Blink roll 25b6bd3a7a131ffe68d809546ad1a20707915cdc:3a503f41ae42e5b79cfcd2ff10e65afde...
[chromium-blink-merge.git] / sandbox / linux / bpf_dsl / policy_compiler.cc
blob2bc22e92aa939ba001347f207517417db36c4f90
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "sandbox/linux/bpf_dsl/policy_compiler.h"
7 #include <errno.h>
8 #include <linux/filter.h>
9 #include <sys/syscall.h>
11 #include <limits>
13 #include "base/logging.h"
14 #include "base/macros.h"
15 #include "sandbox/linux/bpf_dsl/bpf_dsl.h"
16 #include "sandbox/linux/bpf_dsl/bpf_dsl_impl.h"
17 #include "sandbox/linux/bpf_dsl/policy.h"
18 #include "sandbox/linux/seccomp-bpf/codegen.h"
19 #include "sandbox/linux/seccomp-bpf/die.h"
20 #include "sandbox/linux/seccomp-bpf/errorcode.h"
21 #include "sandbox/linux/seccomp-bpf/linux_seccomp.h"
22 #include "sandbox/linux/seccomp-bpf/syscall.h"
23 #include "sandbox/linux/seccomp-bpf/syscall_iterator.h"
25 namespace sandbox {
26 namespace bpf_dsl {
28 namespace {
30 #if defined(__i386__) || defined(__x86_64__)
31 const bool kIsIntel = true;
32 #else
33 const bool kIsIntel = false;
34 #endif
35 #if defined(__x86_64__) && defined(__ILP32__)
36 const bool kIsX32 = true;
37 #else
38 const bool kIsX32 = false;
39 #endif
41 const int kSyscallsRequiredForUnsafeTraps[] = {
42 __NR_rt_sigprocmask,
43 __NR_rt_sigreturn,
44 #if defined(__NR_sigprocmask)
45 __NR_sigprocmask,
46 #endif
47 #if defined(__NR_sigreturn)
48 __NR_sigreturn,
49 #endif
52 bool HasExactlyOneBit(uint64_t x) {
53 // Common trick; e.g., see http://stackoverflow.com/a/108329.
54 return x != 0 && (x & (x - 1)) == 0;
57 bool IsDenied(const ErrorCode& code) {
58 return (code.err() & SECCOMP_RET_ACTION) == SECCOMP_RET_TRAP ||
59 (code.err() >= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MIN_ERRNO) &&
60 code.err() <= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MAX_ERRNO));
63 // A Trap() handler that returns an "errno" value. The value is encoded
64 // in the "aux" parameter.
65 intptr_t ReturnErrno(const struct arch_seccomp_data&, void* aux) {
66 // TrapFnc functions report error by following the native kernel convention
67 // of returning an exit code in the range of -1..-4096. They do not try to
68 // set errno themselves. The glibc wrapper that triggered the SIGSYS will
69 // ultimately do so for us.
70 int err = reinterpret_cast<intptr_t>(aux) & SECCOMP_RET_DATA;
71 return -err;
74 intptr_t BPFFailure(const struct arch_seccomp_data&, void* aux) {
75 SANDBOX_DIE(static_cast<char*>(aux));
78 bool HasUnsafeTraps(const Policy* policy) {
79 for (uint32_t sysnum : SyscallSet::ValidOnly()) {
80 if (policy->EvaluateSyscall(sysnum)->HasUnsafeTraps()) {
81 return true;
84 return policy->InvalidSyscall()->HasUnsafeTraps();
87 } // namespace
89 struct PolicyCompiler::Range {
90 Range(uint32_t f, const ErrorCode& e) : from(f), err(e) {}
91 uint32_t from;
92 ErrorCode err;
95 PolicyCompiler::PolicyCompiler(const Policy* policy, TrapRegistry* registry)
96 : policy_(policy),
97 registry_(registry),
98 conds_(),
99 gen_(),
100 has_unsafe_traps_(HasUnsafeTraps(policy_)) {
103 PolicyCompiler::~PolicyCompiler() {
106 scoped_ptr<CodeGen::Program> PolicyCompiler::Compile() {
107 if (!IsDenied(policy_->InvalidSyscall()->Compile(this))) {
108 SANDBOX_DIE("Policies should deny invalid system calls.");
111 // If our BPF program has unsafe traps, enable support for them.
