1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "sandbox/linux/bpf_dsl/bpf_dsl.h"
12 #include <sys/prctl.h>
13 #include <sys/ptrace.h>
14 #include <sys/syscall.h>
16 #include <sys/types.h>
17 #include <sys/utsname.h>
19 #include <sys/socket.h>
22 // Work-around for buggy headers in Android's NDK
25 #include <linux/futex.h>
27 #include "base/bind.h"
28 #include "base/logging.h"
29 #include "base/macros.h"
30 #include "base/memory/scoped_ptr.h"
31 #include "base/posix/eintr_wrapper.h"
32 #include "base/synchronization/waitable_event.h"
33 #include "base/threading/thread.h"
34 #include "build/build_config.h"
35 #include "sandbox/linux/bpf_dsl/policy.h"
36 #include "sandbox/linux/seccomp-bpf/bpf_tests.h"
37 #include "sandbox/linux/seccomp-bpf/die.h"
38 #include "sandbox/linux/seccomp-bpf/errorcode.h"
39 #include "sandbox/linux/seccomp-bpf/linux_seccomp.h"
40 #include "sandbox/linux/seccomp-bpf/sandbox_bpf.h"
41 #include "sandbox/linux/seccomp-bpf/syscall.h"
42 #include "sandbox/linux/seccomp-bpf/trap.h"
43 #include "sandbox/linux/services/linux_syscalls.h"
44 #include "sandbox/linux/services/syscall_wrappers.h"
45 #include "sandbox/linux/syscall_broker/broker_process.h"
46 #include "sandbox/linux/tests/scoped_temporary_file.h"
47 #include "sandbox/linux/tests/unit_tests.h"
48 #include "testing/gtest/include/gtest/gtest.h"
50 // Workaround for Android's prctl.h file.
52 #define PR_GET_ENDIAN 19
54 #ifndef PR_CAPBSET_READ
55 #define PR_CAPBSET_READ 23
56 #define PR_CAPBSET_DROP 24
64 const int kExpectedReturnValue
= 42;
65 const char kSandboxDebuggingEnv
[] = "CHROME_SANDBOX_DEBUGGING";
67 // Set the global environment to allow the use of UnsafeTrap() policies.
68 void EnableUnsafeTraps() {
69 // The use of UnsafeTrap() causes us to print a warning message. This is
70 // generally desirable, but it results in the unittest failing, as it doesn't
71 // expect any messages on "stderr". So, temporarily disable messages. The
72 // BPF_TEST() is guaranteed to turn messages back on, after the policy
73 // function has completed.
74 setenv(kSandboxDebuggingEnv
, "t", 0);
75 Die::SuppressInfoMessages(true);
78 // This test should execute no matter whether we have kernel support. So,
79 // we make it a TEST() instead of a BPF_TEST().
80 TEST(SandboxBPF
, DISABLE_ON_TSAN(CallSupports
)) {
81 // We check that we don't crash, but it's ok if the kernel doesn't
83 bool seccomp_bpf_supported
=
84 SandboxBPF::SupportsSeccompSandbox(-1) == SandboxBPF::STATUS_AVAILABLE
;
85 // We want to log whether or not seccomp BPF is actually supported
86 // since actual test coverage depends on it.
87 RecordProperty("SeccompBPFSupported",
88 seccomp_bpf_supported
? "true." : "false.");
89 std::cout
<< "Seccomp BPF supported: "
90 << (seccomp_bpf_supported
? "true." : "false.") << "\n";
91 RecordProperty("PointerSize", sizeof(void*));
92 std::cout
<< "Pointer size: " << sizeof(void*) << "\n";
95 SANDBOX_TEST(SandboxBPF
, DISABLE_ON_TSAN(CallSupportsTwice
)) {
96 SandboxBPF::SupportsSeccompSandbox(-1);
97 SandboxBPF::SupportsSeccompSandbox(-1);
100 // BPF_TEST does a lot of the boiler-plate code around setting up a
101 // policy and optional passing data between the caller, the policy and
102 // any Trap() handlers. This is great for writing short and concise tests,
103 // and it helps us accidentally forgetting any of the crucial steps in
104 // setting up the sandbox. But it wouldn't hurt to have at least one test
105 // that explicitly walks through all these steps.
107 intptr_t IncreaseCounter(const struct arch_seccomp_data
& args
, void* aux
) {
109 int* counter
= static_cast<int*>(aux
);
113 class VerboseAPITestingPolicy
: public Policy
{
115 explicit VerboseAPITestingPolicy(int* counter_ptr
)
116 : counter_ptr_(counter_ptr
) {}
117 ~VerboseAPITestingPolicy() override
{}
119 ResultExpr
EvaluateSyscall(int sysno
) const override
{
120 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
121 if (sysno
== __NR_uname
) {
122 return Trap(IncreaseCounter
, counter_ptr_
);
130 DISALLOW_COPY_AND_ASSIGN(VerboseAPITestingPolicy
);
133 SANDBOX_TEST(SandboxBPF
, DISABLE_ON_TSAN(VerboseAPITesting
)) {
134 if (SandboxBPF::SupportsSeccompSandbox(-1) ==
135 sandbox::SandboxBPF::STATUS_AVAILABLE
) {
136 static int counter
= 0;
139 sandbox
.SetSandboxPolicy(new VerboseAPITestingPolicy(&counter
));
140 BPF_ASSERT(sandbox
.StartSandbox(SandboxBPF::PROCESS_SINGLE_THREADED
));
142 BPF_ASSERT_EQ(0, counter
);
143 BPF_ASSERT_EQ(0, syscall(__NR_uname
, 0));
144 BPF_ASSERT_EQ(1, counter
);
145 BPF_ASSERT_EQ(1, syscall(__NR_uname
, 0));
146 BPF_ASSERT_EQ(2, counter
);
150 // A simple blacklist test
152 class BlacklistNanosleepPolicy
: public Policy
{
154 BlacklistNanosleepPolicy() {}
155 ~BlacklistNanosleepPolicy() override
{}
157 ResultExpr
EvaluateSyscall(int sysno
) const override
{
158 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
161 return Error(EACCES
);
167 static void AssertNanosleepFails() {
168 const struct timespec ts
= {0, 0};
170 BPF_ASSERT_EQ(-1, HANDLE_EINTR(syscall(__NR_nanosleep
, &ts
, NULL
)));
171 BPF_ASSERT_EQ(EACCES
, errno
);
175 DISALLOW_COPY_AND_ASSIGN(BlacklistNanosleepPolicy
);
178 BPF_TEST_C(SandboxBPF
, ApplyBasicBlacklistPolicy
, BlacklistNanosleepPolicy
) {
179 BlacklistNanosleepPolicy::AssertNanosleepFails();
182 // Now do a simple whitelist test
184 class WhitelistGetpidPolicy
: public Policy
{
186 WhitelistGetpidPolicy() {}
187 ~WhitelistGetpidPolicy() override
{}
189 ResultExpr
EvaluateSyscall(int sysno
) const override
{
190 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
193 case __NR_exit_group
:
196 return Error(ENOMEM
);
201 DISALLOW_COPY_AND_ASSIGN(WhitelistGetpidPolicy
);
204 BPF_TEST_C(SandboxBPF
, ApplyBasicWhitelistPolicy
, WhitelistGetpidPolicy
) {
205 // getpid() should be allowed
207 BPF_ASSERT(sys_getpid() > 0);
208 BPF_ASSERT(errno
== 0);
210 // getpgid() should be denied
211 BPF_ASSERT(getpgid(0) == -1);
212 BPF_ASSERT(errno
== ENOMEM
);
215 // A simple blacklist policy, with a SIGSYS handler
216 intptr_t EnomemHandler(const struct arch_seccomp_data
& args
, void* aux
) {
217 // We also check that the auxiliary data is correct
219 *(static_cast<int*>(aux
)) = kExpectedReturnValue
;
223 class BlacklistNanosleepTrapPolicy
: public Policy
{
225 explicit BlacklistNanosleepTrapPolicy(int* aux
) : aux_(aux
) {}
226 ~BlacklistNanosleepTrapPolicy() override
{}
228 ResultExpr
EvaluateSyscall(int sysno
) const override
{
229 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
232 return Trap(EnomemHandler
, aux_
);
241 DISALLOW_COPY_AND_ASSIGN(BlacklistNanosleepTrapPolicy
);
245 BasicBlacklistWithSigsys
,
246 BlacklistNanosleepTrapPolicy
,
247 int /* (*BPF_AUX) */) {
248 // getpid() should work properly
250 BPF_ASSERT(sys_getpid() > 0);
251 BPF_ASSERT(errno
== 0);
253 // Our Auxiliary Data, should be reset by the signal handler
255 const struct timespec ts
= {0, 0};
256 BPF_ASSERT(syscall(__NR_nanosleep
, &ts
, NULL
) == -1);
257 BPF_ASSERT(errno
== ENOMEM
);
259 // We expect the signal handler to modify AuxData
260 BPF_ASSERT(*BPF_AUX
== kExpectedReturnValue
);
263 // A simple test that verifies we can return arbitrary errno values.
265 class ErrnoTestPolicy
: public Policy
{
268 ~ErrnoTestPolicy() override
{}
270 ResultExpr
EvaluateSyscall(int sysno
) const override
;
273 DISALLOW_COPY_AND_ASSIGN(ErrnoTestPolicy
);
276 ResultExpr
ErrnoTestPolicy::EvaluateSyscall(int sysno
) const {
277 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
279 case __NR_dup3
: // dup2 is a wrapper of dup3 in android
280 #if defined(__NR_dup2)
283 // Pretend that dup2() worked, but don't actually do anything.
286 #if defined(__NR_setuid32)
292 #if defined(__NR_setgid32)
295 // Return maximum errno value (typically 4095).
296 return Error(ErrorCode::ERR_MAX_ERRNO
);
298 // Return errno = 42;
305 BPF_TEST_C(SandboxBPF
, ErrnoTest
, ErrnoTestPolicy
) {
306 // Verify that dup2() returns success, but doesn't actually run.
308 BPF_ASSERT(pipe(fds
) == 0);
309 BPF_ASSERT(pipe(fds
+ 2) == 0);
310 BPF_ASSERT(dup2(fds
[2], fds
[0]) == 0);
312 BPF_ASSERT(write(fds
[1], "\x55", 1) == 1);
313 BPF_ASSERT(write(fds
[3], "\xAA", 1) == 1);
314 BPF_ASSERT(read(fds
[0], buf
, 1) == 1);
316 // If dup2() executed, we will read \xAA, but it dup2() has been turned
317 // into a no-op by our policy, then we will read \x55.
318 BPF_ASSERT(buf
[0] == '\x55');
320 // Verify that we can return the minimum and maximum errno values.
322 BPF_ASSERT(setuid(0) == -1);
323 BPF_ASSERT(errno
== 1);
325 // On Android, errno is only supported up to 255, otherwise errno
326 // processing is skipped.
327 // We work around this (crbug.com/181647).
328 if (sandbox::IsAndroid() && setgid(0) != -1) {
330 BPF_ASSERT(setgid(0) == -ErrorCode::ERR_MAX_ERRNO
);
331 BPF_ASSERT(errno
== 0);
334 BPF_ASSERT(setgid(0) == -1);
335 BPF_ASSERT(errno
== ErrorCode::ERR_MAX_ERRNO
);
338 // Finally, test an errno in between the minimum and maximum.
340 struct utsname uts_buf
;
341 BPF_ASSERT(uname(&uts_buf
) == -1);
342 BPF_ASSERT(errno
== 42);
345 // Testing the stacking of two sandboxes
347 class StackingPolicyPartOne
: public Policy
{
349 StackingPolicyPartOne() {}
350 ~StackingPolicyPartOne() override
{}
352 ResultExpr
EvaluateSyscall(int sysno
) const override
{
353 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
356 const Arg
<int> arg(0);
357 return If(arg
== 0, Allow()).Else(Error(EPERM
));
365 DISALLOW_COPY_AND_ASSIGN(StackingPolicyPartOne
);
368 class StackingPolicyPartTwo
: public Policy
{
370 StackingPolicyPartTwo() {}
371 ~StackingPolicyPartTwo() override
{}
373 ResultExpr
EvaluateSyscall(int sysno
) const override
{
374 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
377 const Arg
<int> arg(0);
378 return If(arg
== 0, Error(EINVAL
)).Else(Allow());
386 DISALLOW_COPY_AND_ASSIGN(StackingPolicyPartTwo
);
389 BPF_TEST_C(SandboxBPF
, StackingPolicy
, StackingPolicyPartOne
) {
391 BPF_ASSERT(syscall(__NR_getppid
, 0) > 0);
392 BPF_ASSERT(errno
== 0);
394 BPF_ASSERT(syscall(__NR_getppid
, 1) == -1);
395 BPF_ASSERT(errno
== EPERM
);
397 // Stack a second sandbox with its own policy. Verify that we can further
398 // restrict filters, but we cannot relax existing filters.
400 sandbox
.SetSandboxPolicy(new StackingPolicyPartTwo());
401 BPF_ASSERT(sandbox
.StartSandbox(SandboxBPF::PROCESS_SINGLE_THREADED
));
404 BPF_ASSERT(syscall(__NR_getppid
, 0) == -1);
405 BPF_ASSERT(errno
== EINVAL
);
407 BPF_ASSERT(syscall(__NR_getppid
, 1) == -1);
408 BPF_ASSERT(errno
== EPERM
);
411 // A more complex, but synthetic policy. This tests the correctness of the BPF
412 // program by iterating through all syscalls and checking for an errno that
413 // depends on the syscall number. Unlike the Verifier, this exercises the BPF
414 // interpreter in the kernel.
