData(entry
, stream_index
, 300, buffer3
.get(), 100));
1340 EXPECT_TRUE(!memcmp(buffer3
->data(), buffer2
->data(), 100));
1342 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1344 // The entry is now on disk. Load it and extend it.
1346 WriteData(entry
, stream_index
, 800, buffer1
.get(), 200, false));
1347 EXPECT_EQ(1000, entry
->GetDataSize(stream_index
));
1348 EXPECT_EQ(100, ReadData(entry
, stream_index
, 700, buffer3
.get(), 100));
1349 EXPECT_TRUE(!memcmp(buffer3
->data(), buffer2
->data(), 100));
1351 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1353 // This time using truncate.
1355 WriteData(entry
, stream_index
, 1800, buffer1
.get(), 200, true));
1356 EXPECT_EQ(2000, entry
->GetDataSize(stream_index
));
1357 EXPECT_EQ(100, ReadData(entry
, stream_index
, 1500, buffer3
.get(), 100));
1358 EXPECT_TRUE(!memcmp(buffer3
->data(), buffer2
->data(), 100));
1360 // Go to an external file.
1362 WriteData(entry
, stream_index
, 19800, buffer1
.get(), 200, false));
1363 EXPECT_EQ(20000, entry
->GetDataSize(stream_index
));
1364 EXPECT_EQ(4000, ReadData(entry
, stream_index
, 14000, buffer3
.get(), 4000));
1365 EXPECT_TRUE(!memcmp(buffer3
->data(), buffer2
->data(), 4000));
1367 // And back to an internal block.
1369 WriteData(entry
, stream_index
, 1000, buffer1
.get(), 600, true));
1370 EXPECT_EQ(1600, entry
->GetDataSize(stream_index
));
1371 EXPECT_EQ(600, ReadData(entry
, stream_index
, 1000, buffer3
.get(), 600));
1372 EXPECT_TRUE(!memcmp(buffer3
->data(), buffer1
->data(), 600));
1376 WriteData(entry
, stream_index
, 2000, buffer1
.get(), 600, false));
1377 EXPECT_EQ(2600, entry
->GetDataSize(stream_index
));
1378 EXPECT_EQ(200, ReadData(entry
, stream_index
, 1800, buffer3
.get(), 200));
1379 EXPECT_TRUE(!memcmp(buffer3
->data(), buffer2
->data(), 200));
1381 // And again (with truncation flag).
1383 WriteData(entry
, stream_index
, 3000, buffer1
.get(), 600, true));
1384 EXPECT_EQ(3600, entry
->GetDataSize(stream_index
));
1385 EXPECT_EQ(200, ReadData(entry
, stream_index
, 2800, buffer3
.get(), 200));
1386 EXPECT_TRUE(!memcmp(buffer3
->data(), buffer2
->data(), 200));
1391 TEST_F(DiskCacheEntryTest
, InvalidData
) {
1396 TEST_F(DiskCacheEntryTest
, InvalidDataNoBuffer
) {
1398 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
1402 TEST_F(DiskCacheEntryTest
, MemoryOnlyInvalidData
) {
1403 SetMemoryOnlyMode();
1408 // Tests that the cache preserves the buffer of an IO operation.
1409 void DiskCacheEntryTest::ReadWriteDestroyBuffer(int stream_index
) {
1410 std::string
key("the first key");
1411 disk_cache::Entry
* entry
;
1412 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1414 const int kSize
= 200;
1415 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
1416 CacheTestFillBuffer(buffer
->data(), kSize
, false);
1418 net::TestCompletionCallback cb
;
1419 EXPECT_EQ(net::ERR_IO_PENDING
,
1421 stream_index
, 0, buffer
.get(), kSize
, cb
.callback(), false));
1423 // Release our reference to the buffer.
1425 EXPECT_EQ(kSize
, cb
.WaitForResult());
1427 // And now test with a Read().
1428 buffer
= new net::IOBuffer(kSize
);
1429 CacheTestFillBuffer(buffer
->data(), kSize
, false);
1432 net::ERR_IO_PENDING
,
1433 entry
->ReadData(stream_index
, 0, buffer
.get(), kSize
, cb
.callback()));
1435 EXPECT_EQ(kSize
, cb
.WaitForResult());
1440 TEST_F(DiskCacheEntryTest
, ReadWriteDestroyBuffer
) {
1442 ReadWriteDestroyBuffer(0);
1445 void DiskCacheEntryTest::DoomNormalEntry() {
1446 std::string
key("the first key");
1447 disk_cache::Entry
* entry
;
1448 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1452 const int kSize
= 20000;
1453 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
1454 CacheTestFillBuffer(buffer
->data(), kSize
, true);
1455 buffer
->data()[19999] = '\0';
1457 key
= buffer
->data();
1458 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1459 EXPECT_EQ(20000, WriteData(entry
, 0, 0, buffer
.get(), kSize
, false));
1460 EXPECT_EQ(20000, WriteData(entry
, 1, 0, buffer
.get(), kSize
, false));
1464 FlushQueueForTest();
1465 EXPECT_EQ(0, cache_
->GetEntryCount());
1468 TEST_F(DiskCacheEntryTest
, DoomEntry
) {
1473 TEST_F(DiskCacheEntryTest
, MemoryOnlyDoomEntry
) {
1474 SetMemoryOnlyMode();
1479 // Tests dooming an entry that's linked to an open entry.
1480 void DiskCacheEntryTest::DoomEntryNextToOpenEntry() {
1481 disk_cache::Entry
* entry1
;
1482 disk_cache::Entry
* entry2
;
1483 ASSERT_EQ(net::OK
, CreateEntry("fixed", &entry1
));
1485 ASSERT_EQ(net::OK
, CreateEntry("foo", &entry1
));
1487 ASSERT_EQ(net::OK
, CreateEntry("bar", &entry1
));
1490 ASSERT_EQ(net::OK
, OpenEntry("foo", &entry1
));
1491 ASSERT_EQ(net::OK
, OpenEntry("bar", &entry2
));
1495 ASSERT_EQ(net::OK
, OpenEntry("foo", &entry2
));
1500 ASSERT_EQ(net::OK
, OpenEntry("fixed", &entry1
));
1504 TEST_F(DiskCacheEntryTest
, DoomEntryNextToOpenEntry
) {
1506 DoomEntryNextToOpenEntry();
1509 TEST_F(DiskCacheEntryTest
, NewEvictionDoomEntryNextToOpenEntry
) {
1512 DoomEntryNextToOpenEntry();
1515 TEST_F(DiskCacheEntryTest
, AppCacheDoomEntryNextToOpenEntry
) {
1516 SetCacheType(net::APP_CACHE
);
1518 DoomEntryNextToOpenEntry();
1521 // Verify that basic operations work as expected with doomed entries.
1522 void DiskCacheEntryTest::DoomedEntry(int stream_index
) {
1523 std::string
key("the first key");
1524 disk_cache::Entry
* entry
;
1525 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1528 FlushQueueForTest();
1529 EXPECT_EQ(0, cache_
->GetEntryCount());
1530 Time initial
= Time::Now();
1533 const int kSize1
= 2000;
1534 const int kSize2
= 2000;
1535 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
1536 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
1537 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
1538 memset(buffer2
->data(), 0, kSize2
);
1541 WriteData(entry
, stream_index
, 0, buffer1
.get(), 2000, false));
1542 EXPECT_EQ(2000, ReadData(entry
, stream_index
, 0, buffer2
.get(), 2000));
1543 EXPECT_EQ(0, memcmp(buffer1
->data(), buffer2
->data(), kSize1
));
1544 EXPECT_EQ(key
, entry
->GetKey());
1545 EXPECT_TRUE(initial
< entry
->GetLastModified());
1546 EXPECT_TRUE(initial
< entry
->GetLastUsed());
1551 TEST_F(DiskCacheEntryTest
, DoomedEntry
) {
1556 TEST_F(DiskCacheEntryTest
, MemoryOnlyDoomedEntry
) {
1557 SetMemoryOnlyMode();
1562 // Tests that we discard entries if the data is missing.
1563 TEST_F(DiskCacheEntryTest
, MissingData
) {
1566 std::string
key("the first key");
1567 disk_cache::Entry
* entry
;
1568 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1570 // Write to an external file.
1571 const int kSize
= 20000;
1572 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
1573 CacheTestFillBuffer(buffer
->data(), kSize
, false);
1574 EXPECT_EQ(kSize
, WriteData(entry
, 0, 0, buffer
.get(), kSize
, false));
1576 FlushQueueForTest();
1578 disk_cache::Addr
address(0x80000001);
1579 base::FilePath name
= cache_impl_
->GetFileName(address
);
1580 EXPECT_TRUE(base::DeleteFile(name
, false));
1582 // Attempt to read the data.
1583 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1584 EXPECT_EQ(net::ERR_FILE_NOT_FOUND
,
1585 ReadData(entry
, 0, 0, buffer
.get(), kSize
));
1588 // The entry should be gone.
1589 ASSERT_NE(net::OK
, OpenEntry(key
, &entry
));
1592 // Test that child entries in a memory cache backend are not visible from
1594 TEST_F(DiskCacheEntryTest
, MemoryOnlyEnumerationWithSparseEntries
) {
1595 SetMemoryOnlyMode();
1598 const int kSize
= 4096;
1599 scoped_refptr
<net::IOBuffer
> buf(new net::IOBuffer(kSize
));
1600 CacheTestFillBuffer(buf
->data(), kSize
, false);
1602 std::string
key("the first key");
1603 disk_cache::Entry
* parent_entry
;
1604 ASSERT_EQ(net::OK
, CreateEntry(key
, &parent_entry
));
1606 // Writes to the parent entry.
1608 parent_entry
->WriteSparseData(
1609 0, buf
.get(), kSize
, net::CompletionCallback()));
1611 // This write creates a child entry and writes to it.
1613 parent_entry
->WriteSparseData(
1614 8192, buf
.get(), kSize
, net::CompletionCallback()));
1616 parent_entry
->Close();
1618 // Perform the enumerations.
1619 scoped_ptr
<TestIterator
> iter
= CreateIterator();
1620 disk_cache::Entry
* entry
= NULL
;
1622 while (iter
->OpenNextEntry(&entry
) == net::OK
) {
1623 ASSERT_TRUE(entry
!= NULL
);
1625 disk_cache::MemEntryImpl
* mem_entry
=
1626 reinterpret_cast<disk_cache::MemEntryImpl
*>(entry
);
1627 EXPECT_EQ(disk_cache::MemEntryImpl::kParentEntry
, mem_entry
->type());
1630 EXPECT_EQ(1, count
);
1633 // Writes |buf_1| to offset and reads it back as |buf_2|.
1634 void VerifySparseIO(disk_cache::Entry
* entry
, int64 offset
,
1635 net::IOBuffer
* buf_1
, int size
, net::IOBuffer
* buf_2
) {
1636 net::TestCompletionCallback cb
;
1638 memset(buf_2
->data(), 0, size
);
1639 int ret
= entry
->ReadSparseData(offset
, buf_2
, size
, cb
.callback());
1640 EXPECT_EQ(0, cb
.GetResult(ret
));
1642 ret
= entry
->WriteSparseData(offset
, buf_1
, size
, cb
.callback());
1643 EXPECT_EQ(size
, cb
.GetResult(ret
));
1645 ret
= entry
->ReadSparseData(offset
, buf_2
, size
, cb
.callback());
1646 EXPECT_EQ(size
, cb
.GetResult(ret
));
1648 EXPECT_EQ(0, memcmp(buf_1
->data(), buf_2
->data(), size
));
1651 // Reads |size| bytes from |entry| at |offset| and verifies that they are the
1652 // same as the content of the provided |buffer|.
1653 void VerifyContentSparseIO(disk_cache::Entry
* entry
, int64 offset
, char* buffer
,
1655 net::TestCompletionCallback cb
;
1657 scoped_refptr
<net::IOBuffer
> buf_1(new net::IOBuffer(size
));
1658 memset(buf_1
->data(), 0, size
);
1659 int ret
= entry
->ReadSparseData(offset
, buf_1
.get(), size
, cb
.callback());
1660 EXPECT_EQ(size
, cb
.GetResult(ret
));
1661 EXPECT_EQ(0, memcmp(buf_1
->data(), buffer
, size
));
1664 void DiskCacheEntryTest::BasicSparseIO() {
1665 std::string
key("the first key");
1666 disk_cache::Entry
* entry
;
1667 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1669 const int kSize
= 2048;
1670 scoped_refptr
<net::IOBuffer
> buf_1(new net::IOBuffer(kSize
));
1671 scoped_refptr
<net::IOBuffer
> buf_2(new net::IOBuffer(kSize
));
1672 CacheTestFillBuffer(buf_1
->data(), kSize
, false);
1674 // Write at offset 0.
1675 VerifySparseIO(entry
, 0, buf_1
.get(), kSize
, buf_2
.get());
1677 // Write at offset 0x400000 (4 MB).
1678 VerifySparseIO(entry
, 0x400000, buf_1
.get(), kSize
, buf_2
.get());
1680 // Write at offset 0x800000000 (32 GB).