112 if (has_unsafe_traps_) {
113 // As support for unsafe jumps essentially defeats all the security
114 // measures that the sandbox provides, we print a big warning message --
115 // and of course, we make sure to only ever enable this feature if it
116 // is actually requested by the sandbox policy.
117 if (Syscall::Call(-1) == -1 && errno == ENOSYS) {
118 SANDBOX_DIE(
119 "Support for UnsafeTrap() has not yet been ported to this "
120 "architecture");
123 for (int sysnum : kSyscallsRequiredForUnsafeTraps) {
124 if (!policy_->EvaluateSyscall(sysnum)->Compile(this)
125 .Equals(ErrorCode(ErrorCode::ERR_ALLOWED))) {
126 SANDBOX_DIE(
127 "Policies that use UnsafeTrap() must unconditionally allow all "
128 "required system calls");
132 if (!registry_->EnableUnsafeTraps()) {
133 // We should never be able to get here, as UnsafeTrap() should never
134 // actually return a valid ErrorCode object unless the user set the
135 // CHROME_SANDBOX_DEBUGGING environment variable; and therefore,
136 // "has_unsafe_traps" would always be false. But better double-check
137 // than enabling dangerous code.
138 SANDBOX_DIE("We'd rather die than enable unsafe traps");
142 // Assemble the BPF filter program.
143 scoped_ptr<CodeGen::Program> program(new CodeGen::Program());
144 gen_.Compile(AssemblePolicy(), program.get());
145 return program.Pass();
148 CodeGen::Node PolicyCompiler::AssemblePolicy() {
149 // A compiled policy consists of three logical parts:
150 // 1. Check that the "arch" field matches the expected architecture.
151 // 2. If the policy involves unsafe traps, check if the syscall was
152 // invoked by Syscall::Call, and then allow it unconditionally.
153 // 3. Check the system call number and jump to the appropriate compiled
154 // system call policy number.
155 return CheckArch(MaybeAddEscapeHatch(DispatchSyscall()));
158 CodeGen::Node PolicyCompiler::CheckArch(CodeGen::Node passed) {
159 // If the architecture doesn't match SECCOMP_ARCH, disallow the
160 // system call.
161 return gen_.MakeInstruction(
162 BPF_LD + BPF_W + BPF_ABS,
163 SECCOMP_ARCH_IDX,
164 gen_.MakeInstruction(
165 BPF_JMP + BPF_JEQ + BPF_K,
166 SECCOMP_ARCH,
167 passed,
168 RetExpression(Kill("Invalid audit architecture in BPF filter"))));
171 CodeGen::Node PolicyCompiler::MaybeAddEscapeHatch(CodeGen::Node rest) {
172 // If no unsafe traps, then simply return |rest|.
173 if (!has_unsafe_traps_) {
174 return rest;
177 // Allow system calls, if they originate from our magic return address
178 // (which we can query by calling Syscall::Call(-1)).
179 uint64_t syscall_entry_point =
180 static_cast<uint64_t>(static_cast<uintptr_t>(Syscall::Call(-1)));
181 uint32_t low = static_cast<uint32_t>(syscall_entry_point);
182 uint32_t hi = static_cast<uint32_t>(syscall_entry_point >> 32);
184 // BPF cannot do native 64-bit comparisons, so we have to compare
185 // both 32-bit halves of the instruction pointer. If they match what
186 // we expect, we return ERR_ALLOWED. If either or both don't match,
187 // we continue evalutating the rest of the sandbox policy.
189 // For simplicity, we check the full 64-bit instruction pointer even
190 // on 32-bit architectures.
191 return gen_.MakeInstruction(
192 BPF_LD + BPF_W + BPF_ABS,
193 SECCOMP_IP_LSB_IDX,
194 gen_.MakeInstruction(
195 BPF_JMP + BPF_JEQ + BPF_K,
196 low,
197 gen_.MakeInstruction(
198 BPF_LD + BPF_W + BPF_ABS,
199 SECCOMP_IP_MSB_IDX,
200 gen_.MakeInstruction(
201 BPF_JMP + BPF_JEQ + BPF_K,
203 RetExpression(ErrorCode(ErrorCode::ERR_ALLOWED)),
204 rest)),
205 rest));
208 CodeGen::Node PolicyCompiler::DispatchSyscall() {
209 // Evaluate all possible system calls and group their ErrorCodes into
210 // ranges of identical codes.