416 // We try to make sure we exercise optimizations in the BPF compiler. We make
417 // sure that the compiler can have an opportunity to coalesce syscalls with
418 // contiguous numbers and we also make sure that disjoint sets can return the
420 int SysnoToRandomErrno(int sysno
) {
421 // Small contiguous sets of 3 system calls return an errno equal to the
422 // index of that set + 1 (so that we never return a NUL errno).
423 return ((sysno
& ~3) >> 2) % 29 + 1;
426 class SyntheticPolicy
: public Policy
{
429 ~SyntheticPolicy() override
{}
431 ResultExpr
EvaluateSyscall(int sysno
) const override
{
432 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
433 if (sysno
== __NR_exit_group
|| sysno
== __NR_write
) {
434 // exit_group() is special, we really need it to work.
435 // write() is needed for BPF_ASSERT() to report a useful error message.
438 return Error(SysnoToRandomErrno(sysno
));
442 DISALLOW_COPY_AND_ASSIGN(SyntheticPolicy
);
445 BPF_TEST_C(SandboxBPF
, SyntheticPolicy
, SyntheticPolicy
) {
446 // Ensure that that kExpectedReturnValue + syscallnumber + 1 does not int
448 BPF_ASSERT(std::numeric_limits
<int>::max() - kExpectedReturnValue
- 1 >=
449 static_cast<int>(MAX_PUBLIC_SYSCALL
));
451 for (int syscall_number
= static_cast<int>(MIN_SYSCALL
);
452 syscall_number
<= static_cast<int>(MAX_PUBLIC_SYSCALL
);
454 if (syscall_number
== __NR_exit_group
|| syscall_number
== __NR_write
) {
455 // exit_group() is special
459 BPF_ASSERT(syscall(syscall_number
) == -1);
460 BPF_ASSERT(errno
== SysnoToRandomErrno(syscall_number
));
465 // A simple policy that tests whether ARM private system calls are supported
466 // by our BPF compiler and by the BPF interpreter in the kernel.
468 // For ARM private system calls, return an errno equal to their offset from
469 // MIN_PRIVATE_SYSCALL plus 1 (to avoid NUL errno).
470 int ArmPrivateSysnoToErrno(int sysno
) {
471 if (sysno
>= static_cast<int>(MIN_PRIVATE_SYSCALL
) &&
472 sysno
<= static_cast<int>(MAX_PRIVATE_SYSCALL
)) {
473 return (sysno
- MIN_PRIVATE_SYSCALL
) + 1;
479 class ArmPrivatePolicy
: public Policy
{
481 ArmPrivatePolicy() {}
482 virtual ~ArmPrivatePolicy() {}
484 virtual ResultExpr
EvaluateSyscall(int sysno
) const override
{
485 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
486 // Start from |__ARM_NR_set_tls + 1| so as not to mess with actual
487 // ARM private system calls.
488 if (sysno
>= static_cast<int>(__ARM_NR_set_tls
+ 1) &&
489 sysno
<= static_cast<int>(MAX_PRIVATE_SYSCALL
)) {
490 return Error(ArmPrivateSysnoToErrno(sysno
));
496 DISALLOW_COPY_AND_ASSIGN(ArmPrivatePolicy
);
499 BPF_TEST_C(SandboxBPF
, ArmPrivatePolicy
, ArmPrivatePolicy
) {
500 for (int syscall_number
= static_cast<int>(__ARM_NR_set_tls
+ 1);
501 syscall_number
<= static_cast<int>(MAX_PRIVATE_SYSCALL
);
504 BPF_ASSERT(syscall(syscall_number
) == -1);
505 BPF_ASSERT(errno
== ArmPrivateSysnoToErrno(syscall_number
));
508 #endif // defined(__arm__)
510 intptr_t CountSyscalls(const struct arch_seccomp_data
& args
, void* aux
) {
511 // Count all invocations of our callback function.
512 ++*reinterpret_cast<int*>(aux
);
514 // Verify that within the callback function all filtering is temporarily
516 BPF_ASSERT(sys_getpid() > 1);
518 // Verify that we can now call the underlying system call without causing
519 // infinite recursion.
520 return SandboxBPF::ForwardSyscall(args
);
523 class GreyListedPolicy
: public Policy
{
525 explicit GreyListedPolicy(int* aux
) : aux_(aux
) {
526 // Set the global environment for unsafe traps once.
529 ~GreyListedPolicy() override
{}
531 ResultExpr
EvaluateSyscall(int sysno
) const override
{
532 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
533 // Some system calls must always be allowed, if our policy wants to make
534 // use of UnsafeTrap()
535 if (SandboxBPF::IsRequiredForUnsafeTrap(sysno
)) {
537 } else if (sysno
== __NR_getpid
) {
541 // Allow (and count) all other system calls.
542 return UnsafeTrap(CountSyscalls
, aux_
);
549 DISALLOW_COPY_AND_ASSIGN(GreyListedPolicy
);
552 BPF_TEST(SandboxBPF
, GreyListedPolicy
, GreyListedPolicy
, int /* (*BPF_AUX) */) {
553 BPF_ASSERT(sys_getpid() == -1);
554 BPF_ASSERT(errno
== EPERM
);
555 BPF_ASSERT(*BPF_AUX
== 0);
556 BPF_ASSERT(syscall(__NR_geteuid
) == syscall(__NR_getuid
));
557 BPF_ASSERT(*BPF_AUX
== 2);
559 BPF_ASSERT(!syscall(__NR_prctl
,
565 BPF_ASSERT(*BPF_AUX
== 3);
569 SANDBOX_TEST(SandboxBPF
, EnableUnsafeTrapsInSigSysHandler
) {
570 // Disabling warning messages that could confuse our test framework.
571 setenv(kSandboxDebuggingEnv
, "t", 0);
572 Die::SuppressInfoMessages(true);
574 unsetenv(kSandboxDebuggingEnv
);
575 SANDBOX_ASSERT(Trap::EnableUnsafeTrapsInSigSysHandler() == false);
576 setenv(kSandboxDebuggingEnv
, "", 1);
577 SANDBOX_ASSERT(Trap::EnableUnsafeTrapsInSigSysHandler() == false);
578 setenv(kSandboxDebuggingEnv
, "t", 1);
579 SANDBOX_ASSERT(Trap::EnableUnsafeTrapsInSigSysHandler() == true);
582 intptr_t PrctlHandler(const struct arch_seccomp_data
& args
, void*) {
583 if (args
.args
[0] == PR_CAPBSET_DROP
&& static_cast<int>(args
.args
[1]) == -1) {
584 // prctl(PR_CAPBSET_DROP, -1) is never valid. The kernel will always
585 // return an error. But our handler allows this call.
588 return SandboxBPF::ForwardSyscall(args
);
592 class PrctlPolicy
: public Policy
{
595 ~PrctlPolicy() override
{}
597 ResultExpr
EvaluateSyscall(int sysno
) const override
{
598 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
599 setenv(kSandboxDebuggingEnv
, "t", 0);
600 Die::SuppressInfoMessages(true);
602 if (sysno
== __NR_prctl
) {
603 // Handle prctl() inside an UnsafeTrap()
604 return UnsafeTrap(PrctlHandler
, NULL
);
607 // Allow all other system calls.
612 DISALLOW_COPY_AND_ASSIGN(PrctlPolicy
);
615 BPF_TEST_C(SandboxBPF
, ForwardSyscall
, PrctlPolicy
) {
616 // This call should never be allowed. But our policy will intercept it and
617 // let it pass successfully.
619 !prctl(PR_CAPBSET_DROP
, -1, (void*)NULL
, (void*)NULL
, (void*)NULL
));
621 // Verify that the call will fail, if it makes it all the way to the kernel.
623 prctl(PR_CAPBSET_DROP
, -2, (void*)NULL
, (void*)NULL
, (void*)NULL
) == -1);
625 // And verify that other uses of prctl() work just fine.
627 BPF_ASSERT(!syscall(__NR_prctl
,
635 // Finally, verify that system calls other than prctl() are completely
636 // unaffected by our policy.
637 struct utsname uts
= {};
638 BPF_ASSERT(!uname(&uts
));
639 BPF_ASSERT(!strcmp(uts
.sysname
, "Linux"));
642 intptr_t AllowRedirectedSyscall(const struct arch_seccomp_data
& args
, void*) {
643 return SandboxBPF::ForwardSyscall(args
);
646 class RedirectAllSyscallsPolicy
: public Policy
{
648 RedirectAllSyscallsPolicy() {}
649 ~RedirectAllSyscallsPolicy() override
{}
651 ResultExpr
EvaluateSyscall(int sysno
) const override
;
654 DISALLOW_COPY_AND_ASSIGN(RedirectAllSyscallsPolicy
);
657 ResultExpr
RedirectAllSyscallsPolicy::EvaluateSyscall(int sysno
) const {
658 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
659 setenv(kSandboxDebuggingEnv
, "t", 0);
660 Die::SuppressInfoMessages(true);
662 // Some system calls must always be allowed, if our policy wants to make
663 // use of UnsafeTrap()
664 if (SandboxBPF::IsRequiredForUnsafeTrap(sysno
))
666 return UnsafeTrap(AllowRedirectedSyscall
, NULL
);
669 int bus_handler_fd_
= -1;
671 void SigBusHandler(int, siginfo_t
* info
, void* void_context
) {
672 BPF_ASSERT(write(bus_handler_fd_
, "\x55", 1) == 1);
675 BPF_TEST_C(SandboxBPF
, SigBus
, RedirectAllSyscallsPolicy
) {
676 // We use the SIGBUS bit in the signal mask as a thread-local boolean
677 // value in the implementation of UnsafeTrap(). This is obviously a bit
678 // of a hack that could conceivably interfere with code that uses SIGBUS
679 // in more traditional ways. This test verifies that basic functionality
680 // of SIGBUS is not impacted, but it is certainly possibly to construe
681 // more complex uses of signals where our use of the SIGBUS mask is not
682 // 100% transparent. This is expected behavior.
684 BPF_ASSERT(socketpair(AF_UNIX
, SOCK_STREAM
, 0, fds
) == 0);
685 bus_handler_fd_
= fds
[1];
686 struct sigaction sa
= {};
687 sa
.sa_sigaction
= SigBusHandler
;
688 sa
.sa_flags
= SA_SIGINFO
;
689 BPF_ASSERT(sigaction(SIGBUS
, &sa
, NULL
) == 0);
692 BPF_ASSERT(read(fds
[0], &c
, 1) == 1);
693 BPF_ASSERT(close(fds
[0]) == 0);
694 BPF_ASSERT(close(fds
[1]) == 0);
695 BPF_ASSERT(c
== 0x55);
698 BPF_TEST_C(SandboxBPF
, SigMask
, RedirectAllSyscallsPolicy
) {
699 // Signal masks are potentially tricky to handle. For instance, if we
700 // ever tried to update them from inside a Trap() or UnsafeTrap() handler,
701 // the call to sigreturn() at the end of the signal handler would undo
702 // all of our efforts. So, it makes sense to test that sigprocmask()
703 // works, even if we have a policy in place that makes use of UnsafeTrap().
704 // In practice, this works because we force sigprocmask() to be handled
705 // entirely in the kernel.
706 sigset_t mask0
, mask1
, mask2
;
708 // Call sigprocmask() to verify that SIGUSR2 wasn't blocked, if we didn't
709 // change the mask (it shouldn't have been, as it isn't blocked by default
712 // Use SIGUSR2 because Android seems to use SIGUSR1 for some purpose.
714 BPF_ASSERT(!sigprocmask(SIG_BLOCK
, &mask0
, &mask1
));
715 BPF_ASSERT(!sigismember(&mask1
, SIGUSR2
));
717 // Try again, and this time we verify that we can block it. This
718 // requires a second call to sigprocmask().
719 sigaddset(&mask0
, SIGUSR2
);
720 BPF_ASSERT(!sigprocmask(SIG_BLOCK
, &mask0
, NULL
));
721 BPF_ASSERT(!sigprocmask(SIG_BLOCK
, NULL
, &mask2
));
722 BPF_ASSERT(sigismember(&mask2
, SIGUSR2
));
725 BPF_TEST_C(SandboxBPF
, UnsafeTrapWithErrno
, RedirectAllSyscallsPolicy
) {
726 // An UnsafeTrap() (or for that matter, a Trap()) has to report error
727 // conditions by returning an exit code in the range -1..-4096. This
728 // should happen automatically if using ForwardSyscall(). If the TrapFnc()
729 // uses some other method to make system calls, then it is responsible
730 // for computing the correct return code.
731 // This test verifies that ForwardSyscall() does the correct thing.
733 // The glibc system wrapper will ultimately set errno for us. So, from normal
734 // userspace, all of this should be completely transparent.
736 BPF_ASSERT(close(-1) == -1);
737 BPF_ASSERT(errno
== EBADF
);
739 // Explicitly avoid the glibc wrapper. This is not normally the way anybody
740 // would make system calls, but it allows us to verify that we don't
741 // accidentally mess with errno, when we shouldn't.
743 struct arch_seccomp_data args
= {};
744 args
.nr
= __NR_close
;
746 BPF_ASSERT(SandboxBPF::ForwardSyscall(args
) == -EBADF
);
747 BPF_ASSERT(errno
== 0);
750 bool NoOpCallback() {
754 // Test a trap handler that makes use of a broker process to open().