1681 VerifySparseIO(entry
, 0x800000000LL
, buf_1
.get(), kSize
, buf_2
.get());
1685 // Check everything again.
1686 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1687 VerifyContentSparseIO(entry
, 0, buf_1
->data(), kSize
);
1688 VerifyContentSparseIO(entry
, 0x400000, buf_1
->data(), kSize
);
1689 VerifyContentSparseIO(entry
, 0x800000000LL
, buf_1
->data(), kSize
);
1693 TEST_F(DiskCacheEntryTest
, BasicSparseIO
) {
1698 TEST_F(DiskCacheEntryTest
, MemoryOnlyBasicSparseIO
) {
1699 SetMemoryOnlyMode();
1704 void DiskCacheEntryTest::HugeSparseIO() {
1705 std::string
key("the first key");
1706 disk_cache::Entry
* entry
;
1707 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1709 // Write 1.2 MB so that we cover multiple entries.
1710 const int kSize
= 1200 * 1024;
1711 scoped_refptr
<net::IOBuffer
> buf_1(new net::IOBuffer(kSize
));
1712 scoped_refptr
<net::IOBuffer
> buf_2(new net::IOBuffer(kSize
));
1713 CacheTestFillBuffer(buf_1
->data(), kSize
, false);
1715 // Write at offset 0x20F0000 (33 MB - 64 KB).
1716 VerifySparseIO(entry
, 0x20F0000, buf_1
.get(), kSize
, buf_2
.get());
1720 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1721 VerifyContentSparseIO(entry
, 0x20F0000, buf_1
->data(), kSize
);
1725 TEST_F(DiskCacheEntryTest
, HugeSparseIO
) {
1730 TEST_F(DiskCacheEntryTest
, MemoryOnlyHugeSparseIO
) {
1731 SetMemoryOnlyMode();
1736 void DiskCacheEntryTest::GetAvailableRange() {
1737 std::string
key("the first key");
1738 disk_cache::Entry
* entry
;
1739 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1741 const int kSize
= 16 * 1024;
1742 scoped_refptr
<net::IOBuffer
> buf(new net::IOBuffer(kSize
));
1743 CacheTestFillBuffer(buf
->data(), kSize
, false);
1745 // Write at offset 0x20F0000 (33 MB - 64 KB), and 0x20F4400 (33 MB - 47 KB).
1746 EXPECT_EQ(kSize
, WriteSparseData(entry
, 0x20F0000, buf
.get(), kSize
));
1747 EXPECT_EQ(kSize
, WriteSparseData(entry
, 0x20F4400, buf
.get(), kSize
));
1749 // We stop at the first empty block.
1751 net::TestCompletionCallback cb
;
1752 int rv
= entry
->GetAvailableRange(
1753 0x20F0000, kSize
* 2, &start
, cb
.callback());
1754 EXPECT_EQ(kSize
, cb
.GetResult(rv
));
1755 EXPECT_EQ(0x20F0000, start
);
1758 rv
= entry
->GetAvailableRange(0, kSize
, &start
, cb
.callback());
1759 EXPECT_EQ(0, cb
.GetResult(rv
));
1760 rv
= entry
->GetAvailableRange(
1761 0x20F0000 - kSize
, kSize
, &start
, cb
.callback());
1762 EXPECT_EQ(0, cb
.GetResult(rv
));
1763 rv
= entry
->GetAvailableRange(0, 0x2100000, &start
, cb
.callback());
1764 EXPECT_EQ(kSize
, cb
.GetResult(rv
));
1765 EXPECT_EQ(0x20F0000, start
);
1767 // We should be able to Read based on the results of GetAvailableRange.
1769 rv
= entry
->GetAvailableRange(0x2100000, kSize
, &start
, cb
.callback());
1770 EXPECT_EQ(0, cb
.GetResult(rv
));
1771 rv
= entry
->ReadSparseData(start
, buf
.get(), kSize
, cb
.callback());
1772 EXPECT_EQ(0, cb
.GetResult(rv
));
1775 rv
= entry
->GetAvailableRange(0x20F2000, kSize
, &start
, cb
.callback());
1776 EXPECT_EQ(0x2000, cb
.GetResult(rv
));
1777 EXPECT_EQ(0x20F2000, start
);
1778 EXPECT_EQ(0x2000, ReadSparseData(entry
, start
, buf
.get(), kSize
));
1780 // Make sure that we respect the |len| argument.
1782 rv
= entry
->GetAvailableRange(
1783 0x20F0001 - kSize
, kSize
, &start
, cb
.callback());
1784 EXPECT_EQ(1, cb
.GetResult(rv
));
1785 EXPECT_EQ(0x20F0000, start
);
1790 TEST_F(DiskCacheEntryTest
, GetAvailableRange
) {
1792 GetAvailableRange();
1795 TEST_F(DiskCacheEntryTest
, MemoryOnlyGetAvailableRange
) {
1796 SetMemoryOnlyMode();
1798 GetAvailableRange();
1801 void DiskCacheEntryTest::CouldBeSparse() {
1802 std::string
key("the first key");
1803 disk_cache::Entry
* entry
;
1804 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1806 const int kSize
= 16 * 1024;
1807 scoped_refptr
<net::IOBuffer
> buf(new net::IOBuffer(kSize
));
1808 CacheTestFillBuffer(buf
->data(), kSize
, false);
1810 // Write at offset 0x20F0000 (33 MB - 64 KB).
1811 EXPECT_EQ(kSize
, WriteSparseData(entry
, 0x20F0000, buf
.get(), kSize
));
1813 EXPECT_TRUE(entry
->CouldBeSparse());
1816 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1817 EXPECT_TRUE(entry
->CouldBeSparse());
1820 // Now verify a regular entry.
1821 key
.assign("another key");
1822 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1823 EXPECT_FALSE(entry
->CouldBeSparse());
1825 EXPECT_EQ(kSize
, WriteData(entry
, 0, 0, buf
.get(), kSize
, false));
1826 EXPECT_EQ(kSize
, WriteData(entry
, 1, 0, buf
.get(), kSize
, false));
1827 EXPECT_EQ(kSize
, WriteData(entry
, 2, 0, buf
.get(), kSize
, false));
1829 EXPECT_FALSE(entry
->CouldBeSparse());
1832 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1833 EXPECT_FALSE(entry
->CouldBeSparse());
1837 TEST_F(DiskCacheEntryTest
, CouldBeSparse
) {
1842 TEST_F(DiskCacheEntryTest
, MemoryCouldBeSparse
) {
1843 SetMemoryOnlyMode();
1848 TEST_F(DiskCacheEntryTest
, MemoryOnlyMisalignedSparseIO
) {
1849 SetMemoryOnlyMode();
1852 const int kSize
= 8192;
1853 scoped_refptr
<net::IOBuffer
> buf_1(new net::IOBuffer(kSize
));
1854 scoped_refptr
<net::IOBuffer
> buf_2(new net::IOBuffer(kSize
));
1855 CacheTestFillBuffer(buf_1
->data(), kSize
, false);
1857 std::string
key("the first key");
1858 disk_cache::Entry
* entry
;
1859 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1861 // This loop writes back to back starting from offset 0 and 9000.
1862 for (int i
= 0; i
< kSize
; i
+= 1024) {
1863 scoped_refptr
<net::WrappedIOBuffer
> buf_3(
1864 new net::WrappedIOBuffer(buf_1
->data() + i
));
1865 VerifySparseIO(entry
, i
, buf_3
.get(), 1024, buf_2
.get());
1866 VerifySparseIO(entry
, 9000 + i
, buf_3
.get(), 1024, buf_2
.get());
1869 // Make sure we have data written.
1870 VerifyContentSparseIO(entry
, 0, buf_1
->data(), kSize
);
1871 VerifyContentSparseIO(entry
, 9000, buf_1
->data(), kSize
);
1873 // This tests a large write that spans 3 entries from a misaligned offset.
1874 VerifySparseIO(entry
, 20481, buf_1
.get(), 8192, buf_2
.get());
1879 TEST_F(DiskCacheEntryTest
, MemoryOnlyMisalignedGetAvailableRange
) {
1880 SetMemoryOnlyMode();
1883 const int kSize
= 8192;
1884 scoped_refptr
<net::IOBuffer
> buf(new net::IOBuffer(kSize
));
1885 CacheTestFillBuffer(buf
->data(), kSize
, false);
1887 disk_cache::Entry
* entry
;
1888 std::string
key("the first key");
1889 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1891 // Writes in the middle of an entry.
1894 entry
->WriteSparseData(0, buf
.get(), 1024, net::CompletionCallback()));
1897 entry
->WriteSparseData(5120, buf
.get(), 1024, net::CompletionCallback()));
1899 entry
->WriteSparseData(
1900 10000, buf
.get(), 1024, net::CompletionCallback()));
1902 // Writes in the middle of an entry and spans 2 child entries.
1904 entry
->WriteSparseData(
1905 50000, buf
.get(), 8192, net::CompletionCallback()));
1908 net::TestCompletionCallback cb
;
1909 // Test that we stop at a discontinuous child at the second block.
1910 int rv
= entry
->GetAvailableRange(0, 10000, &start
, cb
.callback());
1911 EXPECT_EQ(1024, cb
.GetResult(rv
));
1912 EXPECT_EQ(0, start
);
1914 // Test that number of bytes is reported correctly when we start from the
1915 // middle of a filled region.
1916 rv
= entry
->GetAvailableRange(512, 10000, &start
, cb
.callback());
1917 EXPECT_EQ(512, cb
.GetResult(rv
));
1918 EXPECT_EQ(512, start
);
1920 // Test that we found bytes in the child of next block.
1921 rv
= entry
->GetAvailableRange(1024, 10000, &start
, cb
.callback());
1922 EXPECT_EQ(1024, cb
.GetResult(rv
));
1923 EXPECT_EQ(5120, start
);
1925 // Test that the desired length is respected. It starts within a filled
1927 rv
= entry
->GetAvailableRange(5500, 512, &start
, cb
.callback());
1928 EXPECT_EQ(512, cb
.GetResult(rv
));
1929 EXPECT_EQ(5500, start
);
1931 // Test that the desired length is respected. It starts before a filled
1933 rv
= entry
->GetAvailableRange(5000, 620, &start
, cb
.callback());
1934 EXPECT_EQ(500, cb
.GetResult(rv
));
1935 EXPECT_EQ(5120, start
);
1937 // Test that multiple blocks are scanned.
1938 rv
= entry
->GetAvailableRange(40000, 20000, &start
, cb
.callback());
1939 EXPECT_EQ(8192, cb
.GetResult(rv
));
1940 EXPECT_EQ(50000, start
);
1945 void DiskCacheEntryTest::UpdateSparseEntry() {
1946 std::string
key("the first key");
1947 disk_cache::Entry
* entry1
;
1948 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry1
));
1950 const int kSize
= 2048;
1951 scoped_refptr
<net::IOBuffer
> buf_1(new net::IOBuffer(kSize
));
1952 scoped_refptr
<net::IOBuffer
> buf_2(new net::IOBuffer(kSize
));
1953 CacheTestFillBuffer(buf_1
->data(), kSize
, false);
1955 // Write at offset 0.
1956 VerifySparseIO(entry1
, 0, buf_1
.get(), kSize
, buf_2
.get());
1959 // Write at offset 2048.
1960 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry1
));
1961 VerifySparseIO(entry1
, 2048, buf_1
.get(), kSize
, buf_2
.get());
1963 disk_cache::Entry
* entry2
;
1964 ASSERT_EQ(net::OK
, CreateEntry("the second key", &entry2
));
1968 FlushQueueForTest();
1969 if (memory_only_
|| simple_cache_mode_
)
1970 EXPECT_EQ(2, cache_
->GetEntryCount());
1972 EXPECT_EQ(3, cache_
->GetEntryCount());
1975 TEST_F(DiskCacheEntryTest
, UpdateSparseEntry
) {
1976 SetCacheType(net::MEDIA_CACHE
);
1978 UpdateSparseEntry();
1981 TEST_F(DiskCacheEntryTest
, MemoryOnlyUpdateSparseEntry
) {
1982 SetMemoryOnlyMode();
1983 SetCacheType(net::MEDIA_CACHE
);
1985 UpdateSparseEntry();
1988 void DiskCacheEntryTest::DoomSparseEntry() {
1989 std::string
key1("the first key");
1990 std::string
key2("the second key");
1991 disk_cache::Entry
*entry1
, *entry2
;
1992 ASSERT_EQ(net::OK
, CreateEntry(key1
, &entry1
));
1993 ASSERT_EQ(net::OK
, CreateEntry(key2
, &entry2
));
1995 const int kSize
= 4 * 1024;
1996 scoped_refptr
<net::IOBuffer
> buf(new net::IOBuffer(kSize
));
1997 CacheTestFillBuffer(buf
->data(), kSize
, false);
1999 int64 offset
= 1024;
2000 // Write to a bunch of ranges.
2001 for (int i
= 0; i
< 12; i
++) {
2002 EXPECT_EQ(kSize
, WriteSparseData(entry1
, offset
, buf
.get(), kSize
));
2003 // Keep the second map under the default size.