211 Ranges ranges;
212 FindRanges(&ranges);
214 // Compile the system call ranges to an optimized BPF jumptable
215 CodeGen::Node jumptable = AssembleJumpTable(ranges.begin(), ranges.end());
217 // Grab the system call number, so that we can check it and then
218 // execute the jump table.
219 return gen_.MakeInstruction(
220 BPF_LD + BPF_W + BPF_ABS, SECCOMP_NR_IDX, CheckSyscallNumber(jumptable));
223 CodeGen::Node PolicyCompiler::CheckSyscallNumber(CodeGen::Node passed) {
224 if (kIsIntel) {
225 // On Intel architectures, verify that system call numbers are in the
226 // expected number range.
227 CodeGen::Node invalidX32 =
228 RetExpression(Kill("Illegal mixing of system call ABIs"));
229 if (kIsX32) {
230 // The newer x32 API always sets bit 30.
231 return gen_.MakeInstruction(
232 BPF_JMP + BPF_JSET + BPF_K, 0x40000000, passed, invalidX32);
233 } else {
234 // The older i386 and x86-64 APIs clear bit 30 on all system calls.
235 return gen_.MakeInstruction(
236 BPF_JMP + BPF_JSET + BPF_K, 0x40000000, invalidX32, passed);
240 // TODO(mdempsky): Similar validation for other architectures?
241 return passed;
244 void PolicyCompiler::FindRanges(Ranges* ranges) {
245 // Please note that "struct seccomp_data" defines system calls as a signed
246 // int32_t, but BPF instructions always operate on unsigned quantities. We
247 // deal with this disparity by enumerating from MIN_SYSCALL to MAX_SYSCALL,
248 // and then verifying that the rest of the number range (both positive and
249 // negative) all return the same ErrorCode.
250 const ErrorCode invalid_err = policy_->InvalidSyscall()->Compile(this);
251 uint32_t old_sysnum = 0;
252 ErrorCode old_err = SyscallSet::IsValid(old_sysnum)
253 ? policy_->EvaluateSyscall(old_sysnum)->Compile(this)
254 : invalid_err;
256 for (uint32_t sysnum : SyscallSet::All()) {
257 ErrorCode err =
258 SyscallSet::IsValid(sysnum)
259 ? policy_->EvaluateSyscall(static_cast<int>(sysnum))->Compile(this)
260 : invalid_err;
261 if (!err.Equals(old_err)) {
262 ranges->push_back(Range(old_sysnum, old_err));
263 old_sysnum = sysnum;
264 old_err = err;
267 ranges->push_back(Range(old_sysnum, old_err));
270 CodeGen::Node PolicyCompiler::AssembleJumpTable(Ranges::const_iterator start,
271 Ranges::const_iterator stop) {
272 // We convert the list of system call ranges into jump table that performs
273 // a binary search over the ranges.
274 // As a sanity check, we need to have at least one distinct ranges for us
275 // to be able to build a jump table.
276 if (stop - start <= 0) {
277 SANDBOX_DIE("Invalid set of system call ranges");
278 } else if (stop - start == 1) {
279 // If we have narrowed things down to a single range object, we can
280 // return from the BPF filter program.
281 return RetExpression(start->err);
284 // Pick the range object that is located at the mid point of our list.
285 // We compare our system call number against the lowest valid system call
286 // number in this range object. If our number is lower, it is outside of
287 // this range object. If it is greater or equal, it might be inside.
288 Ranges::const_iterator mid = start + (stop - start) / 2;
290 // Sub-divide the list of ranges and continue recursively.
291 CodeGen::Node jf = AssembleJumpTable(start, mid);
292 CodeGen::Node jt = AssembleJumpTable(mid, stop);
293 return gen_.MakeInstruction(BPF_JMP + BPF_JGE + BPF_K, mid->from, jt, jf);
296 CodeGen::Node PolicyCompiler::RetExpression(const ErrorCode& err) {
297 switch (err.error_type()) {
298 case ErrorCode::ET_COND:
299 return CondExpression(err);
300 case ErrorCode::ET_SIMPLE:
301 case ErrorCode::ET_TRAP:
302 return gen_.MakeInstruction(BPF_RET + BPF_K, err.err());
303 default:
304 SANDBOX_DIE("ErrorCode is not suitable for returning from a BPF program");
308 CodeGen::Node PolicyCompiler::CondExpression(const ErrorCode& cond) {
309 // Sanity check that |cond| makes sense.