756 class InitializedOpenBroker
{
758 InitializedOpenBroker() : initialized_(false) {
759 std::vector
<std::string
> allowed_files
;
760 allowed_files
.push_back("/proc/allowed");
761 allowed_files
.push_back("/proc/cpuinfo");
763 broker_process_
.reset(new syscall_broker::BrokerProcess(
764 EPERM
, allowed_files
, std::vector
<std::string
>()));
765 BPF_ASSERT(broker_process() != NULL
);
766 BPF_ASSERT(broker_process_
->Init(base::Bind(&NoOpCallback
)));
770 bool initialized() { return initialized_
; }
771 class syscall_broker::BrokerProcess
* broker_process() {
772 return broker_process_
.get();
777 scoped_ptr
<class syscall_broker::BrokerProcess
> broker_process_
;
778 DISALLOW_COPY_AND_ASSIGN(InitializedOpenBroker
);
781 intptr_t BrokerOpenTrapHandler(const struct arch_seccomp_data
& args
,
784 syscall_broker::BrokerProcess
* broker_process
=
785 static_cast<syscall_broker::BrokerProcess
*>(aux
);
787 case __NR_faccessat
: // access is a wrapper of faccessat in android
788 BPF_ASSERT(static_cast<int>(args
.args
[0]) == AT_FDCWD
);
789 return broker_process
->Access(reinterpret_cast<const char*>(args
.args
[1]),
790 static_cast<int>(args
.args
[2]));
791 #if defined(__NR_access)
793 return broker_process
->Access(reinterpret_cast<const char*>(args
.args
[0]),
794 static_cast<int>(args
.args
[1]));
796 #if defined(__NR_open)
798 return broker_process
->Open(reinterpret_cast<const char*>(args
.args
[0]),
799 static_cast<int>(args
.args
[1]));
802 // We only call open() so if we arrive here, it's because glibc uses
803 // the openat() system call.
804 BPF_ASSERT(static_cast<int>(args
.args
[0]) == AT_FDCWD
);
805 return broker_process
->Open(reinterpret_cast<const char*>(args
.args
[1]),
806 static_cast<int>(args
.args
[2]));
813 class DenyOpenPolicy
: public Policy
{
815 explicit DenyOpenPolicy(InitializedOpenBroker
* iob
) : iob_(iob
) {}
816 ~DenyOpenPolicy() override
{}
818 ResultExpr
EvaluateSyscall(int sysno
) const override
{
819 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
823 #if defined(__NR_access)
826 #if defined(__NR_open)
830 // We get a InitializedOpenBroker class, but our trap handler wants
831 // the syscall_broker::BrokerProcess object.
832 return Trap(BrokerOpenTrapHandler
, iob_
->broker_process());
839 InitializedOpenBroker
* iob_
;
841 DISALLOW_COPY_AND_ASSIGN(DenyOpenPolicy
);
844 // We use a InitializedOpenBroker class, so that we can run unsandboxed
845 // code in its constructor, which is the only way to do so in a BPF_TEST.
849 InitializedOpenBroker
/* (*BPF_AUX) */) {
850 BPF_ASSERT(BPF_AUX
->initialized());
851 syscall_broker::BrokerProcess
* broker_process
= BPF_AUX
->broker_process();
852 BPF_ASSERT(broker_process
!= NULL
);
854 // First, use the broker "manually"
855 BPF_ASSERT(broker_process
->Open("/proc/denied", O_RDONLY
) == -EPERM
);
856 BPF_ASSERT(broker_process
->Access("/proc/denied", R_OK
) == -EPERM
);
857 BPF_ASSERT(broker_process
->Open("/proc/allowed", O_RDONLY
) == -ENOENT
);
858 BPF_ASSERT(broker_process
->Access("/proc/allowed", R_OK
) == -ENOENT
);
860 // Now use glibc's open() as an external library would.
861 BPF_ASSERT(open("/proc/denied", O_RDONLY
) == -1);
862 BPF_ASSERT(errno
== EPERM
);
864 BPF_ASSERT(open("/proc/allowed", O_RDONLY
) == -1);
865 BPF_ASSERT(errno
== ENOENT
);
867 // Also test glibc's openat(), some versions of libc use it transparently
868 // instead of open().
869 BPF_ASSERT(openat(AT_FDCWD
, "/proc/denied", O_RDONLY
) == -1);
870 BPF_ASSERT(errno
== EPERM
);
872 BPF_ASSERT(openat(AT_FDCWD
, "/proc/allowed", O_RDONLY
) == -1);
873 BPF_ASSERT(errno
== ENOENT
);
875 // And test glibc's access().
876 BPF_ASSERT(access("/proc/denied", R_OK
) == -1);
877 BPF_ASSERT(errno
== EPERM
);
879 BPF_ASSERT(access("/proc/allowed", R_OK
) == -1);
880 BPF_ASSERT(errno
== ENOENT
);
882 // This is also white listed and does exist.
883 int cpu_info_access
= access("/proc/cpuinfo", R_OK
);
884 BPF_ASSERT(cpu_info_access
== 0);
885 int cpu_info_fd
= open("/proc/cpuinfo", O_RDONLY
);
886 BPF_ASSERT(cpu_info_fd
>= 0);
888 BPF_ASSERT(read(cpu_info_fd
, buf
, sizeof(buf
)) > 0);
891 // Simple test demonstrating how to use SandboxBPF::Cond()
893 class SimpleCondTestPolicy
: public Policy
{
895 SimpleCondTestPolicy() {}
896 ~SimpleCondTestPolicy() override
{}
898 ResultExpr
EvaluateSyscall(int sysno
) const override
;
901 DISALLOW_COPY_AND_ASSIGN(SimpleCondTestPolicy
);
904 ResultExpr
SimpleCondTestPolicy::EvaluateSyscall(int sysno
) const {
905 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
907 // We deliberately return unusual errno values upon failure, so that we
908 // can uniquely test for these values. In a "real" policy, you would want
909 // to return more traditional values.
910 int flags_argument_position
= -1;
912 #if defined(__NR_open)
914 flags_argument_position
= 1;
916 case __NR_openat
: { // open can be a wrapper for openat(2).
917 if (sysno
== __NR_openat
)
918 flags_argument_position
= 2;
920 // Allow opening files for reading, but don't allow writing.
921 COMPILE_ASSERT(O_RDONLY
== 0, O_RDONLY_must_be_all_zero_bits
);
922 const Arg
<int> flags(flags_argument_position
);
923 return If((flags
& O_ACCMODE
) != 0, Error(EROFS
)).Else(Allow());
926 // Allow prctl(PR_SET_DUMPABLE) and prctl(PR_GET_DUMPABLE), but
927 // disallow everything else.
928 const Arg
<int> option(0);
929 return If(option
== PR_SET_DUMPABLE
|| option
== PR_GET_DUMPABLE
, Allow())
930 .Else(Error(ENOMEM
));
937 BPF_TEST_C(SandboxBPF
, SimpleCondTest
, SimpleCondTestPolicy
) {
939 BPF_ASSERT((fd
= open("/proc/self/comm", O_RDWR
)) == -1);
940 BPF_ASSERT(errno
== EROFS
);
941 BPF_ASSERT((fd
= open("/proc/self/comm", O_RDONLY
)) >= 0);
945 BPF_ASSERT((ret
= prctl(PR_GET_DUMPABLE
)) >= 0);
946 BPF_ASSERT(prctl(PR_SET_DUMPABLE
, 1 - ret
) == 0);
947 BPF_ASSERT(prctl(PR_GET_ENDIAN
, &ret
) == -1);
948 BPF_ASSERT(errno
== ENOMEM
);
951 // This test exercises the SandboxBPF::Cond() method by building a complex
952 // tree of conditional equality operations. It then makes system calls and
953 // verifies that they return the values that we expected from our BPF
955 class EqualityStressTest
{
957 EqualityStressTest() {
958 // We want a deterministic test
961 // Iterates over system call numbers and builds a random tree of
963 // We are actually constructing a graph of ArgValue objects. This
964 // graph will later be used to a) compute our sandbox policy, and
965 // b) drive the code that verifies the output from the BPF program.
967 kNumTestCases
< (int)(MAX_PUBLIC_SYSCALL
- MIN_SYSCALL
- 10),
968 num_test_cases_must_be_significantly_smaller_than_num_system_calls
);
969 for (int sysno
= MIN_SYSCALL
, end
= kNumTestCases
; sysno
< end
; ++sysno
) {
970 if (IsReservedSyscall(sysno
)) {
971 // Skip reserved system calls. This ensures that our test frame
972 // work isn't impacted by the fact that we are overriding
973 // a lot of different system calls.
975 arg_values_
.push_back(NULL
);
977 arg_values_
.push_back(
978 RandomArgValue(rand() % kMaxArgs
, 0, rand() % kMaxArgs
));
983 ~EqualityStressTest() {
984 for (std::vector
<ArgValue
*>::iterator iter
= arg_values_
.begin();
985 iter
!= arg_values_
.end();
987 DeleteArgValue(*iter
);
991 ResultExpr
Policy(int sysno
) {
992 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
993 if (sysno
< 0 || sysno
>= (int)arg_values_
.size() ||
994 IsReservedSyscall(sysno
)) {
995 // We only return ErrorCode values for the system calls that
996 // are part of our test data. Every other system call remains
1000 // ToErrorCode() turns an ArgValue object into an ErrorCode that is
1001 // suitable for use by a sandbox policy.
1002 return ToErrorCode(arg_values_
[sysno
]);
1006 void VerifyFilter() {
1007 // Iterate over all system calls. Skip the system calls that have
1008 // previously been determined as being reserved.
1009 for (int sysno
= 0; sysno
< (int)arg_values_
.size(); ++sysno
) {
1010 if (!arg_values_
[sysno
]) {
1011 // Skip reserved system calls.
1014 // Verify that system calls return the values that we expect them to
1015 // return. This involves passing different combinations of system call
1016 // parameters in order to exercise all possible code paths through the
1017 // BPF filter program.
1018 // We arbitrarily start by setting all six system call arguments to
1019 // zero. And we then recursive traverse our tree of ArgValues to
1020 // determine the necessary combinations of parameters.
1021 intptr_t args
[6] = {};
1022 Verify(sysno
, args
, *arg_values_
[sysno
]);
1028 int argno
; // Argument number to inspect.
1029 int size
; // Number of test cases (must be > 0).
1031 uint32_t k_value
; // Value to compare syscall arg against.
1032 int err
; // If non-zero, errno value to return.
1033 struct ArgValue
* arg_value
; // Otherwise, more args needs inspecting.
1035 int err
; // If none of the tests passed, this is what
1036 struct ArgValue
* arg_value
; // we'll return (this is the "else" branch).
1039 bool IsReservedSyscall(int sysno
) {
1040 // There are a handful of system calls that we should never use in our
1041 // test cases. These system calls are needed to allow the test framework
1043 // If we wanted to write fully generic code, there are more system calls
1044 // that could be listed here, and it is quite difficult to come up with a
1045 // truly comprehensive list. After all, we are deliberately making system
1046 // calls unavailable. In practice, we have a pretty good idea of the system
1047 // calls that will be made by this particular test. So, this small list is
1048 // sufficient. But if anybody copy'n'pasted this code for other uses, they
1049 // would have to review that the list.
1050 return sysno
== __NR_read
|| sysno
== __NR_write
|| sysno
== __NR_exit
||
1051 sysno
== __NR_exit_group
|| sysno
== __NR_restart_syscall
;
1054 ArgValue
* RandomArgValue(int argno
, int args_mask
, int remaining_args
) {
1055 // Create a new ArgValue and fill it with random data. We use as bit mask
1056 // to keep track of the system call parameters that have previously been
1057 // set; this ensures that we won't accidentally define a contradictory
1058 // set of equality tests.
1059 struct ArgValue
* arg_value
= new ArgValue();
1060 args_mask
|= 1 << argno
;
1061 arg_value
->argno
= argno
;
1063 // Apply some restrictions on just how complex our tests can be.
1064 // Otherwise, we end up with a BPF program that is too complicated for
1065 // the kernel to load.
1066 int fan_out
= kMaxFanOut
;
1067 if (remaining_args
> 3) {
1069 } else if (remaining_args
> 2) {
1073 // Create a couple of different test cases with randomized values that
1074 // we want to use when comparing system call parameter number "argno".
1075 arg_value
->size
= rand() % fan_out
+ 1;
1076 arg_value
->tests
= new ArgValue::Tests
[arg_value
->size
];
1078 uint32_t k_value
= rand();
1079 for (int n
= 0; n
< arg_value
->size
; ++n
) {
1080 // Ensure that we have unique values
1081 k_value
+= rand() % (RAND_MAX
/ (kMaxFanOut
+ 1)) + 1;
1083 // There are two possible types of nodes. Either this is a leaf node;
1084 // in that case, we have completed all the equality tests that we
1085 // wanted to perform, and we can now compute a random "errno" value that
1086 // we should return. Or this is part of a more complex boolean
1087 // expression; in that case, we have to recursively add tests for some
1088 // of system call parameters that we have not yet included in our
1090 arg_value
->tests
[n
].k_value
= k_value
;
1091 if (!remaining_args
|| (rand() & 1)) {
1092 arg_value
->tests
[n
].err
= (rand() % 1000) + 1;
1093 arg_value
->tests
[n
].arg_value
= NULL
;
1095 arg_value
->tests
[n
].err
= 0;
1096 arg_value
->tests
[n
].arg_value
=
1097 RandomArgValue(RandomArg(args_mask
), args_mask
, remaining_args
- 1);
1100 // Finally, we have to define what we should return if none of the
1101 // previous equality tests pass. Again, we can either deal with a leaf
1102 // node, or we can randomly add another couple of tests.