2005 EXPECT_EQ(kSize
, WriteSparseData(entry2
, offset
, buf
.get(), kSize
));
2010 if (memory_only_
|| simple_cache_mode_
)
2011 EXPECT_EQ(2, cache_
->GetEntryCount());
2013 EXPECT_EQ(15, cache_
->GetEntryCount());
2015 // Doom the first entry while it's still open.
2020 // Doom the second entry after it's fully saved.
2021 EXPECT_EQ(net::OK
, DoomEntry(key2
));
2023 // Make sure we do all needed work. This may fail for entry2 if between Close
2024 // and DoomEntry the system decides to remove all traces of the file from the
2025 // system cache so we don't see that there is pending IO.
2026 base::MessageLoop::current()->RunUntilIdle();
2029 EXPECT_EQ(0, cache_
->GetEntryCount());
2031 if (5 == cache_
->GetEntryCount()) {
2032 // Most likely we are waiting for the result of reading the sparse info
2033 // (it's always async on Posix so it is easy to miss). Unfortunately we
2034 // don't have any signal to watch for so we can only wait.
2035 base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds(500));
2036 base::MessageLoop::current()->RunUntilIdle();
2038 EXPECT_EQ(0, cache_
->GetEntryCount());
2042 TEST_F(DiskCacheEntryTest
, DoomSparseEntry
) {
2048 TEST_F(DiskCacheEntryTest
, MemoryOnlyDoomSparseEntry
) {
2049 SetMemoryOnlyMode();
2054 // A CompletionCallback wrapper that deletes the cache from within the callback.
2055 // The way a CompletionCallback works means that all tasks (even new ones)
2056 // are executed by the message loop before returning to the caller so the only
2057 // way to simulate a race is to execute what we want on the callback.
2058 class SparseTestCompletionCallback
: public net::TestCompletionCallback
{
2060 explicit SparseTestCompletionCallback(scoped_ptr
<disk_cache::Backend
> cache
)
2061 : cache_(cache
.Pass()) {
2065 void SetResult(int result
) override
{
2067 TestCompletionCallback::SetResult(result
);
2070 scoped_ptr
<disk_cache::Backend
> cache_
;
2071 DISALLOW_COPY_AND_ASSIGN(SparseTestCompletionCallback
);
2074 // Tests that we don't crash when the backend is deleted while we are working
2075 // deleting the sub-entries of a sparse entry.
2076 TEST_F(DiskCacheEntryTest
, DoomSparseEntry2
) {
2079 std::string
key("the key");
2080 disk_cache::Entry
* entry
;
2081 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
2083 const int kSize
= 4 * 1024;
2084 scoped_refptr
<net::IOBuffer
> buf(new net::IOBuffer(kSize
));
2085 CacheTestFillBuffer(buf
->data(), kSize
, false);
2087 int64 offset
= 1024;
2088 // Write to a bunch of ranges.
2089 for (int i
= 0; i
< 12; i
++) {
2091 entry
->WriteSparseData(
2092 offset
, buf
.get(), kSize
, net::CompletionCallback()));
2095 EXPECT_EQ(9, cache_
->GetEntryCount());
2098 disk_cache::Backend
* cache
= cache_
.get();
2099 SparseTestCompletionCallback
cb(cache_
.Pass());
2100 int rv
= cache
->DoomEntry(key
, cb
.callback());
2101 EXPECT_EQ(net::ERR_IO_PENDING
, rv
);
2102 EXPECT_EQ(net::OK
, cb
.WaitForResult());
2105 void DiskCacheEntryTest::PartialSparseEntry() {
2106 std::string
key("the first key");
2107 disk_cache::Entry
* entry
;
2108 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
2110 // We should be able to deal with IO that is not aligned to the block size
2111 // of a sparse entry, at least to write a big range without leaving holes.
2112 const int kSize
= 4 * 1024;
2113 const int kSmallSize
= 128;
2114 scoped_refptr
<net::IOBuffer
> buf1(new net::IOBuffer(kSize
));
2115 CacheTestFillBuffer(buf1
->data(), kSize
, false);
2117 // The first write is just to extend the entry. The third write occupies
2118 // a 1KB block partially, it may not be written internally depending on the
2120 EXPECT_EQ(kSize
, WriteSparseData(entry
, 20000, buf1
.get(), kSize
));
2121 EXPECT_EQ(kSize
, WriteSparseData(entry
, 500, buf1
.get(), kSize
));
2122 EXPECT_EQ(kSmallSize
,
2123 WriteSparseData(entry
, 1080321, buf1
.get(), kSmallSize
));
2125 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
2127 scoped_refptr
<net::IOBuffer
> buf2(new net::IOBuffer(kSize
));
2128 memset(buf2
->data(), 0, kSize
);
2129 EXPECT_EQ(0, ReadSparseData(entry
, 8000, buf2
.get(), kSize
));
2131 EXPECT_EQ(500, ReadSparseData(entry
, kSize
, buf2
.get(), kSize
));
2132 EXPECT_EQ(0, memcmp(buf2
->data(), buf1
->data() + kSize
- 500, 500));
2133 EXPECT_EQ(0, ReadSparseData(entry
, 0, buf2
.get(), kSize
));
2135 // This read should not change anything.
2136 EXPECT_EQ(96, ReadSparseData(entry
, 24000, buf2
.get(), kSize
));
2137 EXPECT_EQ(500, ReadSparseData(entry
, kSize
, buf2
.get(), kSize
));
2138 EXPECT_EQ(0, ReadSparseData(entry
, 99, buf2
.get(), kSize
));
2142 net::TestCompletionCallback cb
;
2143 if (memory_only_
|| simple_cache_mode_
) {
2144 rv
= entry
->GetAvailableRange(0, 600, &start
, cb
.callback());
2145 EXPECT_EQ(100, cb
.GetResult(rv
));
2146 EXPECT_EQ(500, start
);
2148 rv
= entry
->GetAvailableRange(0, 2048, &start
, cb
.callback());
2149 EXPECT_EQ(1024, cb
.GetResult(rv
));
2150 EXPECT_EQ(1024, start
);
2152 rv
= entry
->GetAvailableRange(kSize
, kSize
, &start
, cb
.callback());
2153 EXPECT_EQ(500, cb
.GetResult(rv
));
2154 EXPECT_EQ(kSize
, start
);
2155 rv
= entry
->GetAvailableRange(20 * 1024, 10000, &start
, cb
.callback());
2156 EXPECT_EQ(3616, cb
.GetResult(rv
));
2157 EXPECT_EQ(20 * 1024, start
);
2159 // 1. Query before a filled 1KB block.
2160 // 2. Query within a filled 1KB block.
2161 // 3. Query beyond a filled 1KB block.
2162 if (memory_only_
|| simple_cache_mode_
) {
2163 rv
= entry
->GetAvailableRange(19400, kSize
, &start
, cb
.callback());
2164 EXPECT_EQ(3496, cb
.GetResult(rv
));
2165 EXPECT_EQ(20000, start
);
2167 rv
= entry
->GetAvailableRange(19400, kSize
, &start
, cb
.callback());
2168 EXPECT_EQ(3016, cb
.GetResult(rv
));
2169 EXPECT_EQ(20480, start
);
2171 rv
= entry
->GetAvailableRange(3073, kSize
, &start
, cb
.callback());
2172 EXPECT_EQ(1523, cb
.GetResult(rv
));
2173 EXPECT_EQ(3073, start
);
2174 rv
= entry
->GetAvailableRange(4600, kSize
, &start
, cb
.callback());
2175 EXPECT_EQ(0, cb
.GetResult(rv
));
2176 EXPECT_EQ(4600, start
);
2178 // Now make another write and verify that there is no hole in between.
2179 EXPECT_EQ(kSize
, WriteSparseData(entry
, 500 + kSize
, buf1
.get(), kSize
));
2180 rv
= entry
->GetAvailableRange(1024, 10000, &start
, cb
.callback());
2181 EXPECT_EQ(7 * 1024 + 500, cb
.GetResult(rv
));
2182 EXPECT_EQ(1024, start
);
2183 EXPECT_EQ(kSize
, ReadSparseData(entry
, kSize
, buf2
.get(), kSize
));
2184 EXPECT_EQ(0, memcmp(buf2
->data(), buf1
->data() + kSize
- 500, 500));
2185 EXPECT_EQ(0, memcmp(buf2
->data() + 500, buf1
->data(), kSize
- 500));
2190 TEST_F(DiskCacheEntryTest
, PartialSparseEntry
) {
2192 PartialSparseEntry();
2195 TEST_F(DiskCacheEntryTest
, MemoryPartialSparseEntry
) {
2196 SetMemoryOnlyMode();
2198 PartialSparseEntry();
2201 // Tests that corrupt sparse children are removed automatically.
2202 TEST_F(DiskCacheEntryTest
, CleanupSparseEntry
) {
2204 std::string
key("the first key");
2205 disk_cache::Entry
* entry
;
2206 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
2208 const int kSize
= 4 * 1024;
2209 scoped_refptr
<net::IOBuffer
> buf1(new net::IOBuffer(kSize
));
2210 CacheTestFillBuffer(buf1
->data(), kSize
, false);
2212 const int k1Meg
= 1024 * 1024;
2213 EXPECT_EQ(kSize
, WriteSparseData(entry
, 8192, buf1
.get(), kSize
));
2214 EXPECT_EQ(kSize
, WriteSparseData(entry
, k1Meg
+ 8192, buf1
.get(), kSize
));
2215 EXPECT_EQ(kSize
, WriteSparseData(entry
, 2 * k1Meg
+ 8192, buf1
.get(), kSize
));
2217 EXPECT_EQ(4, cache_
->GetEntryCount());
2219 scoped_ptr
<TestIterator
> iter
= CreateIterator();
2221 std::string child_key
[2];
2222 while (iter
->OpenNextEntry(&entry
) == net::OK
) {
2223 ASSERT_TRUE(entry
!= NULL
);
2224 // Writing to an entry will alter the LRU list and invalidate the iterator.
2225 if (entry
->GetKey() != key
&& count
< 2)
2226 child_key
[count
++] = entry
->GetKey();
2229 for (int i
= 0; i
< 2; i
++) {
2230 ASSERT_EQ(net::OK
, OpenEntry(child_key
[i
], &entry
));
2231 // Overwrite the header's magic and signature.
2232 EXPECT_EQ(12, WriteData(entry
, 2, 0, buf1
.get(), 12, false));
2236 EXPECT_EQ(4, cache_
->GetEntryCount());
2237 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
2239 // Two children should be gone. One while reading and one while writing.
2240 EXPECT_EQ(0, ReadSparseData(entry
, 2 * k1Meg
+ 8192, buf1
.get(), kSize
));
2241 EXPECT_EQ(kSize
, WriteSparseData(entry
, k1Meg
+ 16384, buf1
.get(), kSize
));
2242 EXPECT_EQ(0, ReadSparseData(entry
, k1Meg
+ 8192, buf1
.get(), kSize
));
2244 // We never touched this one.
2245 EXPECT_EQ(kSize
, ReadSparseData(entry
, 8192, buf1
.get(), kSize
));
2248 // We re-created one of the corrupt children.
2249 EXPECT_EQ(3, cache_
->GetEntryCount());
2252 TEST_F(DiskCacheEntryTest
, CancelSparseIO
) {
2255 std::string
key("the first key");
2256 disk_cache::Entry
* entry
;
2257 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
2259 const int kSize
= 40 * 1024;
2260 scoped_refptr
<net::IOBuffer
> buf(new net::IOBuffer(kSize
));
2261 CacheTestFillBuffer(buf
->data(), kSize
, false);
2263 // This will open and write two "real" entries.
2264 net::TestCompletionCallback cb1
, cb2
, cb3
, cb4
, cb5
;
2265 int rv
= entry
->WriteSparseData(
2266 1024 * 1024 - 4096, buf
.get(), kSize
, cb1
.callback());
2267 EXPECT_EQ(net::ERR_IO_PENDING
, rv
);
2270 rv
= entry
->GetAvailableRange(offset
, kSize
, &offset
, cb5
.callback());
2271 rv
= cb5
.GetResult(rv
);
2272 if (!cb1
.have_result()) {
2273 // We may or may not have finished writing to the entry. If we have not,
2274 // we cannot start another operation at this time.
2275 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED
, rv
);
2278 // We cancel the pending operation, and register multiple notifications.
2279 entry
->CancelSparseIO();
2280 EXPECT_EQ(net::ERR_IO_PENDING
, entry
->ReadyForSparseIO(cb2
.callback()));
2281 EXPECT_EQ(net::ERR_IO_PENDING
, entry
->ReadyForSparseIO(cb3
.callback()));
2282 entry
->CancelSparseIO(); // Should be a no op at this point.
2283 EXPECT_EQ(net::ERR_IO_PENDING
, entry
->ReadyForSparseIO(cb4
.callback()));
2285 if (!cb1
.have_result()) {
2286 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED
,
2287 entry
->ReadSparseData(
2288 offset
, buf
.get(), kSize
, net::CompletionCallback()));
2289 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED
,
2290 entry
->WriteSparseData(
2291 offset
, buf
.get(), kSize
, net::CompletionCallback()));
2294 // Now see if we receive all notifications. Note that we should not be able
2295 // to write everything (unless the timing of the system is really weird).