310 if (cond.argno_ < 0 || cond.argno_ >= 6) {
311 SANDBOX_DIE("sandbox_bpf: invalid argument number");
313 if (cond.width_ != ErrorCode::TP_32BIT &&
314 cond.width_ != ErrorCode::TP_64BIT) {
315 SANDBOX_DIE("sandbox_bpf: invalid argument width");
317 if (cond.mask_ == 0) {
318 SANDBOX_DIE("sandbox_bpf: zero mask is invalid");
320 if ((cond.value_ & cond.mask_) != cond.value_) {
321 SANDBOX_DIE("sandbox_bpf: value contains masked out bits");
323 if (cond.width_ == ErrorCode::TP_32BIT &&
324 ((cond.mask_ >> 32) != 0 || (cond.value_ >> 32) != 0)) {
325 SANDBOX_DIE("sandbox_bpf: test exceeds argument size");
327 // TODO(mdempsky): Reject TP_64BIT on 32-bit platforms. For now we allow it
328 // because some SandboxBPF unit tests exercise it.
330 CodeGen::Node passed = RetExpression(*cond.passed_);
331 CodeGen::Node failed = RetExpression(*cond.failed_);
333 // We want to emit code to check "(arg & mask) == value" where arg, mask, and
334 // value are 64-bit values, but the BPF machine is only 32-bit. We implement
335 // this by independently testing the upper and lower 32-bits and continuing to
336 // |passed| if both evaluate true, or to |failed| if either evaluate false.
337 return CondExpressionHalf(cond,
338 UpperHalf,
339 CondExpressionHalf(cond, LowerHalf, passed, failed),
340 failed);
343 CodeGen::Node PolicyCompiler::CondExpressionHalf(const ErrorCode& cond,
344 ArgHalf half,
345 CodeGen::Node passed,
346 CodeGen::Node failed) {
347 if (cond.width_ == ErrorCode::TP_32BIT && half == UpperHalf) {
348 // Special logic for sanity checking the upper 32-bits of 32-bit system
349 // call arguments.
351 // TODO(mdempsky): Compile Unexpected64bitArgument() just per program.
352 CodeGen::Node invalid_64bit = RetExpression(Unexpected64bitArgument());
354 const uint32_t upper = SECCOMP_ARG_MSB_IDX(cond.argno_);
355 const uint32_t lower = SECCOMP_ARG_LSB_IDX(cond.argno_);
357 if (sizeof(void*) == 4) {
358 // On 32-bit platforms, the upper 32-bits should always be 0:
359 // LDW [upper]
360 // JEQ 0, passed, invalid
361 return gen_.MakeInstruction(
362 BPF_LD + BPF_W + BPF_ABS,
363 upper,
364 gen_.MakeInstruction(
365 BPF_JMP + BPF_JEQ + BPF_K, 0, passed, invalid_64bit));
368 // On 64-bit platforms, the upper 32-bits may be 0 or ~0; but we only allow
369 // ~0 if the sign bit of the lower 32-bits is set too:
370 // LDW [upper]
371 // JEQ 0, passed, (next)
372 // JEQ ~0, (next), invalid
373 // LDW [lower]
374 // JSET (1<<31), passed, invalid
376 // TODO(mdempsky): The JSET instruction could perhaps jump to passed->next
377 // instead, as the first instruction of passed should be "LDW [lower]".