1103 if (!remaining_args
|| (rand() & 1)) {
1104 arg_value
->err
= (rand() % 1000) + 1;
1105 arg_value
->arg_value
= NULL
;
1108 arg_value
->arg_value
=
1109 RandomArgValue(RandomArg(args_mask
), args_mask
, remaining_args
- 1);
1111 // We have now built a new (sub-)tree of ArgValues defining a set of
1112 // boolean expressions for testing random system call arguments against
1113 // random values. Return this tree to our caller.
1117 int RandomArg(int args_mask
) {
1118 // Compute a random system call parameter number.
1119 int argno
= rand() % kMaxArgs
;
1121 // Make sure that this same parameter number has not previously been
1122 // used. Otherwise, we could end up with a test that is impossible to
1123 // satisfy (e.g. args[0] == 1 && args[0] == 2).
1124 while (args_mask
& (1 << argno
)) {
1125 argno
= (argno
+ 1) % kMaxArgs
;
1130 void DeleteArgValue(ArgValue
* arg_value
) {
1131 // Delete an ArgValue and all of its child nodes. This requires
1132 // recursively descending into the tree.
1134 if (arg_value
->size
) {
1135 for (int n
= 0; n
< arg_value
->size
; ++n
) {
1136 if (!arg_value
->tests
[n
].err
) {
1137 DeleteArgValue(arg_value
->tests
[n
].arg_value
);
1140 delete[] arg_value
->tests
;
1142 if (!arg_value
->err
) {
1143 DeleteArgValue(arg_value
->arg_value
);
1149 ResultExpr
ToErrorCode(ArgValue
* arg_value
) {
1150 // Compute the ResultExpr that should be returned, if none of our
1151 // tests succeed (i.e. the system call parameter doesn't match any
1152 // of the values in arg_value->tests[].k_value).
1154 if (arg_value
->err
) {
1155 // If this was a leaf node, return the errno value that we expect to
1156 // return from the BPF filter program.
1157 err
= Error(arg_value
->err
);
1159 // If this wasn't a leaf node yet, recursively descend into the rest
1160 // of the tree. This will end up adding a few more SandboxBPF::Cond()
1161 // tests to our ErrorCode.
1162 err
= ToErrorCode(arg_value
->arg_value
);
1165 // Now, iterate over all the test cases that we want to compare against.
1166 // This builds a chain of SandboxBPF::Cond() tests
1167 // (aka "if ... elif ... elif ... elif ... fi")
1168 for (int n
= arg_value
->size
; n
-- > 0;) {
1170 // Again, we distinguish between leaf nodes and subtrees.
1171 if (arg_value
->tests
[n
].err
) {
1172 matched
= Error(arg_value
->tests
[n
].err
);
1174 matched
= ToErrorCode(arg_value
->tests
[n
].arg_value
);
1176 // For now, all of our tests are limited to 32bit.
1177 // We have separate tests that check the behavior of 32bit vs. 64bit
1178 // conditional expressions.
1179 const Arg
<uint32_t> arg(arg_value
->argno
);
1180 err
= If(arg
== arg_value
->tests
[n
].k_value
, matched
).Else(err
);
1185 void Verify(int sysno
, intptr_t* args
, const ArgValue
& arg_value
) {
1186 uint32_t mismatched
= 0;
1187 // Iterate over all the k_values in arg_value.tests[] and verify that
1188 // we see the expected return values from system calls, when we pass
1189 // the k_value as a parameter in a system call.
1190 for (int n
= arg_value
.size
; n
-- > 0;) {
1191 mismatched
+= arg_value
.tests
[n
].k_value
;
1192 args
[arg_value
.argno
] = arg_value
.tests
[n
].k_value
;
1193 if (arg_value
.tests
[n
].err
) {
1194 VerifyErrno(sysno
, args
, arg_value
.tests
[n
].err
);
1196 Verify(sysno
, args
, *arg_value
.tests
[n
].arg_value
);
1199 // Find a k_value that doesn't match any of the k_values in
1200 // arg_value.tests[]. In most cases, the current value of "mismatched"
1201 // would fit this requirement. But on the off-chance that it happens
1202 // to collide, we double-check.
1204 for (int n
= arg_value
.size
; n
-- > 0;) {
1205 if (mismatched
== arg_value
.tests
[n
].k_value
) {
1210 // Now verify that we see the expected return value from system calls,
1211 // if we pass a value that doesn't match any of the conditions (i.e. this
1212 // is testing the "else" clause of the conditions).
1213 args
[arg_value
.argno
] = mismatched
;
1214 if (arg_value
.err
) {
1215 VerifyErrno(sysno
, args
, arg_value
.err
);
1217 Verify(sysno
, args
, *arg_value
.arg_value
);
1219 // Reset args[arg_value.argno]. This is not technically needed, but it
1220 // makes it easier to reason about the correctness of our tests.
1221 args
[arg_value
.argno
] = 0;
1224 void VerifyErrno(int sysno
, intptr_t* args
, int err
) {
1225 // We installed BPF filters that return different errno values
1226 // based on the system call number and the parameters that we decided
1227 // to pass in. Verify that this condition holds true.
1230 sysno
, args
[0], args
[1], args
[2], args
[3], args
[4], args
[5]) ==
1234 // Vector of ArgValue trees. These trees define all the possible boolean
1235 // expressions that we want to turn into a BPF filter program.
1236 std::vector
<ArgValue
*> arg_values_
;
1238 // Don't increase these values. We are pushing the limits of the maximum
1239 // BPF program that the kernel will allow us to load. If the values are
1240 // increased too much, the test will start failing.
1241 #if defined(__aarch64__)
1242 static const int kNumTestCases
= 30;
1244 static const int kNumTestCases
= 40;
1246 static const int kMaxFanOut
= 3;
1247 static const int kMaxArgs
= 6;
1250 class EqualityStressTestPolicy
: public Policy
{
1252 explicit EqualityStressTestPolicy(EqualityStressTest
* aux
) : aux_(aux
) {}
1253 ~EqualityStressTestPolicy() override
{}
1255 ResultExpr
EvaluateSyscall(int sysno
) const override
{
1256 return aux_
->Policy(sysno
);
1260 EqualityStressTest
* aux_
;
1262 DISALLOW_COPY_AND_ASSIGN(EqualityStressTestPolicy
);
1265 BPF_TEST(SandboxBPF
,
1267 EqualityStressTestPolicy
,
1268 EqualityStressTest
/* (*BPF_AUX) */) {
1269 BPF_AUX
->VerifyFilter();
1272 class EqualityArgumentWidthPolicy
: public Policy
{
1274 EqualityArgumentWidthPolicy() {}
1275 ~EqualityArgumentWidthPolicy() override
{}
1277 ResultExpr
EvaluateSyscall(int sysno
) const override
;
1280 DISALLOW_COPY_AND_ASSIGN(EqualityArgumentWidthPolicy
);
1283 ResultExpr
EqualityArgumentWidthPolicy::EvaluateSyscall(int sysno
) const {
1284 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
1285 if (sysno
== __NR_uname
) {
1286 const Arg
<int> option(0);
1287 const Arg
<uint32_t> arg32(1);
1288 const Arg
<uint64_t> arg64(1);
1289 return Switch(option
)
1290 .Case(0, If(arg32
== 0x55555555, Error(1)).Else(Error(2)))
1291 #if __SIZEOF_POINTER__ > 4
1292 .Case(1, If(arg64
== 0x55555555AAAAAAAAULL
, Error(1)).Else(Error(2)))
1299 BPF_TEST_C(SandboxBPF
, EqualityArgumentWidth
, EqualityArgumentWidthPolicy
) {
1300 BPF_ASSERT(Syscall::Call(__NR_uname
, 0, 0x55555555) == -1);
1301 BPF_ASSERT(Syscall::Call(__NR_uname
, 0, 0xAAAAAAAA) == -2);
1302 #if __SIZEOF_POINTER__ > 4
1303 // On 32bit machines, there is no way to pass a 64bit argument through the
1304 // syscall interface. So, we have to skip the part of the test that requires
1306 BPF_ASSERT(Syscall::Call(__NR_uname
, 1, 0x55555555AAAAAAAAULL
) == -1);
1307 BPF_ASSERT(Syscall::Call(__NR_uname
, 1, 0x5555555500000000ULL
) == -2);
1308 BPF_ASSERT(Syscall::Call(__NR_uname
, 1, 0x5555555511111111ULL
) == -2);
1309 BPF_ASSERT(Syscall::Call(__NR_uname
, 1, 0x11111111AAAAAAAAULL
) == -2);
1313 #if __SIZEOF_POINTER__ > 4
1314 // On 32bit machines, there is no way to pass a 64bit argument through the
1315 // syscall interface. So, we have to skip the part of the test that requires
1317 BPF_DEATH_TEST_C(SandboxBPF
,
1318 EqualityArgumentUnallowed64bit
,
1319 DEATH_MESSAGE("Unexpected 64bit argument detected"),
1320 EqualityArgumentWidthPolicy
) {
1321 Syscall::Call(__NR_uname
, 0, 0x5555555555555555ULL
);
1325 class EqualityWithNegativeArgumentsPolicy
: public Policy
{
1327 EqualityWithNegativeArgumentsPolicy() {}
1328 ~EqualityWithNegativeArgumentsPolicy() override
{}
1330 ResultExpr
EvaluateSyscall(int sysno
) const override
{
1331 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
1332 if (sysno
== __NR_uname
) {
1333 // TODO(mdempsky): This currently can't be Arg<int> because then
1334 // 0xFFFFFFFF will be treated as a (signed) int, and then when
1335 // Arg::EqualTo casts it to uint64_t, it will be sign extended.
1336 const Arg
<unsigned> arg(0);
1337 return If(arg
== 0xFFFFFFFF, Error(1)).Else(Error(2));
1343 DISALLOW_COPY_AND_ASSIGN(EqualityWithNegativeArgumentsPolicy
);
1346 BPF_TEST_C(SandboxBPF
,
1347 EqualityWithNegativeArguments
,
1348 EqualityWithNegativeArgumentsPolicy
) {
1349 BPF_ASSERT(Syscall::Call(__NR_uname
, 0xFFFFFFFF) == -1);
1350 BPF_ASSERT(Syscall::Call(__NR_uname
, -1) == -1);
1351 BPF_ASSERT(Syscall::Call(__NR_uname
, -1LL) == -1);
1354 #if __SIZEOF_POINTER__ > 4
1355 BPF_DEATH_TEST_C(SandboxBPF
,
1356 EqualityWithNegative64bitArguments
,
1357 DEATH_MESSAGE("Unexpected 64bit argument detected"),
1358 EqualityWithNegativeArgumentsPolicy
) {
1359 // When expecting a 32bit system call argument, we look at the MSB of the
1360 // 64bit value and allow both "0" and "-1". But the latter is allowed only
1361 // iff the LSB was negative. So, this death test should error out.
1362 BPF_ASSERT(Syscall::Call(__NR_uname
, 0xFFFFFFFF00000000LL
) == -1);
1366 class AllBitTestPolicy
: public Policy
{
1368 AllBitTestPolicy() {}
1369 ~AllBitTestPolicy() override
{}
1371 ResultExpr
EvaluateSyscall(int sysno
) const override
;
1374 static ResultExpr
HasAllBits32(uint32_t bits
);
1375 static ResultExpr
HasAllBits64(uint64_t bits
);
1377 DISALLOW_COPY_AND_ASSIGN(AllBitTestPolicy
);
1380 ResultExpr
AllBitTestPolicy::HasAllBits32(uint32_t bits
) {
1384 const Arg
<uint32_t> arg(1);
1385 return If((arg
& bits
) == bits
, Error(1)).Else(Error(0));
1388 ResultExpr
AllBitTestPolicy::HasAllBits64(uint64_t bits
) {
1392 const Arg
<uint64_t> arg(1);
1393 return If((arg
& bits
) == bits
, Error(1)).Else(Error(0));
1396 ResultExpr
AllBitTestPolicy::EvaluateSyscall(int sysno
) const {
1397 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
1398 // Test masked-equality cases that should trigger the "has all bits"
1399 // peephole optimizations. We try to find bitmasks that could conceivably
1400 // touch corner cases.
1401 // For all of these tests, we override the uname(). We can make use with
1402 // a single system call number, as we use the first system call argument to
1403 // select the different bit masks that we want to test against.
1404 if (sysno
== __NR_uname
) {
1405 const Arg
<int> option(0);
1406 return Switch(option
)
1407 .Case(0, HasAllBits32(0x0))
1408 .Case(1, HasAllBits32(0x1))
1409 .Case(2, HasAllBits32(0x3))
1410 .Case(3, HasAllBits32(0x80000000))
1411 #if __SIZEOF_POINTER__ > 4
1412 .Case(4, HasAllBits64(0x0))
1413 .Case(5, HasAllBits64(0x1))
1414 .Case(6, HasAllBits64(0x3))
1415 .Case(7, HasAllBits64(0x80000000))
1416 .Case(8, HasAllBits64(0x100000000ULL
))
1417 .Case(9, HasAllBits64(0x300000000ULL
))
1418 .Case(10, HasAllBits64(0x100000001ULL
))
1420 .Default(Kill("Invalid test case number"));
1425 // Define a macro that performs tests using our test policy.
1426 // NOTE: Not all of the arguments in this macro are actually used!
1427 // They are here just to serve as documentation of the conditions
1428 // implemented in the test policy.
1429 // Most notably, "op" and "mask" are unused by the macro. If you want
1430 // to make changes to these values, you will have to edit the
1431 // test policy instead.
1432 #define BITMASK_TEST(testcase, arg, op, mask, expected_value) \
1433 BPF_ASSERT(Syscall::Call(__NR_uname, (testcase), (arg)) == (expected_value))
1435 // Our uname() system call returns ErrorCode(1) for success and
1436 // ErrorCode(0) for failure. Syscall::Call() turns this into an
1437 // exit code of -1 or 0.