2296 rv
= cb1
.WaitForResult();
2297 EXPECT_TRUE(rv
== 4096 || rv
== kSize
);
2298 EXPECT_EQ(net::OK
, cb2
.WaitForResult());
2299 EXPECT_EQ(net::OK
, cb3
.WaitForResult());
2300 EXPECT_EQ(net::OK
, cb4
.WaitForResult());
2302 rv
= entry
->GetAvailableRange(offset
, kSize
, &offset
, cb5
.callback());
2303 EXPECT_EQ(0, cb5
.GetResult(rv
));
2307 // Tests that we perform sanity checks on an entry's key. Note that there are
2308 // other tests that exercise sanity checks by using saved corrupt files.
2309 TEST_F(DiskCacheEntryTest
, KeySanityCheck
) {
2312 std::string
key("the first key");
2313 disk_cache::Entry
* entry
;
2314 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
2316 disk_cache::EntryImpl
* entry_impl
=
2317 static_cast<disk_cache::EntryImpl
*>(entry
);
2318 disk_cache::EntryStore
* store
= entry_impl
->entry()->Data();
2320 // We have reserved space for a short key (one block), let's say that the key
2321 // takes more than one block, and remove the NULLs after the actual key.
2322 store
->key_len
= 800;
2323 memset(store
->key
+ key
.size(), 'k', sizeof(store
->key
) - key
.size());
2324 entry_impl
->entry()->set_modified();
2327 // We have a corrupt entry. Now reload it. We should NOT read beyond the
2328 // allocated buffer here.
2329 ASSERT_NE(net::OK
, OpenEntry(key
, &entry
));
2330 DisableIntegrityCheck();
2333 TEST_F(DiskCacheEntryTest
, SimpleCacheInternalAsyncIO
) {
2334 SetSimpleCacheMode();
2339 TEST_F(DiskCacheEntryTest
, SimpleCacheExternalAsyncIO
) {
2340 SetSimpleCacheMode();
2345 TEST_F(DiskCacheEntryTest
, SimpleCacheReleaseBuffer
) {
2346 SetSimpleCacheMode();
2348 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2349 EXPECT_EQ(net::OK
, DoomAllEntries());
2354 TEST_F(DiskCacheEntryTest
, SimpleCacheStreamAccess
) {
2355 SetSimpleCacheMode();
2360 TEST_F(DiskCacheEntryTest
, SimpleCacheGetKey
) {
2361 SetSimpleCacheMode();
2366 TEST_F(DiskCacheEntryTest
, SimpleCacheGetTimes
) {
2367 SetSimpleCacheMode();
2369 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2370 EXPECT_EQ(net::OK
, DoomAllEntries());
2375 TEST_F(DiskCacheEntryTest
, SimpleCacheGrowData
) {
2376 SetSimpleCacheMode();
2378 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2379 EXPECT_EQ(net::OK
, DoomAllEntries());
2384 TEST_F(DiskCacheEntryTest
, SimpleCacheTruncateData
) {
2385 SetSimpleCacheMode();
2387 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2388 EXPECT_EQ(net::OK
, DoomAllEntries());
2393 TEST_F(DiskCacheEntryTest
, SimpleCacheZeroLengthIO
) {
2394 SetSimpleCacheMode();
2396 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2397 EXPECT_EQ(net::OK
, DoomAllEntries());
2402 TEST_F(DiskCacheEntryTest
, SimpleCacheSizeAtCreate
) {
2403 SetSimpleCacheMode();
2408 TEST_F(DiskCacheEntryTest
, SimpleCacheReuseExternalEntry
) {
2409 SetSimpleCacheMode();
2410 SetMaxSize(200 * 1024);
2412 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2413 EXPECT_EQ(net::OK
, DoomAllEntries());
2414 ReuseEntry(20 * 1024, i
);
2418 TEST_F(DiskCacheEntryTest
, SimpleCacheReuseInternalEntry
) {
2419 SetSimpleCacheMode();
2420 SetMaxSize(100 * 1024);
2422 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2423 EXPECT_EQ(net::OK
, DoomAllEntries());
2424 ReuseEntry(10 * 1024, i
);
2428 TEST_F(DiskCacheEntryTest
, SimpleCacheSizeChanges
) {
2429 SetSimpleCacheMode();
2431 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2432 EXPECT_EQ(net::OK
, DoomAllEntries());
2437 TEST_F(DiskCacheEntryTest
, SimpleCacheInvalidData
) {
2438 SetSimpleCacheMode();
2440 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2441 EXPECT_EQ(net::OK
, DoomAllEntries());
2446 TEST_F(DiskCacheEntryTest
, SimpleCacheReadWriteDestroyBuffer
) {
2447 // Proving that the test works well with optimistic operations enabled is
2448 // subtle, instead run only in APP_CACHE mode to disable optimistic
2449 // operations. Stream 0 always uses optimistic operations, so the test is not
2451 SetCacheType(net::APP_CACHE
);
2452 SetSimpleCacheMode();
2454 for (int i
= 1; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2455 EXPECT_EQ(net::OK
, DoomAllEntries());
2456 ReadWriteDestroyBuffer(i
);
2460 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomEntry
) {
2461 SetSimpleCacheMode();
2466 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomEntryNextToOpenEntry
) {
2467 SetSimpleCacheMode();
2469 DoomEntryNextToOpenEntry();
2472 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomedEntry
) {
2473 SetSimpleCacheMode();
2475 // Stream 2 is excluded because the implementation does not support writing to
2476 // it on a doomed entry, if it was previously lazily omitted.
2477 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
- 1; ++i
) {
2478 EXPECT_EQ(net::OK
, DoomAllEntries());
2483 // Creates an entry with corrupted last byte in stream 0.
2484 // Requires SimpleCacheMode.
2485 bool DiskCacheEntryTest::SimpleCacheMakeBadChecksumEntry(const std::string
& key
,
2487 disk_cache::Entry
* entry
= NULL
;
2489 if (CreateEntry(key
, &entry
) != net::OK
|| !entry
) {
2490 LOG(ERROR
) << "Could not create entry";
2494 const char data
[] = "this is very good data";
2495 const int kDataSize
= arraysize(data
);
2496 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kDataSize
));
2497 base::strlcpy(buffer
->data(), data
, kDataSize
);
2499 EXPECT_EQ(kDataSize
, WriteData(entry
, 1, 0, buffer
.get(), kDataSize
, false));
2503 // Corrupt the last byte of the data.
2504 base::FilePath entry_file0_path
= cache_path_
.AppendASCII(
2505 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key
, 0));
2506 base::File
entry_file0(entry_file0_path
,
2507 base::File::FLAG_WRITE
| base::File::FLAG_OPEN
);
2508 if (!entry_file0
.IsValid())
2512 sizeof(disk_cache::SimpleFileHeader
) + key
.size() + kDataSize
- 2;
2513 EXPECT_EQ(1, entry_file0
.Write(file_offset
, "X", 1));
2514 *data_size
= kDataSize
;
2518 // Tests that the simple cache can detect entries that have bad data.
2519 TEST_F(DiskCacheEntryTest
, SimpleCacheBadChecksum
) {
2520 SetSimpleCacheMode();
2523 const char key
[] = "the first key";
2525 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key
, &size_unused
));
2527 disk_cache::Entry
* entry
= NULL
;
2530 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
2531 ScopedEntryPtr
entry_closer(entry
);
2533 const int kReadBufferSize
= 200;
2534 EXPECT_GE(kReadBufferSize
, entry
->GetDataSize(1));
2535 scoped_refptr
<net::IOBuffer
> read_buffer(new net::IOBuffer(kReadBufferSize
));
2536 EXPECT_EQ(net::ERR_CACHE_CHECKSUM_MISMATCH
,
2537 ReadData(entry
, 1, 0, read_buffer
.get(), kReadBufferSize
));
2540 // Tests that an entry that has had an IO error occur can still be Doomed().
2541 TEST_F(DiskCacheEntryTest
, SimpleCacheErrorThenDoom
) {
2542 SetSimpleCacheMode();
2545 const char key
[] = "the first key";
2547 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key
, &size_unused
));
2549 disk_cache::Entry
* entry
= NULL
;
2551 // Open the entry, forcing an IO error.
2552 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
2553 ScopedEntryPtr
entry_closer(entry
);
2555 const int kReadBufferSize
= 200;
2556 EXPECT_GE(kReadBufferSize
, entry
->GetDataSize(1));
2557 scoped_refptr
<net::IOBuffer
> read_buffer(new net::IOBuffer(kReadBufferSize
));
2558 EXPECT_EQ(net::ERR_CACHE_CHECKSUM_MISMATCH
,
2559 ReadData(entry
, 1, 0, read_buffer
.get(), kReadBufferSize
));
2561 entry
->Doom(); // Should not crash.
2564 bool TruncatePath(const base::FilePath
& file_path
, int64 length
) {
2565 base::File
file(file_path
, base::File::FLAG_WRITE
| base::File::FLAG_OPEN
);
2566 if (!file
.IsValid())
2568 return file
.SetLength(length
);
2571 TEST_F(DiskCacheEntryTest
, SimpleCacheNoEOF
) {
2572 SetSimpleCacheMode();
2575 const char key
[] = "the first key";
2577 disk_cache::Entry
* entry
= NULL
;
2578 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
2579 disk_cache::Entry
* null
= NULL
;
2580 EXPECT_NE(null
, entry
);
2584 // Force the entry to flush to disk, so subsequent platform file operations
2586 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
2590 // Truncate the file such that the length isn't sufficient to have an EOF
2592 int kTruncationBytes
= -implicit_cast
<int>(sizeof(disk_cache::SimpleFileEOF
));
2593 const base::FilePath entry_path
= cache_path_
.AppendASCII(
2594 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key
, 0));
2595 const int64 invalid_size
=
2596 disk_cache::simple_util::GetFileSizeFromKeyAndDataSize(key
,
2598 EXPECT_TRUE(TruncatePath(entry_path
, invalid_size
));
2599 EXPECT_EQ(net::ERR_FAILED
, OpenEntry(key
, &entry
));
2600 DisableIntegrityCheck();
2603 TEST_F(DiskCacheEntryTest
, SimpleCacheNonOptimisticOperationsBasic
) {
2605 // Create, Write, Read, Close.
2606 SetCacheType(net::APP_CACHE
); // APP_CACHE doesn't use optimistic operations.
2607 SetSimpleCacheMode();
2609 disk_cache::Entry
* const null_entry
= NULL
;
2611 disk_cache::Entry
* entry
= NULL
;
2612 EXPECT_EQ(net::OK
, CreateEntry("my key", &entry
));
2613 ASSERT_NE(null_entry
, entry
);
2614 ScopedEntryPtr
entry_closer(entry
);
2616 const int kBufferSize
= 10;
2617 scoped_refptr
<net::IOBufferWithSize
> write_buffer(
2618 new net::IOBufferWithSize(kBufferSize
));
2619 CacheTestFillBuffer(write_buffer
->data(), write_buffer
->size(), false);
2621 write_buffer
->size(),
2622 WriteData(entry
, 1, 0, write_buffer
.get(), write_buffer
->size(), false));
2624 scoped_refptr
<net::IOBufferWithSize
> read_buffer(
2625 new net::IOBufferWithSize(kBufferSize
));
2626 EXPECT_EQ(read_buffer
->size(),
2627 ReadData(entry
, 1, 0, read_buffer
.get(), read_buffer
->size()));
2630 TEST_F(DiskCacheEntryTest
, SimpleCacheNonOptimisticOperationsDontBlock
) {
2632 // Create, Write, Close.
2633 SetCacheType(net::APP_CACHE
); // APP_CACHE doesn't use optimistic operations.
2634 SetSimpleCacheMode();
2636 disk_cache::Entry
* const null_entry
= NULL
;
2638 MessageLoopHelper helper
;
2639 CallbackTest
create_callback(&helper
, false);
2641 int expected_callback_runs
= 0;
2642 const int kBufferSize
= 10;
2643 scoped_refptr
<net::IOBufferWithSize
> write_buffer(
2644 new net::IOBufferWithSize(kBufferSize
));
2646 disk_cache::Entry
* entry
= NULL
;
2647 EXPECT_EQ(net::OK
, CreateEntry("my key", &entry
));
2648 ASSERT_NE(null_entry
, entry
);
2649 ScopedEntryPtr
entry_closer(entry
);
2651 CacheTestFillBuffer(write_buffer
->data(), write_buffer
->size(), false);
2652 CallbackTest
write_callback(&helper
, false);
2653 int ret
= entry
->WriteData(
2657 write_buffer
->size(),
2658 base::Bind(&CallbackTest::Run
, base::Unretained(&write_callback
)),
2660 ASSERT_EQ(net::ERR_IO_PENDING
, ret
);
2661 helper
.WaitUntilCacheIoFinished(++expected_callback_runs
);
2664 TEST_F(DiskCacheEntryTest
,
2665 SimpleCacheNonOptimisticOperationsBasicsWithoutWaiting
) {
2667 // Create, Write, Read, Close.