1438 #define EXPECT_FAILURE 0
1439 #define EXPECT_SUCCESS -1
1441 // A couple of our tests behave differently on 32bit and 64bit systems, as
1442 // there is no way for a 32bit system call to pass in a 64bit system call
1444 // We expect these tests to succeed on 64bit systems, but to tail on 32bit
1446 #define EXPT64_SUCCESS (sizeof(void*) > 4 ? EXPECT_SUCCESS : EXPECT_FAILURE)
1447 BPF_TEST_C(SandboxBPF
, AllBitTests
, AllBitTestPolicy
) {
1448 // 32bit test: all of 0x0 (should always be true)
1449 BITMASK_TEST( 0, 0, ALLBITS32
, 0, EXPECT_SUCCESS
);
1450 BITMASK_TEST( 0, 1, ALLBITS32
, 0, EXPECT_SUCCESS
);
1451 BITMASK_TEST( 0, 3, ALLBITS32
, 0, EXPECT_SUCCESS
);
1452 BITMASK_TEST( 0, 0xFFFFFFFFU
, ALLBITS32
, 0, EXPECT_SUCCESS
);
1453 BITMASK_TEST( 0, -1LL, ALLBITS32
, 0, EXPECT_SUCCESS
);
1455 // 32bit test: all of 0x1
1456 BITMASK_TEST( 1, 0, ALLBITS32
, 0x1, EXPECT_FAILURE
);
1457 BITMASK_TEST( 1, 1, ALLBITS32
, 0x1, EXPECT_SUCCESS
);
1458 BITMASK_TEST( 1, 2, ALLBITS32
, 0x1, EXPECT_FAILURE
);
1459 BITMASK_TEST( 1, 3, ALLBITS32
, 0x1, EXPECT_SUCCESS
);
1461 // 32bit test: all of 0x3
1462 BITMASK_TEST( 2, 0, ALLBITS32
, 0x3, EXPECT_FAILURE
);
1463 BITMASK_TEST( 2, 1, ALLBITS32
, 0x3, EXPECT_FAILURE
);
1464 BITMASK_TEST( 2, 2, ALLBITS32
, 0x3, EXPECT_FAILURE
);
1465 BITMASK_TEST( 2, 3, ALLBITS32
, 0x3, EXPECT_SUCCESS
);
1466 BITMASK_TEST( 2, 7, ALLBITS32
, 0x3, EXPECT_SUCCESS
);
1468 // 32bit test: all of 0x80000000
1469 BITMASK_TEST( 3, 0, ALLBITS32
, 0x80000000, EXPECT_FAILURE
);
1470 BITMASK_TEST( 3, 0x40000000U
, ALLBITS32
, 0x80000000, EXPECT_FAILURE
);
1471 BITMASK_TEST( 3, 0x80000000U
, ALLBITS32
, 0x80000000, EXPECT_SUCCESS
);
1472 BITMASK_TEST( 3, 0xC0000000U
, ALLBITS32
, 0x80000000, EXPECT_SUCCESS
);
1473 BITMASK_TEST( 3, -0x80000000LL
, ALLBITS32
, 0x80000000, EXPECT_SUCCESS
);
1475 #if __SIZEOF_POINTER__ > 4
1476 // 64bit test: all of 0x0 (should always be true)
1477 BITMASK_TEST( 4, 0, ALLBITS64
, 0, EXPECT_SUCCESS
);
1478 BITMASK_TEST( 4, 1, ALLBITS64
, 0, EXPECT_SUCCESS
);
1479 BITMASK_TEST( 4, 3, ALLBITS64
, 0, EXPECT_SUCCESS
);
1480 BITMASK_TEST( 4, 0xFFFFFFFFU
, ALLBITS64
, 0, EXPECT_SUCCESS
);
1481 BITMASK_TEST( 4, 0x100000000LL
, ALLBITS64
, 0, EXPECT_SUCCESS
);
1482 BITMASK_TEST( 4, 0x300000000LL
, ALLBITS64
, 0, EXPECT_SUCCESS
);
1483 BITMASK_TEST( 4,0x8000000000000000LL
, ALLBITS64
, 0, EXPECT_SUCCESS
);
1484 BITMASK_TEST( 4, -1LL, ALLBITS64
, 0, EXPECT_SUCCESS
);
1486 // 64bit test: all of 0x1
1487 BITMASK_TEST( 5, 0, ALLBITS64
, 1, EXPECT_FAILURE
);
1488 BITMASK_TEST( 5, 1, ALLBITS64
, 1, EXPECT_SUCCESS
);
1489 BITMASK_TEST( 5, 2, ALLBITS64
, 1, EXPECT_FAILURE
);
1490 BITMASK_TEST( 5, 3, ALLBITS64
, 1, EXPECT_SUCCESS
);
1491 BITMASK_TEST( 5, 0x100000000LL
, ALLBITS64
, 1, EXPECT_FAILURE
);
1492 BITMASK_TEST( 5, 0x100000001LL
, ALLBITS64
, 1, EXPECT_SUCCESS
);
1493 BITMASK_TEST( 5, 0x100000002LL
, ALLBITS64
, 1, EXPECT_FAILURE
);
1494 BITMASK_TEST( 5, 0x100000003LL
, ALLBITS64
, 1, EXPECT_SUCCESS
);
1496 // 64bit test: all of 0x3
1497 BITMASK_TEST( 6, 0, ALLBITS64
, 3, EXPECT_FAILURE
);
1498 BITMASK_TEST( 6, 1, ALLBITS64
, 3, EXPECT_FAILURE
);
1499 BITMASK_TEST( 6, 2, ALLBITS64
, 3, EXPECT_FAILURE
);
1500 BITMASK_TEST( 6, 3, ALLBITS64
, 3, EXPECT_SUCCESS
);
1501 BITMASK_TEST( 6, 7, ALLBITS64
, 3, EXPECT_SUCCESS
);
1502 BITMASK_TEST( 6, 0x100000000LL
, ALLBITS64
, 3, EXPECT_FAILURE
);
1503 BITMASK_TEST( 6, 0x100000001LL
, ALLBITS64
, 3, EXPECT_FAILURE
);
1504 BITMASK_TEST( 6, 0x100000002LL
, ALLBITS64
, 3, EXPECT_FAILURE
);
1505 BITMASK_TEST( 6, 0x100000003LL
, ALLBITS64
, 3, EXPECT_SUCCESS
);
1506 BITMASK_TEST( 6, 0x100000007LL
, ALLBITS64
, 3, EXPECT_SUCCESS
);
1508 // 64bit test: all of 0x80000000
1509 BITMASK_TEST( 7, 0, ALLBITS64
, 0x80000000, EXPECT_FAILURE
);
1510 BITMASK_TEST( 7, 0x40000000U
, ALLBITS64
, 0x80000000, EXPECT_FAILURE
);
1511 BITMASK_TEST( 7, 0x80000000U
, ALLBITS64
, 0x80000000, EXPECT_SUCCESS
);
1512 BITMASK_TEST( 7, 0xC0000000U
, ALLBITS64
, 0x80000000, EXPECT_SUCCESS
);
1513 BITMASK_TEST( 7, -0x80000000LL
, ALLBITS64
, 0x80000000, EXPECT_SUCCESS
);
1514 BITMASK_TEST( 7, 0x100000000LL
, ALLBITS64
, 0x80000000, EXPECT_FAILURE
);
1515 BITMASK_TEST( 7, 0x140000000LL
, ALLBITS64
, 0x80000000, EXPECT_FAILURE
);
1516 BITMASK_TEST( 7, 0x180000000LL
, ALLBITS64
, 0x80000000, EXPECT_SUCCESS
);
1517 BITMASK_TEST( 7, 0x1C0000000LL
, ALLBITS64
, 0x80000000, EXPECT_SUCCESS
);
1518 BITMASK_TEST( 7, -0x180000000LL
, ALLBITS64
, 0x80000000, EXPECT_SUCCESS
);
1520 // 64bit test: all of 0x100000000
1521 BITMASK_TEST( 8, 0x000000000LL
, ALLBITS64
,0x100000000, EXPECT_FAILURE
);
1522 BITMASK_TEST( 8, 0x100000000LL
, ALLBITS64
,0x100000000, EXPT64_SUCCESS
);
1523 BITMASK_TEST( 8, 0x200000000LL
, ALLBITS64
,0x100000000, EXPECT_FAILURE
);
1524 BITMASK_TEST( 8, 0x300000000LL
, ALLBITS64
,0x100000000, EXPT64_SUCCESS
);
1525 BITMASK_TEST( 8, 0x000000001LL
, ALLBITS64
,0x100000000, EXPECT_FAILURE
);
1526 BITMASK_TEST( 8, 0x100000001LL
, ALLBITS64
,0x100000000, EXPT64_SUCCESS
);
1527 BITMASK_TEST( 8, 0x200000001LL
, ALLBITS64
,0x100000000, EXPECT_FAILURE
);
1528 BITMASK_TEST( 8, 0x300000001LL
, ALLBITS64
,0x100000000, EXPT64_SUCCESS
);
1530 // 64bit test: all of 0x300000000
1531 BITMASK_TEST( 9, 0x000000000LL
, ALLBITS64
,0x300000000, EXPECT_FAILURE
);
1532 BITMASK_TEST( 9, 0x100000000LL
, ALLBITS64
,0x300000000, EXPECT_FAILURE
);
1533 BITMASK_TEST( 9, 0x200000000LL
, ALLBITS64
,0x300000000, EXPECT_FAILURE
);
1534 BITMASK_TEST( 9, 0x300000000LL
, ALLBITS64
,0x300000000, EXPT64_SUCCESS
);
1535 BITMASK_TEST( 9, 0x700000000LL
, ALLBITS64
,0x300000000, EXPT64_SUCCESS
);
1536 BITMASK_TEST( 9, 0x000000001LL
, ALLBITS64
,0x300000000, EXPECT_FAILURE
);
1537 BITMASK_TEST( 9, 0x100000001LL
, ALLBITS64
,0x300000000, EXPECT_FAILURE
);
1538 BITMASK_TEST( 9, 0x200000001LL
, ALLBITS64
,0x300000000, EXPECT_FAILURE
);
1539 BITMASK_TEST( 9, 0x300000001LL
, ALLBITS64
,0x300000000, EXPT64_SUCCESS
);
1540 BITMASK_TEST( 9, 0x700000001LL
, ALLBITS64
,0x300000000, EXPT64_SUCCESS
);
1542 // 64bit test: all of 0x100000001
1543 BITMASK_TEST(10, 0x000000000LL
, ALLBITS64
,0x100000001, EXPECT_FAILURE
);
1544 BITMASK_TEST(10, 0x000000001LL
, ALLBITS64
,0x100000001, EXPECT_FAILURE
);
1545 BITMASK_TEST(10, 0x100000000LL
, ALLBITS64
,0x100000001, EXPECT_FAILURE
);
1546 BITMASK_TEST(10, 0x100000001LL
, ALLBITS64
,0x100000001, EXPT64_SUCCESS
);
1547 BITMASK_TEST(10, 0xFFFFFFFFU
, ALLBITS64
,0x100000001, EXPECT_FAILURE
);
1548 BITMASK_TEST(10, -1L, ALLBITS64
,0x100000001, EXPT64_SUCCESS
);
1552 class AnyBitTestPolicy
: public Policy
{
1554 AnyBitTestPolicy() {}
1555 ~AnyBitTestPolicy() override
{}
1557 ResultExpr
EvaluateSyscall(int sysno
) const override
;
1560 static ResultExpr
HasAnyBits32(uint32_t);
1561 static ResultExpr
HasAnyBits64(uint64_t);
1563 DISALLOW_COPY_AND_ASSIGN(AnyBitTestPolicy
);
1566 ResultExpr
AnyBitTestPolicy::HasAnyBits32(uint32_t bits
) {
1570 const Arg
<uint32_t> arg(1);
1571 return If((arg
& bits
) != 0, Error(1)).Else(Error(0));
1574 ResultExpr
AnyBitTestPolicy::HasAnyBits64(uint64_t bits
) {
1578 const Arg
<uint64_t> arg(1);
1579 return If((arg
& bits
) != 0, Error(1)).Else(Error(0));
1582 ResultExpr
AnyBitTestPolicy::EvaluateSyscall(int sysno
) const {
1583 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
1584 // Test masked-equality cases that should trigger the "has any bits"
1585 // peephole optimizations. We try to find bitmasks that could conceivably
1586 // touch corner cases.
1587 // For all of these tests, we override the uname(). We can make use with
1588 // a single system call number, as we use the first system call argument to
1589 // select the different bit masks that we want to test against.