2668 SetCacheType(net::APP_CACHE
); // APP_CACHE doesn't use optimistic operations.
2669 SetSimpleCacheMode();
2671 disk_cache::Entry
* const null_entry
= NULL
;
2672 MessageLoopHelper helper
;
2674 disk_cache::Entry
* entry
= NULL
;
2675 // Note that |entry| is only set once CreateEntry() completed which is why we
2676 // have to wait (i.e. use the helper CreateEntry() function).
2677 EXPECT_EQ(net::OK
, CreateEntry("my key", &entry
));
2678 ASSERT_NE(null_entry
, entry
);
2679 ScopedEntryPtr
entry_closer(entry
);
2681 const int kBufferSize
= 10;
2682 scoped_refptr
<net::IOBufferWithSize
> write_buffer(
2683 new net::IOBufferWithSize(kBufferSize
));
2684 CacheTestFillBuffer(write_buffer
->data(), write_buffer
->size(), false);
2685 CallbackTest
write_callback(&helper
, false);
2686 int ret
= entry
->WriteData(
2690 write_buffer
->size(),
2691 base::Bind(&CallbackTest::Run
, base::Unretained(&write_callback
)),
2693 EXPECT_EQ(net::ERR_IO_PENDING
, ret
);
2694 int expected_callback_runs
= 1;
2696 scoped_refptr
<net::IOBufferWithSize
> read_buffer(
2697 new net::IOBufferWithSize(kBufferSize
));
2698 CallbackTest
read_callback(&helper
, false);
2699 ret
= entry
->ReadData(
2703 read_buffer
->size(),
2704 base::Bind(&CallbackTest::Run
, base::Unretained(&read_callback
)));
2705 EXPECT_EQ(net::ERR_IO_PENDING
, ret
);
2706 ++expected_callback_runs
;
2708 helper
.WaitUntilCacheIoFinished(expected_callback_runs
);
2709 ASSERT_EQ(read_buffer
->size(), write_buffer
->size());
2712 memcmp(read_buffer
->data(), write_buffer
->data(), read_buffer
->size()));
2715 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimistic
) {
2717 // Create, Write, Read, Write, Read, Close.
2718 SetSimpleCacheMode();
2720 disk_cache::Entry
* null
= NULL
;
2721 const char key
[] = "the first key";
2723 MessageLoopHelper helper
;
2724 CallbackTest
callback1(&helper
, false);
2725 CallbackTest
callback2(&helper
, false);
2726 CallbackTest
callback3(&helper
, false);
2727 CallbackTest
callback4(&helper
, false);
2728 CallbackTest
callback5(&helper
, false);
2731 const int kSize1
= 10;
2732 const int kSize2
= 20;
2733 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
2734 scoped_refptr
<net::IOBuffer
> buffer1_read(new net::IOBuffer(kSize1
));
2735 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
2736 scoped_refptr
<net::IOBuffer
> buffer2_read(new net::IOBuffer(kSize2
));
2737 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
2738 CacheTestFillBuffer(buffer2
->data(), kSize2
, false);
2740 disk_cache::Entry
* entry
= NULL
;
2741 // Create is optimistic, must return OK.
2743 cache_
->CreateEntry(key
, &entry
,
2744 base::Bind(&CallbackTest::Run
,
2745 base::Unretained(&callback1
))));
2746 EXPECT_NE(null
, entry
);
2747 ScopedEntryPtr
entry_closer(entry
);
2749 // This write may or may not be optimistic (it depends if the previous
2750 // optimistic create already finished by the time we call the write here).
2751 int ret
= entry
->WriteData(
2756 base::Bind(&CallbackTest::Run
, base::Unretained(&callback2
)),
2758 EXPECT_TRUE(kSize1
== ret
|| net::ERR_IO_PENDING
== ret
);
2759 if (net::ERR_IO_PENDING
== ret
)
2762 // This Read must not be optimistic, since we don't support that yet.
2763 EXPECT_EQ(net::ERR_IO_PENDING
,
2769 base::Bind(&CallbackTest::Run
, base::Unretained(&callback3
))));
2771 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
2772 EXPECT_EQ(0, memcmp(buffer1
->data(), buffer1_read
->data(), kSize1
));
2774 // At this point after waiting, the pending operations queue on the entry
2775 // should be empty, so the next Write operation must run as optimistic.
2782 base::Bind(&CallbackTest::Run
, base::Unretained(&callback4
)),
2785 // Lets do another read so we block until both the write and the read
2786 // operation finishes and we can then test for HasOneRef() below.
2787 EXPECT_EQ(net::ERR_IO_PENDING
,
2793 base::Bind(&CallbackTest::Run
, base::Unretained(&callback5
))));
2796 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
2797 EXPECT_EQ(0, memcmp(buffer2
->data(), buffer2_read
->data(), kSize2
));
2799 // Check that we are not leaking.
2800 EXPECT_NE(entry
, null
);
2802 static_cast<disk_cache::SimpleEntryImpl
*>(entry
)->HasOneRef());
2805 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimistic2
) {
2807 // Create, Open, Close, Close.
2808 SetSimpleCacheMode();
2810 disk_cache::Entry
* null
= NULL
;
2811 const char key
[] = "the first key";
2813 MessageLoopHelper helper
;
2814 CallbackTest
callback1(&helper
, false);
2815 CallbackTest
callback2(&helper
, false);
2817 disk_cache::Entry
* entry
= NULL
;
2819 cache_
->CreateEntry(key
, &entry
,
2820 base::Bind(&CallbackTest::Run
,
2821 base::Unretained(&callback1
))));
2822 EXPECT_NE(null
, entry
);
2823 ScopedEntryPtr
entry_closer(entry
);
2825 disk_cache::Entry
* entry2
= NULL
;
2826 ASSERT_EQ(net::ERR_IO_PENDING
,
2827 cache_
->OpenEntry(key
, &entry2
,
2828 base::Bind(&CallbackTest::Run
,
2829 base::Unretained(&callback2
))));
2830 ASSERT_TRUE(helper
.WaitUntilCacheIoFinished(1));
2832 EXPECT_NE(null
, entry2
);
2833 EXPECT_EQ(entry
, entry2
);
2835 // We have to call close twice, since we called create and open above.
2838 // Check that we are not leaking.
2840 static_cast<disk_cache::SimpleEntryImpl
*>(entry
)->HasOneRef());
2843 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimistic3
) {
2845 // Create, Close, Open, Close.
2846 SetSimpleCacheMode();
2848 disk_cache::Entry
* null
= NULL
;
2849 const char key
[] = "the first key";
2851 disk_cache::Entry
* entry
= NULL
;
2853 cache_
->CreateEntry(key
, &entry
, net::CompletionCallback()));
2854 EXPECT_NE(null
, entry
);
2857 net::TestCompletionCallback cb
;
2858 disk_cache::Entry
* entry2
= NULL
;
2859 ASSERT_EQ(net::ERR_IO_PENDING
,
2860 cache_
->OpenEntry(key
, &entry2
, cb
.callback()));
2861 ASSERT_EQ(net::OK
, cb
.GetResult(net::ERR_IO_PENDING
));
2862 ScopedEntryPtr
entry_closer(entry2
);
2864 EXPECT_NE(null
, entry2
);
2865 EXPECT_EQ(entry
, entry2
);
2867 // Check that we are not leaking.
2869 static_cast<disk_cache::SimpleEntryImpl
*>(entry2
)->HasOneRef());
2872 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimistic4
) {
2874 // Create, Close, Write, Open, Open, Close, Write, Read, Close.
2875 SetSimpleCacheMode();
2877 disk_cache::Entry
* null
= NULL
;
2878 const char key
[] = "the first key";
2880 net::TestCompletionCallback cb
;
2881 const int kSize1
= 10;
2882 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
2883 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
2884 disk_cache::Entry
* entry
= NULL
;
2887 cache_
->CreateEntry(key
, &entry
, net::CompletionCallback()));
2888 EXPECT_NE(null
, entry
);
2891 // Lets do a Write so we block until both the Close and the Write
2892 // operation finishes. Write must fail since we are writing in a closed entry.
2894 net::ERR_IO_PENDING
,
2895 entry
->WriteData(1, 0, buffer1
.get(), kSize1
, cb
.callback(), false));
2896 EXPECT_EQ(net::ERR_FAILED
, cb
.GetResult(net::ERR_IO_PENDING
));
2898 // Finish running the pending tasks so that we fully complete the close
2899 // operation and destroy the entry object.
2900 base::MessageLoop::current()->RunUntilIdle();
2902 // At this point the |entry| must have been destroyed, and called
2903 // RemoveSelfFromBackend().
2904 disk_cache::Entry
* entry2
= NULL
;
2905 ASSERT_EQ(net::ERR_IO_PENDING
,
2906 cache_
->OpenEntry(key
, &entry2
, cb
.callback()));
2907 ASSERT_EQ(net::OK
, cb
.GetResult(net::ERR_IO_PENDING
));
2908 EXPECT_NE(null
, entry2
);
2910 disk_cache::Entry
* entry3
= NULL
;
2911 ASSERT_EQ(net::ERR_IO_PENDING
,
2912 cache_
->OpenEntry(key
, &entry3
, cb
.callback()));
2913 ASSERT_EQ(net::OK
, cb
.GetResult(net::ERR_IO_PENDING
));
2914 EXPECT_NE(null
, entry3
);
2915 EXPECT_EQ(entry2
, entry3
);
2918 // The previous Close doesn't actually closes the entry since we opened it
2919 // twice, so the next Write operation must succeed and it must be able to
2920 // perform it optimistically, since there is no operation running on this
2924 1, 0, buffer1
.get(), kSize1
, net::CompletionCallback(), false));
2926 // Lets do another read so we block until both the write and the read
2927 // operation finishes and we can then test for HasOneRef() below.
2928 EXPECT_EQ(net::ERR_IO_PENDING
,
2929 entry2
->ReadData(1, 0, buffer1
.get(), kSize1
, cb
.callback()));
2930 EXPECT_EQ(kSize1
, cb
.GetResult(net::ERR_IO_PENDING
));
2932 // Check that we are not leaking.
2934 static_cast<disk_cache::SimpleEntryImpl
*>(entry2
)->HasOneRef());
2938 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimistic5
) {
2940 // Create, Doom, Write, Read, Close.
2941 SetSimpleCacheMode();
2943 disk_cache::Entry
* null
= NULL
;
2944 const char key
[] = "the first key";
2946 net::TestCompletionCallback cb
;
2947 const int kSize1
= 10;
2948 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
2949 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
2950 disk_cache::Entry
* entry
= NULL
;
2953 cache_
->CreateEntry(key
, &entry
, net::CompletionCallback()));
2954 EXPECT_NE(null
, entry
);
2955 ScopedEntryPtr
entry_closer(entry
);
2959 net::ERR_IO_PENDING
,
2960 entry
->WriteData(1, 0, buffer1
.get(), kSize1
, cb
.callback(), false));
2961 EXPECT_EQ(kSize1
, cb
.GetResult(net::ERR_IO_PENDING
));
2963 EXPECT_EQ(net::ERR_IO_PENDING
,
2964 entry
->ReadData(1, 0, buffer1
.get(), kSize1
, cb
.callback()));
2965 EXPECT_EQ(kSize1
, cb
.GetResult(net::ERR_IO_PENDING
));
2967 // Check that we are not leaking.
2969 static_cast<disk_cache::SimpleEntryImpl
*>(entry
)->HasOneRef());
2972 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimistic6
) {
2974 // Create, Write, Doom, Doom, Read, Doom, Close.
2975 SetSimpleCacheMode();
2977 disk_cache::Entry
* null
= NULL
;
2978 const char key
[] = "the first key";
2980 net::TestCompletionCallback cb
;
2981 const int kSize1
= 10;
2982 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
2983 scoped_refptr
<net::IOBuffer
> buffer1_read(new net::IOBuffer(kSize1
));
2984 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
2985 disk_cache::Entry
* entry
= NULL
;
2988 cache_
->CreateEntry(key
, &entry
, net::CompletionCallback()));
2989 EXPECT_NE(null
, entry
);
2990 ScopedEntryPtr
entry_closer(entry
);
2993 net::ERR_IO_PENDING
,
2994 entry
->WriteData(1, 0, buffer1
.get(), kSize1
, cb
.callback(), false));
2995 EXPECT_EQ(kSize1
, cb
.GetResult(net::ERR_IO_PENDING
));
3000 // This Read must not be optimistic, since we don't support that yet.
3001 EXPECT_EQ(net::ERR_IO_PENDING
,
3002 entry
->ReadData(1, 0, buffer1_read
.get(), kSize1
, cb
.callback()));
3003 EXPECT_EQ(kSize1
, cb
.GetResult(net::ERR_IO_PENDING
));
3004 EXPECT_EQ(0, memcmp(buffer1
->data(), buffer1_read
->data(), kSize1
));
3009 // Confirm that IO buffers are not referenced by the Simple Cache after a write
3011 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimisticWriteReleases
) {
3012 SetSimpleCacheMode();
3015 const char key
[] = "the first key";
3016 disk_cache::Entry
* entry
= NULL
;
3018 // First, an optimistic create.
3020 cache_
->CreateEntry(key
, &entry
, net::CompletionCallback()));
3022 ScopedEntryPtr
entry_closer(entry
);
3024 const int kWriteSize
= 512;
3025 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kWriteSize
));
3026 EXPECT_TRUE(buffer1
->HasOneRef());
3027 CacheTestFillBuffer(buffer1
->data(), kWriteSize
, false);
3029 // An optimistic write happens only when there is an empty queue of pending
3030 // operations. To ensure the queue is empty, we issue a write and wait until
3032 EXPECT_EQ(kWriteSize
,
3033 WriteData(entry
, 1, 0, buffer1
.get(), kWriteSize
, false));
3034 EXPECT_TRUE(buffer1
->HasOneRef());
3036 // Finally, we should perform an optimistic write and confirm that all
3037 // references to the IO buffer have been released.
3041 1, 0, buffer1
.get(), kWriteSize
, net::CompletionCallback(), false));
3042 EXPECT_TRUE(buffer1
->HasOneRef());
3045 TEST_F(DiskCacheEntryTest
, SimpleCacheCreateDoomRace
) {
3047 // Create, Doom, Write, Close, Check files are not on disk anymore.
3048 SetSimpleCacheMode();
3050 disk_cache::Entry
* null
= NULL
;
3051 const char key
[] = "the first key";
3053 net::TestCompletionCallback cb
;
3054 const int kSize1
= 10;
3055 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
3056 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
3057 disk_cache::Entry
* entry
= NULL
;
3060 cache_
->CreateEntry(key
, &entry
, net::CompletionCallback()));
3061 EXPECT_NE(null
, entry
);
3063 EXPECT_EQ(net::ERR_IO_PENDING
, cache_
->DoomEntry(key
, cb
.callback()));
3064 EXPECT_EQ(net::OK
, cb
.GetResult(net::ERR_IO_PENDING
));
3068 entry
->WriteData(0, 0, buffer1
.get(), kSize1
, cb
.callback(), false));
3072 // Finish running the pending tasks so that we fully complete the close
3073 // operation and destroy the entry object.
3074 base::MessageLoop::current()->RunUntilIdle();
3076 for (int i
= 0; i
< disk_cache::kSimpleEntryFileCount
; ++i
) {
3077 base::FilePath entry_file_path
= cache_path_
.AppendASCII(
3078 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key
, i
));
3079 base::File::Info info
;
3080 EXPECT_FALSE(base::GetFileInfo(entry_file_path
, &info
));
3084 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomCreateRace
) {
3085 // This test runs as APP_CACHE to make operations more synchronous. Test
3087 // Create, Doom, Create.
3088 SetCacheType(net::APP_CACHE
);
3089 SetSimpleCacheMode();
3091 disk_cache::Entry
* null
= NULL
;
3092 const char key
[] = "the first key";
3094 net::TestCompletionCallback create_callback
;
3096 disk_cache::Entry
* entry1
= NULL
;
3098 create_callback
.GetResult(
3099 cache_
->CreateEntry(key
, &entry1
, create_callback
.callback())));
3100 ScopedEntryPtr
entry1_closer(entry1
);
3101 EXPECT_NE(null
, entry1
);
3103 net::TestCompletionCallback doom_callback
;
3104 EXPECT_EQ(net::ERR_IO_PENDING
,
3105 cache_
->DoomEntry(key
, doom_callback
.callback()));
3107 disk_cache::Entry
* entry2
= NULL
;
3109 create_callback
.GetResult(
3110 cache_
->CreateEntry(key
, &entry2
, create_callback
.callback())));
3111 ScopedEntryPtr
entry2_closer(entry2
);
3112 EXPECT_EQ(net::OK
, doom_callback
.GetResult(net::ERR_IO_PENDING
));
3115 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomDoom
) {
3117 // Create, Doom, Create, Doom (1st entry), Open.
3118 SetSimpleCacheMode();
3120 disk_cache::Entry
* null
= NULL
;
3122 const char key
[] = "the first key";
3124 disk_cache::Entry
* entry1
= NULL
;
3125 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry1
));
3126 ScopedEntryPtr
entry1_closer(entry1
);
3127 EXPECT_NE(null
, entry1
);
3129 EXPECT_EQ(net::OK
, DoomEntry(key
));
3131 disk_cache::Entry
* entry2
= NULL
;
3132 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry2
));
3133 ScopedEntryPtr
entry2_closer(entry2
);
3134 EXPECT_NE(null
, entry2
);
3136 // Redundantly dooming entry1 should not delete entry2.
3137 disk_cache::SimpleEntryImpl
* simple_entry1
=
3138 static_cast<disk_cache::SimpleEntryImpl
*>(entry1
);
3139 net::TestCompletionCallback cb
;
3141 cb
.GetResult(simple_entry1
->DoomEntry(cb
.callback())));
3143 disk_cache::Entry
* entry3
= NULL
;
3144 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry3
));
3145 ScopedEntryPtr
entry3_closer(entry3
);
3146 EXPECT_NE(null
, entry3
);
3149 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomCreateDoom
) {
3151 // Create, Doom, Create, Doom.
3152 SetSimpleCacheMode();
3155 disk_cache::Entry
* null
= NULL
;
3157 const char key
[] = "the first key";
3159 disk_cache::Entry
* entry1
= NULL
;
3160 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry1
));
3161 ScopedEntryPtr
entry1_closer(entry1
);
3162 EXPECT_NE(null
, entry1
);
3166 disk_cache::Entry
* entry2
= NULL
;
3167 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry2
));
3168 ScopedEntryPtr
entry2_closer(entry2
);
3169 EXPECT_NE(null
, entry2
);
3173 // This test passes if it doesn't crash.
3176 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomCloseCreateCloseOpen
) {
3177 // Test sequence: Create, Doom, Close, Create, Close, Open.
3178 SetSimpleCacheMode();
3181 disk_cache::Entry
* null
= NULL
;
3183 const char key
[] = "this is a key";
3185 disk_cache::Entry
* entry1
= NULL
;
3186 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry1
));
3187 ScopedEntryPtr
entry1_closer(entry1
);
3188 EXPECT_NE(null
, entry1
);
3191 entry1_closer
.reset();
3194 disk_cache::Entry
* entry2
= NULL
;
3195 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry2
));
3196 ScopedEntryPtr
entry2_closer(entry2
);
3197 EXPECT_NE(null
, entry2
);
3199 entry2_closer
.reset();
3202 disk_cache::Entry
* entry3
= NULL
;
3203 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry3
));
3204 ScopedEntryPtr
entry3_closer(entry3
);
3205 EXPECT_NE(null
, entry3
);
3208 // Checks that an optimistic Create would fail later on a racing Open.
3209 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimisticCreateFailsOnOpen
) {
3210 SetSimpleCacheMode();
3213 // Create a corrupt file in place of a future entry. Optimistic create should
3214 // initially succeed, but realize later that creation failed.
3215 const std::string key
= "the key";
3216 net::TestCompletionCallback cb
;
3217 disk_cache::Entry
* entry
= NULL
;
3218 disk_cache::Entry
* entry2
= NULL
;
3220 EXPECT_TRUE(disk_cache::simple_util::CreateCorruptFileForTests(
3222 EXPECT_EQ(net::OK
, cache_
->CreateEntry(key
, &entry
, cb
.callback()));
3224 ScopedEntryPtr
entry_closer(entry
);
3225 ASSERT_NE(net::OK
, OpenEntry(key
, &entry2
));
3227 // Check that we are not leaking.
3229 static_cast<disk_cache::SimpleEntryImpl
*>(entry
)->HasOneRef());
3231 DisableIntegrityCheck();
3234 // Tests that old entries are evicted while new entries remain in the index.
3235 // This test relies on non-mandatory properties of the simple Cache Backend:
3236 // LRU eviction, specific values of high-watermark and low-watermark etc.
3237 // When changing the eviction algorithm, the test will have to be re-engineered.
3238 TEST_F(DiskCacheEntryTest
, SimpleCacheEvictOldEntries
) {
3239 const int kMaxSize
= 200 * 1024;
3240 const int kWriteSize
= kMaxSize
/ 10;
3241 const int kNumExtraEntries
= 12;
3242 SetSimpleCacheMode();
3243 SetMaxSize(kMaxSize
);
3246 std::string
key1("the first key");
3247 disk_cache::Entry
* entry
;
3248 ASSERT_EQ(net::OK
, CreateEntry(key1
, &entry
));
3249 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kWriteSize
));
3250 CacheTestFillBuffer(buffer
->data(), kWriteSize
, false);
3251 EXPECT_EQ(kWriteSize
,
3252 WriteData(entry
, 1, 0, buffer
.get(), kWriteSize
, false));
3256 std::string
key2("the key prefix");
3257 for (int i
= 0; i
< kNumExtraEntries
; i
++) {
3258 if (i
== kNumExtraEntries
- 2) {
3259 // Create a distinct timestamp for the last two entries. These entries
3260 // will be checked for outliving the eviction.
3263 ASSERT_EQ(net::OK
, CreateEntry(key2
+ base::StringPrintf("%d", i
), &entry
));
3264 ScopedEntryPtr
entry_closer(entry
);
3265 EXPECT_EQ(kWriteSize
,
3266 WriteData(entry
, 1, 0, buffer
.get(), kWriteSize
, false));
3269 // TODO(pasko): Find a way to wait for the eviction task(s) to finish by using
3270 // the internal knowledge about |SimpleBackendImpl|.
3271 ASSERT_NE(net::OK
, OpenEntry(key1
, &entry
))
3272 << "Should have evicted the old entry";
3273 for (int i
= 0; i
< 2; i
++) {
3274 int entry_no
= kNumExtraEntries
- i
- 1;
3275 // Generally there is no guarantee that at this point the backround eviction
3276 // is finished. We are testing the positive case, i.e. when the eviction
3277 // never reaches this entry, should be non-flaky.
3278 ASSERT_EQ(net::OK
, OpenEntry(key2
+ base::StringPrintf("%d", entry_no
),
3280 << "Should not have evicted fresh entry " << entry_no
;
3285 // Tests that if a read and a following in-flight truncate are both in progress
3286 // simultaniously that they both can occur successfully. See
3287 // http://crbug.com/239223
3288 TEST_F(DiskCacheEntryTest
, SimpleCacheInFlightTruncate
) {
3289 SetSimpleCacheMode();
3292 const char key
[] = "the first key";
3294 const int kBufferSize
= 1024;
3295 scoped_refptr
<net::IOBuffer
> write_buffer(new net::IOBuffer(kBufferSize
));
3296 CacheTestFillBuffer(write_buffer
->data(), kBufferSize
, false);
3298 disk_cache::Entry
* entry
= NULL
;
3299 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3301 EXPECT_EQ(kBufferSize
,
3302 WriteData(entry
, 1, 0, write_buffer
.get(), kBufferSize
, false));
3306 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3307 ScopedEntryPtr
entry_closer(entry
);
3309 MessageLoopHelper helper
;
3312 // Make a short read.
3313 const int kReadBufferSize
= 512;
3314 scoped_refptr
<net::IOBuffer
> read_buffer(new net::IOBuffer(kReadBufferSize
));
3315 CallbackTest
read_callback(&helper
, false);
3316 EXPECT_EQ(net::ERR_IO_PENDING
,
3321 base::Bind(&CallbackTest::Run
,
3322 base::Unretained(&read_callback
))));
3325 // Truncate the entry to the length of that read.
3326 scoped_refptr
<net::IOBuffer
>
3327 truncate_buffer(new net::IOBuffer(kReadBufferSize
));
3328 CacheTestFillBuffer(truncate_buffer
->data(), kReadBufferSize
, false);
3329 CallbackTest
truncate_callback(&helper
, false);
3330 EXPECT_EQ(net::ERR_IO_PENDING
,
3333 truncate_buffer
.get(),
3335 base::Bind(&CallbackTest::Run
,
3336 base::Unretained(&truncate_callback
)),
3340 // Wait for both the read and truncation to finish, and confirm that both
3342 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
3343 EXPECT_EQ(kReadBufferSize
, read_callback
.last_result());
3344 EXPECT_EQ(kReadBufferSize
, truncate_callback
.last_result());
3346 memcmp(write_buffer
->data(), read_buffer
->data(), kReadBufferSize
));
3349 // Tests that if a write and a read dependant on it are both in flight
3350 // simultaneiously that they both can complete successfully without erroneous
3351 // early returns. See http://crbug.com/239223
3352 TEST_F(DiskCacheEntryTest
, SimpleCacheInFlightRead
) {
3353 SetSimpleCacheMode();
3356 const char key
[] = "the first key";
3357 disk_cache::Entry
* entry
= NULL
;
3359 cache_
->CreateEntry(key
, &entry
, net::CompletionCallback()));
3360 ScopedEntryPtr
entry_closer(entry
);
3362 const int kBufferSize
= 1024;
3363 scoped_refptr
<net::IOBuffer
> write_buffer(new net::IOBuffer(kBufferSize
));
3364 CacheTestFillBuffer(write_buffer
->data(), kBufferSize
, false);
3366 MessageLoopHelper helper
;
3369 CallbackTest
write_callback(&helper
, false);
3370 EXPECT_EQ(net::ERR_IO_PENDING
,
3375 base::Bind(&CallbackTest::Run
,
3376 base::Unretained(&write_callback
)),
3380 scoped_refptr
<net::IOBuffer
> read_buffer(new net::IOBuffer(kBufferSize
));
3381 CallbackTest
read_callback(&helper
, false);
3382 EXPECT_EQ(net::ERR_IO_PENDING
,
3387 base::Bind(&CallbackTest::Run
,
3388 base::Unretained(&read_callback
))));
3391 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
3392 EXPECT_EQ(kBufferSize
, write_callback
.last_result());
3393 EXPECT_EQ(kBufferSize
, read_callback
.last_result());
3394 EXPECT_EQ(0, memcmp(write_buffer
->data(), read_buffer
->data(), kBufferSize
));
3397 TEST_F(DiskCacheEntryTest
, SimpleCacheOpenCreateRaceWithNoIndex
) {
3398 SetSimpleCacheMode();
3399 DisableSimpleCacheWaitForIndex();
3400 DisableIntegrityCheck();
3403 // Assume the index is not initialized, which is likely, since we are blocking
3404 // the IO thread from executing the index finalization step.