1590 if (sysno
== __NR_uname
) {
1591 const Arg
<int> option(0);
1592 return Switch(option
)
1593 .Case(0, HasAnyBits32(0x0))
1594 .Case(1, HasAnyBits32(0x1))
1595 .Case(2, HasAnyBits32(0x3))
1596 .Case(3, HasAnyBits32(0x80000000))
1597 #if __SIZEOF_POINTER__ > 4
1598 .Case(4, HasAnyBits64(0x0))
1599 .Case(5, HasAnyBits64(0x1))
1600 .Case(6, HasAnyBits64(0x3))
1601 .Case(7, HasAnyBits64(0x80000000))
1602 .Case(8, HasAnyBits64(0x100000000ULL
))
1603 .Case(9, HasAnyBits64(0x300000000ULL
))
1604 .Case(10, HasAnyBits64(0x100000001ULL
))
1606 .Default(Kill("Invalid test case number"));
1611 BPF_TEST_C(SandboxBPF
, AnyBitTests
, AnyBitTestPolicy
) {
1612 // 32bit test: any of 0x0 (should always be false)
1613 BITMASK_TEST( 0, 0, ANYBITS32
, 0x0, EXPECT_FAILURE
);
1614 BITMASK_TEST( 0, 1, ANYBITS32
, 0x0, EXPECT_FAILURE
);
1615 BITMASK_TEST( 0, 3, ANYBITS32
, 0x0, EXPECT_FAILURE
);
1616 BITMASK_TEST( 0, 0xFFFFFFFFU
, ANYBITS32
, 0x0, EXPECT_FAILURE
);
1617 BITMASK_TEST( 0, -1LL, ANYBITS32
, 0x0, EXPECT_FAILURE
);
1619 // 32bit test: any of 0x1
1620 BITMASK_TEST( 1, 0, ANYBITS32
, 0x1, EXPECT_FAILURE
);
1621 BITMASK_TEST( 1, 1, ANYBITS32
, 0x1, EXPECT_SUCCESS
);
1622 BITMASK_TEST( 1, 2, ANYBITS32
, 0x1, EXPECT_FAILURE
);
1623 BITMASK_TEST( 1, 3, ANYBITS32
, 0x1, EXPECT_SUCCESS
);
1625 // 32bit test: any of 0x3
1626 BITMASK_TEST( 2, 0, ANYBITS32
, 0x3, EXPECT_FAILURE
);
1627 BITMASK_TEST( 2, 1, ANYBITS32
, 0x3, EXPECT_SUCCESS
);
1628 BITMASK_TEST( 2, 2, ANYBITS32
, 0x3, EXPECT_SUCCESS
);
1629 BITMASK_TEST( 2, 3, ANYBITS32
, 0x3, EXPECT_SUCCESS
);
1630 BITMASK_TEST( 2, 7, ANYBITS32
, 0x3, EXPECT_SUCCESS
);
1632 // 32bit test: any of 0x80000000
1633 BITMASK_TEST( 3, 0, ANYBITS32
, 0x80000000, EXPECT_FAILURE
);
1634 BITMASK_TEST( 3, 0x40000000U
, ANYBITS32
, 0x80000000, EXPECT_FAILURE
);
1635 BITMASK_TEST( 3, 0x80000000U
, ANYBITS32
, 0x80000000, EXPECT_SUCCESS
);
1636 BITMASK_TEST( 3, 0xC0000000U
, ANYBITS32
, 0x80000000, EXPECT_SUCCESS
);
1637 BITMASK_TEST( 3, -0x80000000LL
, ANYBITS32
, 0x80000000, EXPECT_SUCCESS
);
1639 #if __SIZEOF_POINTER__ > 4
1640 // 64bit test: any of 0x0 (should always be false)
1641 BITMASK_TEST( 4, 0, ANYBITS64
, 0x0, EXPECT_FAILURE
);
1642 BITMASK_TEST( 4, 1, ANYBITS64
, 0x0, EXPECT_FAILURE
);
1643 BITMASK_TEST( 4, 3, ANYBITS64
, 0x0, EXPECT_FAILURE
);
1644 BITMASK_TEST( 4, 0xFFFFFFFFU
, ANYBITS64
, 0x0, EXPECT_FAILURE
);
1645 BITMASK_TEST( 4, 0x100000000LL
, ANYBITS64
, 0x0, EXPECT_FAILURE
);
1646 BITMASK_TEST( 4, 0x300000000LL
, ANYBITS64
, 0x0, EXPECT_FAILURE
);
1647 BITMASK_TEST( 4,0x8000000000000000LL
, ANYBITS64
, 0x0, EXPECT_FAILURE
);
1648 BITMASK_TEST( 4, -1LL, ANYBITS64
, 0x0, EXPECT_FAILURE
);
1650 // 64bit test: any of 0x1
1651 BITMASK_TEST( 5, 0, ANYBITS64
, 0x1, EXPECT_FAILURE
);
1652 BITMASK_TEST( 5, 1, ANYBITS64
, 0x1, EXPECT_SUCCESS
);
1653 BITMASK_TEST( 5, 2, ANYBITS64
, 0x1, EXPECT_FAILURE
);
1654 BITMASK_TEST( 5, 3, ANYBITS64
, 0x1, EXPECT_SUCCESS
);
1655 BITMASK_TEST( 5, 0x100000001LL
, ANYBITS64
, 0x1, EXPECT_SUCCESS
);
1656 BITMASK_TEST( 5, 0x100000000LL
, ANYBITS64
, 0x1, EXPECT_FAILURE
);
1657 BITMASK_TEST( 5, 0x100000002LL
, ANYBITS64
, 0x1, EXPECT_FAILURE
);
1658 BITMASK_TEST( 5, 0x100000003LL
, ANYBITS64
, 0x1, EXPECT_SUCCESS
);
1660 // 64bit test: any of 0x3
1661 BITMASK_TEST( 6, 0, ANYBITS64
, 0x3, EXPECT_FAILURE
);
1662 BITMASK_TEST( 6, 1, ANYBITS64
, 0x3, EXPECT_SUCCESS
);
1663 BITMASK_TEST( 6, 2, ANYBITS64
, 0x3, EXPECT_SUCCESS
);
1664 BITMASK_TEST( 6, 3, ANYBITS64
, 0x3, EXPECT_SUCCESS
);
1665 BITMASK_TEST( 6, 7, ANYBITS64
, 0x3, EXPECT_SUCCESS
);
1666 BITMASK_TEST( 6, 0x100000000LL
, ANYBITS64
, 0x3, EXPECT_FAILURE
);
1667 BITMASK_TEST( 6, 0x100000001LL
, ANYBITS64
, 0x3, EXPECT_SUCCESS
);
1668 BITMASK_TEST( 6, 0x100000002LL
, ANYBITS64
, 0x3, EXPECT_SUCCESS
);
1669 BITMASK_TEST( 6, 0x100000003LL
, ANYBITS64
, 0x3, EXPECT_SUCCESS
);
1670 BITMASK_TEST( 6, 0x100000007LL
, ANYBITS64
, 0x3, EXPECT_SUCCESS
);
1672 // 64bit test: any of 0x80000000
1673 BITMASK_TEST( 7, 0, ANYBITS64
, 0x80000000, EXPECT_FAILURE
);
1674 BITMASK_TEST( 7, 0x40000000U
, ANYBITS64
, 0x80000000, EXPECT_FAILURE
);
1675 BITMASK_TEST( 7, 0x80000000U
, ANYBITS64
, 0x80000000, EXPECT_SUCCESS
);
1676 BITMASK_TEST( 7, 0xC0000000U
, ANYBITS64
, 0x80000000, EXPECT_SUCCESS
);
1677 BITMASK_TEST( 7, -0x80000000LL
, ANYBITS64
, 0x80000000, EXPECT_SUCCESS
);
1678 BITMASK_TEST( 7, 0x100000000LL
, ANYBITS64
, 0x80000000, EXPECT_FAILURE
);
1679 BITMASK_TEST( 7, 0x140000000LL
, ANYBITS64
, 0x80000000, EXPECT_FAILURE
);
1680 BITMASK_TEST( 7, 0x180000000LL
, ANYBITS64
, 0x80000000, EXPECT_SUCCESS
);
1681 BITMASK_TEST( 7, 0x1C0000000LL
, ANYBITS64
, 0x80000000, EXPECT_SUCCESS
);
1682 BITMASK_TEST( 7, -0x180000000LL
, ANYBITS64
, 0x80000000, EXPECT_SUCCESS
);
1684 // 64bit test: any of 0x100000000
1685 BITMASK_TEST( 8, 0x000000000LL
, ANYBITS64
,0x100000000, EXPECT_FAILURE
);
1686 BITMASK_TEST( 8, 0x100000000LL
, ANYBITS64
,0x100000000, EXPT64_SUCCESS
);
1687 BITMASK_TEST( 8, 0x200000000LL
, ANYBITS64
,0x100000000, EXPECT_FAILURE
);
1688 BITMASK_TEST( 8, 0x300000000LL
, ANYBITS64
,0x100000000, EXPT64_SUCCESS
);
1689 BITMASK_TEST( 8, 0x000000001LL
, ANYBITS64
,0x100000000, EXPECT_FAILURE
);
1690 BITMASK_TEST( 8, 0x100000001LL
, ANYBITS64
,0x100000000, EXPT64_SUCCESS
);
1691 BITMASK_TEST( 8, 0x200000001LL
, ANYBITS64
,0x100000000, EXPECT_FAILURE
);
1692 BITMASK_TEST( 8, 0x300000001LL
, ANYBITS64
,0x100000000, EXPT64_SUCCESS
);
1694 // 64bit test: any of 0x300000000
1695 BITMASK_TEST( 9, 0x000000000LL
, ANYBITS64
,0x300000000, EXPECT_FAILURE
);
1696 BITMASK_TEST( 9, 0x100000000LL
, ANYBITS64
,0x300000000, EXPT64_SUCCESS
);
1697 BITMASK_TEST( 9, 0x200000000LL
, ANYBITS64
,0x300000000, EXPT64_SUCCESS
);
1698 BITMASK_TEST( 9, 0x300000000LL
, ANYBITS64
,0x300000000, EXPT64_SUCCESS
);
1699 BITMASK_TEST( 9, 0x700000000LL
, ANYBITS64
,0x300000000, EXPT64_SUCCESS
);
1700 BITMASK_TEST( 9, 0x000000001LL
, ANYBITS64
,0x300000000, EXPECT_FAILURE
);
1701 BITMASK_TEST( 9, 0x100000001LL
, ANYBITS64
,0x300000000, EXPT64_SUCCESS
);
1702 BITMASK_TEST( 9, 0x200000001LL
, ANYBITS64
,0x300000000, EXPT64_SUCCESS
);
1703 BITMASK_TEST( 9, 0x300000001LL
, ANYBITS64
,0x300000000, EXPT64_SUCCESS
);
1704 BITMASK_TEST( 9, 0x700000001LL
, ANYBITS64
,0x300000000, EXPT64_SUCCESS
);
1706 // 64bit test: any of 0x100000001
1707 BITMASK_TEST( 10, 0x000000000LL
, ANYBITS64
,0x100000001, EXPECT_FAILURE
);
1708 BITMASK_TEST( 10, 0x000000001LL
, ANYBITS64
,0x100000001, EXPECT_SUCCESS
);
1709 BITMASK_TEST( 10, 0x100000000LL
, ANYBITS64
,0x100000001, EXPT64_SUCCESS
);
1710 BITMASK_TEST( 10, 0x100000001LL
, ANYBITS64
,0x100000001, EXPECT_SUCCESS
);
1711 BITMASK_TEST( 10, 0xFFFFFFFFU
, ANYBITS64
,0x100000001, EXPECT_SUCCESS
);
1712 BITMASK_TEST( 10, -1L, ANYBITS64
,0x100000001, EXPECT_SUCCESS
);
1716 class MaskedEqualTestPolicy
: public Policy
{
1718 MaskedEqualTestPolicy() {}
1719 ~MaskedEqualTestPolicy() override
{}
1721 ResultExpr
EvaluateSyscall(int sysno
) const override
;
1724 static ResultExpr
MaskedEqual32(uint32_t mask
, uint32_t value
);
1725 static ResultExpr
MaskedEqual64(uint64_t mask
, uint64_t value
);
1727 DISALLOW_COPY_AND_ASSIGN(MaskedEqualTestPolicy
);
1730 ResultExpr
MaskedEqualTestPolicy::MaskedEqual32(uint32_t mask
, uint32_t value
) {
1731 const Arg
<uint32_t> arg(1);
1732 return If((arg
& mask
) == value
, Error(1)).Else(Error(0));
1735 ResultExpr
MaskedEqualTestPolicy::MaskedEqual64(uint64_t mask
, uint64_t value
) {
1736 const Arg
<uint64_t> arg(1);
1737 return If((arg
& mask
) == value
, Error(1)).Else(Error(0));
1740 ResultExpr
MaskedEqualTestPolicy::EvaluateSyscall(int sysno
) const {
1741 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
1743 if (sysno
== __NR_uname
) {
1744 const Arg
<int> option(0);
1745 return Switch(option
)
1746 .Case(0, MaskedEqual32(0x00ff00ff, 0x005500aa))
1747 #if __SIZEOF_POINTER__ > 4
1748 .Case(1, MaskedEqual64(0x00ff00ff00000000, 0x005500aa00000000))
1749 .Case(2, MaskedEqual64(0x00ff00ff00ff00ff, 0x005500aa005500aa))
1751 .Default(Kill("Invalid test case number"));
1757 #define MASKEQ_TEST(rulenum, arg, expected_result) \
1758 BPF_ASSERT(Syscall::Call(__NR_uname, (rulenum), (arg)) == (expected_result))
1760 BPF_TEST_C(SandboxBPF
, MaskedEqualTests
, MaskedEqualTestPolicy
) {
1761 // Allowed: 0x__55__aa
1762 MASKEQ_TEST(0, 0x00000000, EXPECT_FAILURE
);
1763 MASKEQ_TEST(0, 0x00000001, EXPECT_FAILURE
);
1764 MASKEQ_TEST(0, 0x00000003, EXPECT_FAILURE
);
1765 MASKEQ_TEST(0, 0x00000100, EXPECT_FAILURE
);
1766 MASKEQ_TEST(0, 0x00000300, EXPECT_FAILURE
);
1767 MASKEQ_TEST(0, 0x005500aa, EXPECT_SUCCESS
);
1768 MASKEQ_TEST(0, 0x005500ab, EXPECT_FAILURE
);
1769 MASKEQ_TEST(0, 0x005600aa, EXPECT_FAILURE
);
1770 MASKEQ_TEST(0, 0x005501aa, EXPECT_SUCCESS
);
1771 MASKEQ_TEST(0, 0x005503aa, EXPECT_SUCCESS
);
1772 MASKEQ_TEST(0, 0x555500aa, EXPECT_SUCCESS
);
1773 MASKEQ_TEST(0, 0xaa5500aa, EXPECT_SUCCESS
);
1775 #if __SIZEOF_POINTER__ > 4
1776 // Allowed: 0x__55__aa________
1777 MASKEQ_TEST(1, 0x0000000000000000, EXPECT_FAILURE
);
1778 MASKEQ_TEST(1, 0x0000000000000010, EXPECT_FAILURE
);
1779 MASKEQ_TEST(1, 0x0000000000000050, EXPECT_FAILURE
);
1780 MASKEQ_TEST(1, 0x0000000100000000, EXPECT_FAILURE
);
1781 MASKEQ_TEST(1, 0x0000000300000000, EXPECT_FAILURE
);
1782 MASKEQ_TEST(1, 0x0000010000000000, EXPECT_FAILURE
);