3405 disk_cache::Entry
* entry1
;
3406 net::TestCompletionCallback cb1
;
3407 disk_cache::Entry
* entry2
;
3408 net::TestCompletionCallback cb2
;
3409 int rv1
= cache_
->OpenEntry("key", &entry1
, cb1
.callback());
3410 int rv2
= cache_
->CreateEntry("key", &entry2
, cb2
.callback());
3412 EXPECT_EQ(net::ERR_FAILED
, cb1
.GetResult(rv1
));
3413 ASSERT_EQ(net::OK
, cb2
.GetResult(rv2
));
3417 // Checks that reading two entries simultaneously does not discard a CRC check.
3418 // TODO(pasko): make it work with Simple Cache.
3419 TEST_F(DiskCacheEntryTest
, DISABLED_SimpleCacheMultipleReadersCheckCRC
) {
3420 SetSimpleCacheMode();
3423 const char key
[] = "key";
3426 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key
, &size
));
3428 scoped_refptr
<net::IOBuffer
> read_buffer1(new net::IOBuffer(size
));
3429 scoped_refptr
<net::IOBuffer
> read_buffer2(new net::IOBuffer(size
));
3431 // Advance the first reader a little.
3432 disk_cache::Entry
* entry
= NULL
;
3433 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3434 EXPECT_EQ(1, ReadData(entry
, 0, 0, read_buffer1
.get(), 1));
3436 // Make the second reader pass the point where the first one is, and close.
3437 disk_cache::Entry
* entry2
= NULL
;
3438 EXPECT_EQ(net::OK
, OpenEntry(key
, &entry2
));
3439 EXPECT_EQ(1, ReadData(entry2
, 0, 0, read_buffer2
.get(), 1));
3440 EXPECT_EQ(1, ReadData(entry2
, 0, 1, read_buffer2
.get(), 1));
3443 // Read the data till the end should produce an error.
3444 EXPECT_GT(0, ReadData(entry
, 0, 1, read_buffer1
.get(), size
));
3446 DisableIntegrityCheck();
3449 // Checking one more scenario of overlapped reading of a bad entry.
3450 // Differs from the |SimpleCacheMultipleReadersCheckCRC| only by the order of
3452 TEST_F(DiskCacheEntryTest
, SimpleCacheMultipleReadersCheckCRC2
) {
3453 SetSimpleCacheMode();
3456 const char key
[] = "key";
3458 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key
, &size
));
3460 scoped_refptr
<net::IOBuffer
> read_buffer1(new net::IOBuffer(size
));
3461 scoped_refptr
<net::IOBuffer
> read_buffer2(new net::IOBuffer(size
));
3463 // Advance the first reader a little.
3464 disk_cache::Entry
* entry
= NULL
;
3465 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3466 ScopedEntryPtr
entry_closer(entry
);
3467 EXPECT_EQ(1, ReadData(entry
, 1, 0, read_buffer1
.get(), 1));
3469 // Advance the 2nd reader by the same amount.
3470 disk_cache::Entry
* entry2
= NULL
;
3471 EXPECT_EQ(net::OK
, OpenEntry(key
, &entry2
));
3472 ScopedEntryPtr
entry2_closer(entry2
);
3473 EXPECT_EQ(1, ReadData(entry2
, 1, 0, read_buffer2
.get(), 1));
3475 // Continue reading 1st.
3476 EXPECT_GT(0, ReadData(entry
, 1, 1, read_buffer1
.get(), size
));
3478 // This read should fail as well because we have previous read failures.
3479 EXPECT_GT(0, ReadData(entry2
, 1, 1, read_buffer2
.get(), 1));
3480 DisableIntegrityCheck();
3483 // Test if we can sequentially read each subset of the data until all the data
3484 // is read, then the CRC is calculated correctly and the reads are successful.
3485 TEST_F(DiskCacheEntryTest
, SimpleCacheReadCombineCRC
) {
3487 // Create, Write, Read (first half of data), Read (second half of data),
3489 SetSimpleCacheMode();
3491 disk_cache::Entry
* null
= NULL
;
3492 const char key
[] = "the first key";
3494 const int kHalfSize
= 200;
3495 const int kSize
= 2 * kHalfSize
;
3496 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
3497 CacheTestFillBuffer(buffer1
->data(), kSize
, false);
3498 disk_cache::Entry
* entry
= NULL
;
3500 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3501 EXPECT_NE(null
, entry
);
3503 EXPECT_EQ(kSize
, WriteData(entry
, 1, 0, buffer1
.get(), kSize
, false));
3506 disk_cache::Entry
* entry2
= NULL
;
3507 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry2
));
3508 EXPECT_EQ(entry
, entry2
);
3510 // Read the first half of the data.
3512 int buf_len
= kHalfSize
;
3513 scoped_refptr
<net::IOBuffer
> buffer1_read1(new net::IOBuffer(buf_len
));
3514 EXPECT_EQ(buf_len
, ReadData(entry2
, 1, offset
, buffer1_read1
.get(), buf_len
));
3515 EXPECT_EQ(0, memcmp(buffer1
->data(), buffer1_read1
->data(), buf_len
));
3517 // Read the second half of the data.
3519 buf_len
= kHalfSize
;
3520 scoped_refptr
<net::IOBuffer
> buffer1_read2(new net::IOBuffer(buf_len
));
3521 EXPECT_EQ(buf_len
, ReadData(entry2
, 1, offset
, buffer1_read2
.get(), buf_len
));
3522 char* buffer1_data
= buffer1
->data() + offset
;
3523 EXPECT_EQ(0, memcmp(buffer1_data
, buffer1_read2
->data(), buf_len
));
3525 // Check that we are not leaking.
3526 EXPECT_NE(entry
, null
);
3528 static_cast<disk_cache::SimpleEntryImpl
*>(entry
)->HasOneRef());
3533 // Test if we can write the data not in sequence and read correctly. In
3534 // this case the CRC will not be present.
3535 TEST_F(DiskCacheEntryTest
, SimpleCacheNonSequentialWrite
) {
3537 // Create, Write (second half of data), Write (first half of data), Read,
3539 SetSimpleCacheMode();
3541 disk_cache::Entry
* null
= NULL
;
3542 const char key
[] = "the first key";
3544 const int kHalfSize
= 200;
3545 const int kSize
= 2 * kHalfSize
;
3546 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
3547 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize
));
3548 CacheTestFillBuffer(buffer1
->data(), kSize
, false);
3549 char* buffer1_data
= buffer1
->data() + kHalfSize
;
3550 memcpy(buffer2
->data(), buffer1_data
, kHalfSize
);
3552 disk_cache::Entry
* entry
= NULL
;
3553 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3555 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
3556 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3557 EXPECT_NE(null
, entry
);
3559 int offset
= kHalfSize
;
3560 int buf_len
= kHalfSize
;
3563 WriteData(entry
, i
, offset
, buffer2
.get(), buf_len
, false));
3565 buf_len
= kHalfSize
;
3567 WriteData(entry
, i
, offset
, buffer1
.get(), buf_len
, false));
3570 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3572 scoped_refptr
<net::IOBuffer
> buffer1_read1(new net::IOBuffer(kSize
));
3573 EXPECT_EQ(kSize
, ReadData(entry
, i
, 0, buffer1_read1
.get(), kSize
));
3574 EXPECT_EQ(0, memcmp(buffer1
->data(), buffer1_read1
->data(), kSize
));
3575 // Check that we are not leaking.
3576 ASSERT_NE(entry
, null
);
3577 EXPECT_TRUE(static_cast<disk_cache::SimpleEntryImpl
*>(entry
)->HasOneRef());
3582 // Test that changing stream1 size does not affect stream0 (stream0 and stream1
3583 // are stored in the same file in Simple Cache).
3584 TEST_F(DiskCacheEntryTest
, SimpleCacheStream1SizeChanges
) {
3585 SetSimpleCacheMode();
3587 disk_cache::Entry
* entry
= NULL
;
3588 const char key
[] = "the key";
3589 const int kSize
= 100;
3590 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
3591 scoped_refptr
<net::IOBuffer
> buffer_read(new net::IOBuffer(kSize
));
3592 CacheTestFillBuffer(buffer
->data(), kSize
, false);
3594 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3597 // Write something into stream0.
3598 EXPECT_EQ(kSize
, WriteData(entry
, 0, 0, buffer
.get(), kSize
, false));
3599 EXPECT_EQ(kSize
, ReadData(entry
, 0, 0, buffer_read
.get(), kSize
));
3600 EXPECT_EQ(0, memcmp(buffer
->data(), buffer_read
->data(), kSize
));
3604 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3605 int stream1_size
= 100;
3606 EXPECT_EQ(0, WriteData(entry
, 1, stream1_size
, buffer
.get(), 0, false));
3607 EXPECT_EQ(stream1_size
, entry
->GetDataSize(1));
3610 // Check that stream0 data has not been modified and that the EOF record for
3611 // stream 0 contains a crc.
3612 // The entry needs to be reopened before checking the crc: Open will perform
3613 // the synchronization with the previous Close. This ensures the EOF records
3614 // have been written to disk before we attempt to read them independently.
3615 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3616 base::FilePath entry_file0_path
= cache_path_
.AppendASCII(
3617 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key
, 0));
3618 base::File
entry_file0(entry_file0_path
,
3619 base::File::FLAG_READ
| base::File::FLAG_OPEN
);
3620 ASSERT_TRUE(entry_file0
.IsValid());
3622 int data_size
[disk_cache::kSimpleEntryStreamCount
] = {kSize
, stream1_size
, 0};
3623 int sparse_data_size
= 0;
3624 disk_cache::SimpleEntryStat
entry_stat(
3625 base::Time::Now(), base::Time::Now(), data_size
, sparse_data_size
);
3626 int eof_offset
= entry_stat
.GetEOFOffsetInFile(key
, 0);
3627 disk_cache::SimpleFileEOF eof_record
;
3628 ASSERT_EQ(static_cast<int>(sizeof(eof_record
)),
3629 entry_file0
.Read(eof_offset
, reinterpret_cast<char*>(&eof_record
),
3630 sizeof(eof_record
)));
3631 EXPECT_EQ(disk_cache::kSimpleFinalMagicNumber
, eof_record
.final_magic_number
);
3632 EXPECT_TRUE((eof_record
.flags
& disk_cache::SimpleFileEOF::FLAG_HAS_CRC32
) ==
3633 disk_cache::SimpleFileEOF::FLAG_HAS_CRC32
);
3635 buffer_read
= new net::IOBuffer(kSize
);
3636 EXPECT_EQ(kSize
, ReadData(entry
, 0, 0, buffer_read
.get(), kSize
));
3637 EXPECT_EQ(0, memcmp(buffer
->data(), buffer_read
->data(), kSize
));
3641 EXPECT_EQ(0, WriteData(entry
, 1, stream1_size
, buffer
.get(), 0, true));
3642 EXPECT_EQ(stream1_size
, entry
->GetDataSize(1));
3645 // Check that stream0 data has not been modified.
3646 buffer_read
= new net::IOBuffer(kSize
);
3647 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3648 EXPECT_EQ(kSize
, ReadData(entry
, 0, 0, buffer_read
.get(), kSize
));
3649 EXPECT_EQ(0, memcmp(buffer
->data(), buffer_read
->data(), kSize
));
3654 // Test that writing within the range for which the crc has already been
3655 // computed will properly invalidate the computed crc.
3656 TEST_F(DiskCacheEntryTest
, SimpleCacheCRCRewrite
) {
3658 // Create, Write (big data), Write (small data in the middle), Close.
3659 // Open, Read (all), Close.