1783 MASKEQ_TEST(1, 0x0000030000000000, EXPECT_FAILURE
);
1784 MASKEQ_TEST(1, 0x005500aa00000000, EXPECT_SUCCESS
);
1785 MASKEQ_TEST(1, 0x005500ab00000000, EXPECT_FAILURE
);
1786 MASKEQ_TEST(1, 0x005600aa00000000, EXPECT_FAILURE
);
1787 MASKEQ_TEST(1, 0x005501aa00000000, EXPECT_SUCCESS
);
1788 MASKEQ_TEST(1, 0x005503aa00000000, EXPECT_SUCCESS
);
1789 MASKEQ_TEST(1, 0x555500aa00000000, EXPECT_SUCCESS
);
1790 MASKEQ_TEST(1, 0xaa5500aa00000000, EXPECT_SUCCESS
);
1791 MASKEQ_TEST(1, 0xaa5500aa00000000, EXPECT_SUCCESS
);
1792 MASKEQ_TEST(1, 0xaa5500aa0000cafe, EXPECT_SUCCESS
);
1794 // Allowed: 0x__55__aa__55__aa
1795 MASKEQ_TEST(2, 0x0000000000000000, EXPECT_FAILURE
);
1796 MASKEQ_TEST(2, 0x0000000000000010, EXPECT_FAILURE
);
1797 MASKEQ_TEST(2, 0x0000000000000050, EXPECT_FAILURE
);
1798 MASKEQ_TEST(2, 0x0000000100000000, EXPECT_FAILURE
);
1799 MASKEQ_TEST(2, 0x0000000300000000, EXPECT_FAILURE
);
1800 MASKEQ_TEST(2, 0x0000010000000000, EXPECT_FAILURE
);
1801 MASKEQ_TEST(2, 0x0000030000000000, EXPECT_FAILURE
);
1802 MASKEQ_TEST(2, 0x00000000005500aa, EXPECT_FAILURE
);
1803 MASKEQ_TEST(2, 0x005500aa00000000, EXPECT_FAILURE
);
1804 MASKEQ_TEST(2, 0x005500aa005500aa, EXPECT_SUCCESS
);
1805 MASKEQ_TEST(2, 0x005500aa005700aa, EXPECT_FAILURE
);
1806 MASKEQ_TEST(2, 0x005700aa005500aa, EXPECT_FAILURE
);
1807 MASKEQ_TEST(2, 0x005500aa004500aa, EXPECT_FAILURE
);
1808 MASKEQ_TEST(2, 0x004500aa005500aa, EXPECT_FAILURE
);
1809 MASKEQ_TEST(2, 0x005512aa005500aa, EXPECT_SUCCESS
);
1810 MASKEQ_TEST(2, 0x005500aa005534aa, EXPECT_SUCCESS
);
1811 MASKEQ_TEST(2, 0xff5500aa0055ffaa, EXPECT_SUCCESS
);
1815 intptr_t PthreadTrapHandler(const struct arch_seccomp_data
& args
, void* aux
) {
1816 if (args
.args
[0] != (CLONE_CHILD_CLEARTID
| CLONE_CHILD_SETTID
| SIGCHLD
)) {
1817 // We expect to get called for an attempt to fork(). No need to log that
1818 // call. But if we ever get called for anything else, we want to verbosely
1819 // print as much information as possible.
1820 const char* msg
= (const char*)aux
;
1822 "Clone() was called with unexpected arguments\n"
1832 (long long)args
.args
[0],
1833 (long long)args
.args
[1],
1834 (long long)args
.args
[2],
1835 (long long)args
.args
[3],
1836 (long long)args
.args
[4],
1837 (long long)args
.args
[5],
1843 class PthreadPolicyEquality
: public Policy
{
1845 PthreadPolicyEquality() {}
1846 ~PthreadPolicyEquality() override
{}
1848 ResultExpr
EvaluateSyscall(int sysno
) const override
;
1851 DISALLOW_COPY_AND_ASSIGN(PthreadPolicyEquality
);
1854 ResultExpr
PthreadPolicyEquality::EvaluateSyscall(int sysno
) const {
1855 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
1856 // This policy allows creating threads with pthread_create(). But it
1857 // doesn't allow any other uses of clone(). Most notably, it does not
1858 // allow callers to implement fork() or vfork() by passing suitable flags
1859 // to the clone() system call.
1860 if (sysno
== __NR_clone
) {
1861 // We have seen two different valid combinations of flags. Glibc
1862 // uses the more modern flags, sets the TLS from the call to clone(), and
1863 // uses futexes to monitor threads. Android's C run-time library, doesn't
1864 // do any of this, but it sets the obsolete (and no-op) CLONE_DETACHED.
1865 // More recent versions of Android don't set CLONE_DETACHED anymore, so
1866 // the last case accounts for that.
1867 // The following policy is very strict. It only allows the exact masks
1868 // that we have seen in known implementations. It is probably somewhat
1869 // stricter than what we would want to do.
1870 const uint64_t kGlibcCloneMask
= CLONE_VM
| CLONE_FS
| CLONE_FILES
|
1871 CLONE_SIGHAND
| CLONE_THREAD
|
1872 CLONE_SYSVSEM
| CLONE_SETTLS
|
1873 CLONE_PARENT_SETTID
| CLONE_CHILD_CLEARTID
;
1874 const uint64_t kBaseAndroidCloneMask
= CLONE_VM
| CLONE_FS
| CLONE_FILES
|
1875 CLONE_SIGHAND
| CLONE_THREAD
|
1877 const Arg
<unsigned long> flags(0);
1878 return If(flags
== kGlibcCloneMask
||
1879 flags
== (kBaseAndroidCloneMask
| CLONE_DETACHED
) ||
1880 flags
== kBaseAndroidCloneMask
,
1881 Allow()).Else(Trap(PthreadTrapHandler
, "Unknown mask"));
1887 class PthreadPolicyBitMask
: public Policy
{
1889 PthreadPolicyBitMask() {}
1890 ~PthreadPolicyBitMask() override
{}
1892 ResultExpr
EvaluateSyscall(int sysno
) const override
;
1895 static BoolExpr
HasAnyBits(const Arg
<unsigned long>& arg
, unsigned long bits
);
1896 static BoolExpr
HasAllBits(const Arg
<unsigned long>& arg
, unsigned long bits
);
1898 DISALLOW_COPY_AND_ASSIGN(PthreadPolicyBitMask
);
1901 BoolExpr
PthreadPolicyBitMask::HasAnyBits(const Arg
<unsigned long>& arg
,
1902 unsigned long bits
) {
1903 return (arg
& bits
) != 0;
1906 BoolExpr
PthreadPolicyBitMask::HasAllBits(const Arg
<unsigned long>& arg
,
1907 unsigned long bits
) {
1908 return (arg
& bits
) == bits
;
1911 ResultExpr
PthreadPolicyBitMask::EvaluateSyscall(int sysno
) const {
1912 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
1913 // This policy allows creating threads with pthread_create(). But it
1914 // doesn't allow any other uses of clone(). Most notably, it does not
1915 // allow callers to implement fork() or vfork() by passing suitable flags
1916 // to the clone() system call.
1917 if (sysno
== __NR_clone
) {
1918 // We have seen two different valid combinations of flags. Glibc
1919 // uses the more modern flags, sets the TLS from the call to clone(), and
1920 // uses futexes to monitor threads. Android's C run-time library, doesn't
1921 // do any of this, but it sets the obsolete (and no-op) CLONE_DETACHED.
1922 // The following policy allows for either combination of flags, but it
1923 // is generally a little more conservative than strictly necessary. We
1924 // err on the side of rather safe than sorry.
1925 // Very noticeably though, we disallow fork() (which is often just a
1926 // wrapper around clone()).
1927 const unsigned long kMandatoryFlags
= CLONE_VM
| CLONE_FS
| CLONE_FILES
|
1928 CLONE_SIGHAND
| CLONE_THREAD
|
1930 const unsigned long kFutexFlags
=
1931 CLONE_SETTLS
| CLONE_PARENT_SETTID
| CLONE_CHILD_CLEARTID
;
1932 const unsigned long kNoopFlags
= CLONE_DETACHED
;
1933 const unsigned long kKnownFlags
=
1934 kMandatoryFlags
| kFutexFlags
| kNoopFlags
;
1936 const Arg
<unsigned long> flags(0);
1937 return If(HasAnyBits(flags
, ~kKnownFlags
),
1938 Trap(PthreadTrapHandler
, "Unexpected CLONE_XXX flag found"))
1939 .ElseIf(!HasAllBits(flags
, kMandatoryFlags
),
1940 Trap(PthreadTrapHandler
,
1941 "Missing mandatory CLONE_XXX flags "
1942 "when creating new thread"))
1944 !HasAllBits(flags
, kFutexFlags
) && HasAnyBits(flags
, kFutexFlags
),
1945 Trap(PthreadTrapHandler
,
1946 "Must set either all or none of the TLS and futex bits in "
1954 static void* ThreadFnc(void* arg
) {
1955 ++*reinterpret_cast<int*>(arg
);
1956 Syscall::Call(__NR_futex
, arg
, FUTEX_WAKE
, 1, 0, 0, 0);
1960 static void PthreadTest() {
1961 // Attempt to start a joinable thread. This should succeed.
1964 BPF_ASSERT(!pthread_create(&thread
, NULL
, ThreadFnc
, &thread_ran
));
1965 BPF_ASSERT(!pthread_join(thread
, NULL
));
1966 BPF_ASSERT(thread_ran
);
1968 // Attempt to start a detached thread. This should succeed.
1970 pthread_attr_t attr
;
1971 BPF_ASSERT(!pthread_attr_init(&attr
));
1972 BPF_ASSERT(!pthread_attr_setdetachstate(&attr
, PTHREAD_CREATE_DETACHED
));
1973 BPF_ASSERT(!pthread_create(&thread
, &attr
, ThreadFnc
, &thread_ran
));
1974 BPF_ASSERT(!pthread_attr_destroy(&attr
));
1975 while (Syscall::Call(__NR_futex
, &thread_ran
, FUTEX_WAIT
, 0, 0, 0, 0) ==
1978 BPF_ASSERT(thread_ran
);
1980 // Attempt to fork() a process using clone(). This should fail. We use the
1981 // same flags that glibc uses when calling fork(). But we don't actually
1982 // try calling the fork() implementation in the C run-time library, as
1983 // run-time libraries other than glibc might call __NR_fork instead of
1984 // __NR_clone, and that would introduce a bogus test failure.
1986 BPF_ASSERT(Syscall::Call(__NR_clone
,
1987 CLONE_CHILD_CLEARTID
| CLONE_CHILD_SETTID
| SIGCHLD
,
1993 BPF_TEST_C(SandboxBPF
, PthreadEquality
, PthreadPolicyEquality
) {
1997 BPF_TEST_C(SandboxBPF
, PthreadBitMask
, PthreadPolicyBitMask
) {
2001 // libc might not define these even though the kernel supports it.
2002 #ifndef PTRACE_O_TRACESECCOMP
2003 #define PTRACE_O_TRACESECCOMP 0x00000080
2006 #ifdef PTRACE_EVENT_SECCOMP
2007 #define IS_SECCOMP_EVENT(status) ((status >> 16) == PTRACE_EVENT_SECCOMP)
2009 // When Debian/Ubuntu backported seccomp-bpf support into earlier kernels, they
2010 // changed the value of PTRACE_EVENT_SECCOMP from 7 to 8, since 7 was taken by
2011 // PTRACE_EVENT_STOP (upstream chose to renumber PTRACE_EVENT_STOP to 128). If
2012 // PTRACE_EVENT_SECCOMP isn't defined, we have no choice but to consider both
2014 #define IS_SECCOMP_EVENT(status) ((status >> 16) == 7 || (status >> 16) == 8)
2017 #if defined(__arm__)
2018 #ifndef PTRACE_SET_SYSCALL
2019 #define PTRACE_SET_SYSCALL 23
2023 #if defined(__aarch64__)
2024 #ifndef PTRACE_GETREGS
2025 #define PTRACE_GETREGS 12
2029 #if defined(__aarch64__)
2030 #ifndef PTRACE_SETREGS
2031 #define PTRACE_SETREGS 13
2035 // Changes the syscall to run for a child being sandboxed using seccomp-bpf with
2036 // PTRACE_O_TRACESECCOMP. Should only be called when the child is stopped on
2037 // PTRACE_EVENT_SECCOMP.