3660 SetSimpleCacheMode();
3662 disk_cache::Entry
* null
= NULL
;
3663 const char key
[] = "the first key";
3665 const int kHalfSize
= 200;
3666 const int kSize
= 2 * kHalfSize
;
3667 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
3668 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kHalfSize
));
3669 CacheTestFillBuffer(buffer1
->data(), kSize
, false);
3670 CacheTestFillBuffer(buffer2
->data(), kHalfSize
, false);
3672 disk_cache::Entry
* entry
= NULL
;
3673 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3674 EXPECT_NE(null
, entry
);
3677 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
3678 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3680 int buf_len
= kSize
;
3683 WriteData(entry
, i
, offset
, buffer1
.get(), buf_len
, false));
3685 buf_len
= kHalfSize
;
3687 WriteData(entry
, i
, offset
, buffer2
.get(), buf_len
, false));
3690 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3692 scoped_refptr
<net::IOBuffer
> buffer1_read1(new net::IOBuffer(kSize
));
3693 EXPECT_EQ(kSize
, ReadData(entry
, i
, 0, buffer1_read1
.get(), kSize
));
3694 EXPECT_EQ(0, memcmp(buffer1
->data(), buffer1_read1
->data(), kHalfSize
));
3697 memcmp(buffer2
->data(), buffer1_read1
->data() + kHalfSize
, kHalfSize
));
3703 bool DiskCacheEntryTest::SimpleCacheThirdStreamFileExists(const char* key
) {
3704 int third_stream_file_index
=
3705 disk_cache::simple_util::GetFileIndexFromStreamIndex(2);
3706 base::FilePath third_stream_file_path
= cache_path_
.AppendASCII(
3707 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(
3708 key
, third_stream_file_index
));
3709 return PathExists(third_stream_file_path
);
3712 void DiskCacheEntryTest::SyncDoomEntry(const char* key
) {
3713 net::TestCompletionCallback callback
;
3714 cache_
->DoomEntry(key
, callback
.callback());
3715 callback
.WaitForResult();
3718 // Check that a newly-created entry with no third-stream writes omits the
3719 // third stream file.
3720 TEST_F(DiskCacheEntryTest
, SimpleCacheOmittedThirdStream1
) {
3721 SetSimpleCacheMode();
3724 const char key
[] = "key";
3726 disk_cache::Entry
* entry
;
3728 // Create entry and close without writing: third stream file should be
3729 // omitted, since the stream is empty.
3730 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3732 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3735 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3738 // Check that a newly-created entry with only a single zero-offset, zero-length
3739 // write omits the third stream file.
3740 TEST_F(DiskCacheEntryTest
, SimpleCacheOmittedThirdStream2
) {
3741 SetSimpleCacheMode();
3744 const int kHalfSize
= 8;
3745 const int kSize
= kHalfSize
* 2;
3746 const char key
[] = "key";
3747 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
3748 CacheTestFillBuffer(buffer
->data(), kHalfSize
, false);
3750 disk_cache::Entry
* entry
;
3752 // Create entry, write empty buffer to third stream, and close: third stream
3753 // should still be omitted, since the entry ignores writes that don't modify
3754 // data or change the length.
3755 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3756 EXPECT_EQ(0, WriteData(entry
, 2, 0, buffer
.get(), 0, true));
3758 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3761 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3764 // Check that we can read back data written to the third stream.
3765 TEST_F(DiskCacheEntryTest
, SimpleCacheOmittedThirdStream3
) {
3766 SetSimpleCacheMode();
3769 const int kHalfSize
= 8;
3770 const int kSize
= kHalfSize
* 2;
3771 const char key
[] = "key";
3772 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
3773 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize
));
3774 CacheTestFillBuffer(buffer1
->data(), kHalfSize
, false);
3776 disk_cache::Entry
* entry
;
3778 // Create entry, write data to third stream, and close: third stream should
3779 // not be omitted, since it contains data. Re-open entry and ensure there
3780 // are that many bytes in the third stream.
3781 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3782 EXPECT_EQ(kHalfSize
, WriteData(entry
, 2, 0, buffer1
.get(), kHalfSize
, true));
3784 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key
));
3786 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3787 EXPECT_EQ(kHalfSize
, ReadData(entry
, 2, 0, buffer2
.get(), kSize
));
3788 EXPECT_EQ(0, memcmp(buffer1
->data(), buffer2
->data(), kHalfSize
));
3790 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key
));
3793 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3796 // Check that we remove the third stream file upon opening an entry and finding
3797 // the third stream empty. (This is the upgrade path for entries written
3798 // before the third stream was optional.)
3799 TEST_F(DiskCacheEntryTest
, SimpleCacheOmittedThirdStream4
) {
3800 SetSimpleCacheMode();
3803 const int kHalfSize
= 8;
3804 const int kSize
= kHalfSize
* 2;
3805 const char key
[] = "key";
3806 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
3807 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize
));
3808 CacheTestFillBuffer(buffer1
->data(), kHalfSize
, false);
3810 disk_cache::Entry
* entry
;
3812 // Create entry, write data to third stream, truncate third stream back to
3813 // empty, and close: third stream will not initially be omitted, since entry
3814 // creates the file when the first significant write comes in, and only
3815 // removes it on open if it is empty. Reopen, ensure that the file is
3816 // deleted, and that there's no data in the third stream.
3817 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3818 EXPECT_EQ(kHalfSize
, WriteData(entry
, 2, 0, buffer1
.get(), kHalfSize
, true));
3819 EXPECT_EQ(0, WriteData(entry
, 2, 0, buffer1
.get(), 0, true));
3821 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key
));
3823 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3824 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3825 EXPECT_EQ(0, ReadData(entry
, 2, 0, buffer2
.get(), kSize
));
3827 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3830 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3833 // Check that we don't accidentally create the third stream file once the entry
3835 TEST_F(DiskCacheEntryTest
, SimpleCacheOmittedThirdStream5
) {
3836 SetSimpleCacheMode();
3839 const int kHalfSize
= 8;
3840 const int kSize
= kHalfSize
* 2;
3841 const char key
[] = "key";
3842 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
3843 CacheTestFillBuffer(buffer
->data(), kHalfSize
, false);
3845 disk_cache::Entry
* entry
;
3847 // Create entry, doom entry, write data to third stream, and close: third
3848 // stream should not exist. (Note: We don't care if the write fails, just
3849 // that it doesn't cause the file to be created on disk.)
3850 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3852 WriteData(entry
, 2, 0, buffer
.get(), kHalfSize
, true);
3854 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3857 // There could be a race between Doom and an optimistic write.
3858 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomOptimisticWritesRace
) {
3860 // Create, first Write, second Write, Close.
3862 SetSimpleCacheMode();
3864 disk_cache::Entry
* null
= NULL
;
3865 const char key
[] = "the first key";
3867 const int kSize
= 200;
3868 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
3869 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize
));
3870 CacheTestFillBuffer(buffer1
->data(), kSize
, false);
3871 CacheTestFillBuffer(buffer2
->data(), kSize
, false);
3873 // The race only happens on stream 1 and stream 2.
3874 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
3875 ASSERT_EQ(net::OK
, DoomAllEntries());
3876 disk_cache::Entry
* entry
= NULL
;
3878 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3879 EXPECT_NE(null
, entry
);
3883 ASSERT_EQ(net::OK
, DoomAllEntries());
3884 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3885 EXPECT_NE(null
, entry
);
3888 int buf_len
= kSize
;
3889 // This write should not be optimistic (since create is).
3891 WriteData(entry
, i
, offset
, buffer1
.get(), buf_len
, false));
3894 // This write should be optimistic.
3896 WriteData(entry
, i
, offset
, buffer2
.get(), buf_len
, false));
3899 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3900 EXPECT_NE(null
, entry
);
3907 // Tests for a regression in crbug.com/317138 , in which deleting an already
3908 // doomed entry was removing the active entry from the index.
3909 TEST_F(DiskCacheEntryTest
, SimpleCachePreserveActiveEntries
) {
3910 SetSimpleCacheMode();
3913 disk_cache::Entry
* null
= NULL
;
3915 const char key
[] = "this is a key";
3917 disk_cache::Entry
* entry1
= NULL
;
3918 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry1
));
3919 ScopedEntryPtr
entry1_closer(entry1
);
3920 EXPECT_NE(null
, entry1
);
3923 disk_cache::Entry
* entry2
= NULL
;
3924 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry2
));
3925 ScopedEntryPtr
entry2_closer(entry2
);
3926 EXPECT_NE(null
, entry2
);
3927 entry2_closer
.reset();
3929 // Closing then reopening entry2 insures that entry2 is serialized, and so
3930 // it can be opened from files without error.
3932 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry2
));
3933 EXPECT_NE(null
, entry2
);
3934 entry2_closer
.reset(entry2
);
3936 scoped_refptr
<disk_cache::SimpleEntryImpl
>
3937 entry1_refptr
= static_cast<disk_cache::SimpleEntryImpl
*>(entry1
);
3939 // If crbug.com/317138 has regressed, this will remove |entry2| from
3940 // the backend's |active_entries_| while |entry2| is still alive and its
3941 // files are still on disk.
3942 entry1_closer
.reset();
3945 // Close does not have a callback. However, we need to be sure the close is
3946 // finished before we continue the test. We can take advantage of how the ref
3947 // counting of a SimpleEntryImpl works to fake out a callback: When the
3948 // last Close() call is made to an entry, an IO operation is sent to the
3949 // synchronous entry to close the platform files. This IO operation holds a
3950 // ref pointer to the entry, which expires when the operation is done. So,
3951 // we take a refpointer, and watch the SimpleEntry object until it has only
3952 // one ref; this indicates the IO operation is complete.
3953 while (!entry1_refptr
->HasOneRef()) {
3954 base::PlatformThread::YieldCurrentThread();
3955 base::MessageLoop::current()->RunUntilIdle();
3957 entry1_refptr
= NULL
;
3959 // In the bug case, this new entry ends up being a duplicate object pointing
3960 // at the same underlying files.
3961 disk_cache::Entry
* entry3
= NULL
;
3962 EXPECT_EQ(net::OK
, OpenEntry(key
, &entry3
));
3963 ScopedEntryPtr
entry3_closer(entry3
);
3964 EXPECT_NE(null
, entry3
);
3966 // The test passes if these two dooms do not crash.
3971 TEST_F(DiskCacheEntryTest
, SimpleCacheBasicSparseIO
) {
3972 SetSimpleCacheMode();
3977 TEST_F(DiskCacheEntryTest
, SimpleCacheHugeSparseIO
) {
3978 SetSimpleCacheMode();
3983 TEST_F(DiskCacheEntryTest
, SimpleCacheGetAvailableRange
) {
3984 SetSimpleCacheMode();
3986 GetAvailableRange();
3989 TEST_F(DiskCacheEntryTest
, DISABLED_SimpleCacheCouldBeSparse
) {
3990 SetSimpleCacheMode();
3995 TEST_F(DiskCacheEntryTest
, SimpleCacheUpdateSparseEntry
) {
3996 SetSimpleCacheMode();
3998 UpdateSparseEntry();
4001 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomSparseEntry
) {
4002 SetSimpleCacheMode();
4007 TEST_F(DiskCacheEntryTest
, SimpleCachePartialSparseEntry
) {
4008 SetSimpleCacheMode();
4010 PartialSparseEntry();
4013 TEST_F(DiskCacheEntryTest
, SimpleCacheTruncateLargeSparseFile
) {
4014 const int kSize
= 1024;
4016 SetSimpleCacheMode();
4017 // An entry is allowed sparse data 1/10 the size of the cache, so this size
4018 // allows for one |kSize|-sized range plus overhead, but not two ranges.
4019 SetMaxSize(kSize
* 15);
4022 const char key
[] = "key";
4023 disk_cache::Entry
* null
= NULL
;
4024 disk_cache::Entry
* entry
;
4025 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
4026 EXPECT_NE(null
, entry
);
4028 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
4029 CacheTestFillBuffer(buffer
->data(), kSize
, false);
4030 net::TestCompletionCallback callback
;
4033 // Verify initial conditions.
4034 ret
= entry
->ReadSparseData(0, buffer
.get(), kSize
, callback
.callback());
4035 EXPECT_EQ(0, callback
.GetResult(ret
));
4037 ret
= entry
->ReadSparseData(kSize
, buffer
.get(), kSize
, callback
.callback());
4038 EXPECT_EQ(0, callback
.GetResult(ret
));
4040 // Write a range and make sure it reads back.
4041 ret
= entry
->WriteSparseData(0, buffer
.get(), kSize
, callback
.callback());
4042 EXPECT_EQ(kSize
, callback
.GetResult(ret
));
4044 ret
= entry
->ReadSparseData(0, buffer
.get(), kSize
, callback
.callback());
4045 EXPECT_EQ(kSize
, callback
.GetResult(ret
));
4047 // Write another range and make sure it reads back.
4048 ret
= entry
->WriteSparseData(kSize
, buffer
.get(), kSize
, callback
.callback());
4049 EXPECT_EQ(kSize
, callback
.GetResult(ret
));
4051 ret
= entry
->ReadSparseData(kSize
, buffer
.get(), kSize
, callback
.callback());
4052 EXPECT_EQ(kSize
, callback
.GetResult(ret
));
4054 // Make sure the first range was removed when the second was written.
4055 ret
= entry
->ReadSparseData(0, buffer
.get(), kSize
, callback
.callback());
4056 EXPECT_EQ(0, callback
.GetResult(ret
));