2039 // regs should contain the current set of registers of the child, obtained using
2042 // Depending on the architecture, this may modify regs, so the caller is
2043 // responsible for committing these changes using PTRACE_SETREGS.
2044 long SetSyscall(pid_t pid
, regs_struct
* regs
, int syscall_number
) {
2045 #if defined(__arm__)
2046 // On ARM, the syscall is changed using PTRACE_SET_SYSCALL. We cannot use the
2047 // libc ptrace call as the request parameter is an enum, and
2048 // PTRACE_SET_SYSCALL may not be in the enum.
2049 return syscall(__NR_ptrace
, PTRACE_SET_SYSCALL
, pid
, NULL
, syscall_number
);
2052 SECCOMP_PT_SYSCALL(*regs
) = syscall_number
;
2056 const uint16_t kTraceData
= 0xcc;
2058 class TraceAllPolicy
: public Policy
{
2061 ~TraceAllPolicy() override
{}
2063 ResultExpr
EvaluateSyscall(int system_call_number
) const override
{
2064 return Trace(kTraceData
);
2068 DISALLOW_COPY_AND_ASSIGN(TraceAllPolicy
);
2071 SANDBOX_TEST(SandboxBPF
, DISABLE_ON_TSAN(SeccompRetTrace
)) {
2072 if (SandboxBPF::SupportsSeccompSandbox(-1) !=
2073 sandbox::SandboxBPF::STATUS_AVAILABLE
) {
2077 // This test is disabled on arm due to a kernel bug.
2078 // See https://code.google.com/p/chromium/issues/detail?id=383977
2079 #if defined(__arm__) || defined(__aarch64__)
2080 printf("This test is currently disabled on ARM32/64 due to a kernel bug.");
2084 #if defined(__mips__)
2085 // TODO: Figure out how to support specificity of handling indirect syscalls
2086 // in this test and enable it.
2087 printf("This test is currently disabled on MIPS.");
2092 BPF_ASSERT_NE(-1, pid
);
2094 pid_t my_pid
= getpid();
2095 BPF_ASSERT_NE(-1, ptrace(PTRACE_TRACEME
, -1, NULL
, NULL
));
2096 BPF_ASSERT_EQ(0, raise(SIGSTOP
));
2098 sandbox
.SetSandboxPolicy(new TraceAllPolicy
);
2099 BPF_ASSERT(sandbox
.StartSandbox(SandboxBPF::PROCESS_SINGLE_THREADED
));
2101 // getpid is allowed.
2102 BPF_ASSERT_EQ(my_pid
, sys_getpid());
2104 // write to stdout is skipped and returns a fake value.
2105 BPF_ASSERT_EQ(kExpectedReturnValue
,
2106 syscall(__NR_write
, STDOUT_FILENO
, "A", 1));
2108 // kill is rewritten to exit(kExpectedReturnValue).
2109 syscall(__NR_kill
, my_pid
, SIGKILL
);
2111 // Should not be reached.
2116 BPF_ASSERT(HANDLE_EINTR(waitpid(pid
, &status
, WUNTRACED
)) != -1);
2117 BPF_ASSERT(WIFSTOPPED(status
));
2120 ptrace(PTRACE_SETOPTIONS
,
2123 reinterpret_cast<void*>(PTRACE_O_TRACESECCOMP
)));
2124 BPF_ASSERT_NE(-1, ptrace(PTRACE_CONT
, pid
, NULL
, NULL
));
2126 BPF_ASSERT(HANDLE_EINTR(waitpid(pid
, &status
, 0)) != -1);
2127 if (WIFEXITED(status
) || WIFSIGNALED(status
)) {
2128 BPF_ASSERT(WIFEXITED(status
));
2129 BPF_ASSERT_EQ(kExpectedReturnValue
, WEXITSTATUS(status
));
2133 if (!WIFSTOPPED(status
) || WSTOPSIG(status
) != SIGTRAP
||
2134 !IS_SECCOMP_EVENT(status
)) {
2135 BPF_ASSERT_NE(-1, ptrace(PTRACE_CONT
, pid
, NULL
, NULL
));
2140 BPF_ASSERT_NE(-1, ptrace(PTRACE_GETEVENTMSG
, pid
, NULL
, &data
));
2141 BPF_ASSERT_EQ(kTraceData
, data
);
2144 BPF_ASSERT_NE(-1, ptrace(PTRACE_GETREGS
, pid
, NULL
, ®s
));
2145 switch (SECCOMP_PT_SYSCALL(regs
)) {
2147 // Skip writes to stdout, make it return kExpectedReturnValue. Allow
2148 // writes to stderr so that BPF_ASSERT messages show up.
2149 if (SECCOMP_PT_PARM1(regs
) == STDOUT_FILENO
) {
2150 BPF_ASSERT_NE(-1, SetSyscall(pid
, ®s
, -1));
2151 SECCOMP_PT_RESULT(regs
) = kExpectedReturnValue
;
2152 BPF_ASSERT_NE(-1, ptrace(PTRACE_SETREGS
, pid
, NULL
, ®s
));
2157 // Rewrite to exit(kExpectedReturnValue).
2158 BPF_ASSERT_NE(-1, SetSyscall(pid
, ®s
, __NR_exit
));
2159 SECCOMP_PT_PARM1(regs
) = kExpectedReturnValue
;
2160 BPF_ASSERT_NE(-1, ptrace(PTRACE_SETREGS
, pid
, NULL
, ®s
));
2164 // Allow all other syscalls.
2168 BPF_ASSERT_NE(-1, ptrace(PTRACE_CONT
, pid
, NULL
, NULL
));
2172 // Android does not expose pread64 nor pwrite64.
2173 #if !defined(OS_ANDROID)
2175 bool FullPwrite64(int fd
, const char* buffer
, size_t count
, off64_t offset
) {
2177 const ssize_t transfered
=
2178 HANDLE_EINTR(pwrite64(fd
, buffer
, count
, offset
));
2179 if (transfered
<= 0 || static_cast<size_t>(transfered
) > count
) {
2182 count
-= transfered
;
2183 buffer
+= transfered
;
2184 offset
+= transfered
;
2189 bool FullPread64(int fd
, char* buffer
, size_t count
, off64_t offset
) {
2191 const ssize_t transfered
= HANDLE_EINTR(pread64(fd
, buffer
, count
, offset
));
2192 if (transfered
<= 0 || static_cast<size_t>(transfered
) > count
) {
2195 count
-= transfered
;
2196 buffer
+= transfered
;
2197 offset
+= transfered
;
2202 bool pread_64_was_forwarded
= false;
2204 class TrapPread64Policy
: public Policy
{
2206 TrapPread64Policy() {}
2207 ~TrapPread64Policy() override
{}
2209 ResultExpr
EvaluateSyscall(int system_call_number
) const override
{
2210 // Set the global environment for unsafe traps once.
2211 if (system_call_number
== MIN_SYSCALL
) {
2212 EnableUnsafeTraps();
2215 if (system_call_number
== __NR_pread64
) {
2216 return UnsafeTrap(ForwardPreadHandler
, NULL
);
2222 static intptr_t ForwardPreadHandler(const struct arch_seccomp_data
& args
,
2224 BPF_ASSERT(args
.nr
== __NR_pread64
);
2225 pread_64_was_forwarded
= true;
2227 return SandboxBPF::ForwardSyscall(args
);
2230 DISALLOW_COPY_AND_ASSIGN(TrapPread64Policy
);
2233 // pread(2) takes a 64 bits offset. On 32 bits systems, it will be split
2234 // between two arguments. In this test, we make sure that ForwardSyscall() can
2235 // forward it properly.
2236 BPF_TEST_C(SandboxBPF
, Pread64
, TrapPread64Policy
) {
2237 ScopedTemporaryFile temp_file
;
2238 const uint64_t kLargeOffset
= (static_cast<uint64_t>(1) << 32) | 0xBEEF;
2239 const char kTestString
[] = "This is a test!";
2240 BPF_ASSERT(FullPwrite64(
2241 temp_file
.fd(), kTestString
, sizeof(kTestString
), kLargeOffset
));
2243 char read_test_string
[sizeof(kTestString
)] = {0};
2244 BPF_ASSERT(FullPread64(temp_file
.fd(),
2246 sizeof(read_test_string
),
2248 BPF_ASSERT_EQ(0, memcmp(kTestString
, read_test_string
, sizeof(kTestString
)));
2249 BPF_ASSERT(pread_64_was_forwarded
);
2252 #endif // !defined(OS_ANDROID)
2254 void* TsyncApplyToTwoThreadsFunc(void* cond_ptr
) {
2255 base::WaitableEvent
* event
= static_cast<base::WaitableEvent
*>(cond_ptr
);
2257 // Wait for the main thread to signal that the filter has been applied.
2258 if (!event
->IsSignaled()) {
2262 BPF_ASSERT(event
->IsSignaled());
2264 BlacklistNanosleepPolicy::AssertNanosleepFails();
2269 SANDBOX_TEST(SandboxBPF
, Tsync
) {
2270 if (SandboxBPF::SupportsSeccompThreadFilterSynchronization() !=
2271 SandboxBPF::STATUS_AVAILABLE
) {
2275 base::WaitableEvent
event(true, false);
2277 // Create a thread on which to invoke the blocked syscall.
2280 0, pthread_create(&thread
, NULL
, &TsyncApplyToTwoThreadsFunc
, &event
));
2282 // Test that nanoseelp success.
2283 const struct timespec ts
= {0, 0};
2284 BPF_ASSERT_EQ(0, HANDLE_EINTR(syscall(__NR_nanosleep
, &ts
, NULL
)));
2286 // Engage the sandbox.
2288 sandbox
.SetSandboxPolicy(new BlacklistNanosleepPolicy());
2289 BPF_ASSERT(sandbox
.StartSandbox(SandboxBPF::PROCESS_MULTI_THREADED
));
2291 // This thread should have the filter applied as well.
2292 BlacklistNanosleepPolicy::AssertNanosleepFails();
2294 // Signal the condition to invoke the system call.
2297 // Wait for the thread to finish.
2298 BPF_ASSERT_EQ(0, pthread_join(thread
, NULL
));
2301 class AllowAllPolicy
: public Policy
{
2304 ~AllowAllPolicy() override
{}
2306 ResultExpr
EvaluateSyscall(int sysno
) const override
{ return Allow(); }
2309 DISALLOW_COPY_AND_ASSIGN(AllowAllPolicy
);
2314 StartMultiThreadedAsSingleThreaded
,
2315 DEATH_MESSAGE("Cannot start sandbox; process is already multi-threaded")) {
2316 base::Thread
thread("sandbox.linux.StartMultiThreadedAsSingleThreaded");
2317 BPF_ASSERT(thread
.Start());
2320 sandbox
.SetSandboxPolicy(new AllowAllPolicy());
2321 BPF_ASSERT(!sandbox
.StartSandbox(SandboxBPF::PROCESS_SINGLE_THREADED
));
2324 // http://crbug.com/407357
2325 #if !defined(THREAD_SANITIZER)
2328 StartSingleThreadedAsMultiThreaded
,
2330 "Cannot start sandbox; process may be single-threaded when "
2331 "reported as not")) {
2333 sandbox
.SetSandboxPolicy(new AllowAllPolicy());
2334 BPF_ASSERT(!sandbox
.StartSandbox(SandboxBPF::PROCESS_MULTI_THREADED
));
2336 #endif // !defined(THREAD_SANITIZER)
2338 // A stub handler for the UnsafeTrap. Never called.
2339 intptr_t NoOpHandler(const struct arch_seccomp_data
& args
, void*) {
2343 class UnsafeTrapWithCondPolicy
: public Policy
{
2345 UnsafeTrapWithCondPolicy() {}
2346 ~UnsafeTrapWithCondPolicy() override
{}
2348 ResultExpr
EvaluateSyscall(int sysno
) const override
{
2349 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
2350 setenv(kSandboxDebuggingEnv
, "t", 0);
2351 Die::SuppressInfoMessages(true);
2353 if (SandboxBPF::IsRequiredForUnsafeTrap(sysno
))
2358 const Arg
<uint32_t> arg(0);
2359 return If(arg
== 0, Allow()).Else(Error(EPERM
));
2362 const Arg
<uint32_t> arg(0);
2364 .Case(100, Error(ENOMEM
))
2365 .Case(200, Error(ENOSYS
))
2366 .Default(Error(EPERM
));
2369 case __NR_exit_group
:
2373 return UnsafeTrap(NoOpHandler
, NULL
);
2375 return Error(EPERM
);
2380 DISALLOW_COPY_AND_ASSIGN(UnsafeTrapWithCondPolicy
);
2383 BPF_TEST_C(SandboxBPF
, UnsafeTrapWithCond
, UnsafeTrapWithCondPolicy
) {
2384 BPF_ASSERT_EQ(-1, syscall(__NR_uname
, 0));
2385 BPF_ASSERT_EQ(EFAULT
, errno
);
2387 BPF_ASSERT_EQ(-1, syscall(__NR_uname
, 1));
2388 BPF_ASSERT_EQ(EPERM
, errno
);
2390 BPF_ASSERT_EQ(-1, syscall(__NR_setgid
, 100));
2391 BPF_ASSERT_EQ(ENOMEM
, errno
);
2393 BPF_ASSERT_EQ(-1, syscall(__NR_setgid
, 200));
2394 BPF_ASSERT_EQ(ENOSYS
, errno
);
2396 BPF_ASSERT_EQ(-1, syscall(__NR_setgid
, 300));
2397 BPF_ASSERT_EQ(EPERM
, errno
);
2402 } // namespace bpf_dsl
2403 } // namespace sandbox