378 return gen_.MakeInstruction(
379 BPF_LD + BPF_W + BPF_ABS,
380 upper,
381 gen_.MakeInstruction(
382 BPF_JMP + BPF_JEQ + BPF_K,
384 passed,
385 gen_.MakeInstruction(
386 BPF_JMP + BPF_JEQ + BPF_K,
387 std::numeric_limits<uint32_t>::max(),
388 gen_.MakeInstruction(
389 BPF_LD + BPF_W + BPF_ABS,
390 lower,
391 gen_.MakeInstruction(BPF_JMP + BPF_JSET + BPF_K,
392 1U << 31,
393 passed,
394 invalid_64bit)),
395 invalid_64bit)));
398 const uint32_t idx = (half == UpperHalf) ? SECCOMP_ARG_MSB_IDX(cond.argno_)
399 : SECCOMP_ARG_LSB_IDX(cond.argno_);
400 const uint32_t mask = (half == UpperHalf) ? cond.mask_ >> 32 : cond.mask_;
401 const uint32_t value = (half == UpperHalf) ? cond.value_ >> 32 : cond.value_;
403 // Emit a suitable instruction sequence for (arg & mask) == value.
405 // For (arg & 0) == 0, just return passed.
406 if (mask == 0) {
407 CHECK_EQ(0U, value);
408 return passed;
411 // For (arg & ~0) == value, emit:
412 // LDW [idx]
413 // JEQ value, passed, failed
414 if (mask == std::numeric_limits<uint32_t>::max()) {
415 return gen_.MakeInstruction(
416 BPF_LD + BPF_W + BPF_ABS,
417 idx,
418 gen_.MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, value, passed, failed));
421 // For (arg & mask) == 0, emit:
422 // LDW [idx]
423 // JSET mask, failed, passed
424 // (Note: failed and passed are intentionally swapped.)
425 if (value == 0) {
426 return gen_.MakeInstruction(
427 BPF_LD + BPF_W + BPF_ABS,
428 idx,
429 gen_.MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, mask, failed, passed));
432 // For (arg & x) == x where x is a single-bit value, emit:
433 // LDW [idx]
434 // JSET mask, passed, failed
435 if (mask == value && HasExactlyOneBit(mask)) {
436 return gen_.MakeInstruction(
437 BPF_LD + BPF_W + BPF_ABS,
438 idx,
439 gen_.MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, mask, passed, failed));
442 // Generic fallback:
443 // LDW [idx]
444 // AND mask
445 // JEQ value, passed, failed
446 return gen_.MakeInstruction(
447 BPF_LD + BPF_W + BPF_ABS,
448 idx,
449 gen_.MakeInstruction(
450 BPF_ALU + BPF_AND + BPF_K,
451 mask,
452 gen_.MakeInstruction(
453 BPF_JMP + BPF_JEQ + BPF_K, value, passed, failed)));
456 ErrorCode PolicyCompiler::Unexpected64bitArgument() {
457 return Kill("Unexpected 64bit argument detected");
460 ErrorCode PolicyCompiler::Error(int err) {
461 if (has_unsafe_traps_) {
462 // When inside an UnsafeTrap() callback, we want to allow all system calls.
463 // This means, we must conditionally disable the sandbox -- and that's not
464 // something that kernel-side BPF filters can do, as they cannot inspect
465 // any state other than the syscall arguments.
466 // But if we redirect all error handlers to user-space, then we can easily
467 // make this decision.
468 // The performance penalty for this extra round-trip to user-space is not
469 // actually that bad, as we only ever pay it for denied system calls; and a
470 // typical program has very few of these.
471 return Trap(ReturnErrno, reinterpret_cast<void*>(err));
474 return ErrorCode(err);
477 ErrorCode PolicyCompiler::MakeTrap(TrapRegistry::TrapFnc fnc,
478 const void* aux,
479 bool safe) {
480 uint16_t trap_id = registry_->Add(fnc, aux, safe);
481 return ErrorCode(trap_id, fnc, aux, safe);
484 ErrorCode PolicyCompiler::Trap(TrapRegistry::TrapFnc fnc, const void* aux) {
485 return MakeTrap(fnc, aux, true /* Safe Trap */);
488 ErrorCode PolicyCompiler::UnsafeTrap(TrapRegistry::TrapFnc fnc,
489 const void* aux) {
490 return MakeTrap(fnc, aux, false /* Unsafe Trap */);
493 bool PolicyCompiler::IsRequiredForUnsafeTrap(int sysno) {
494 for (size_t i = 0; i < arraysize(kSyscallsRequiredForUnsafeTraps); ++i) {
495 if (sysno == kSyscallsRequiredForUnsafeTraps[i]) {
496 return true;
499 return false;
502 ErrorCode PolicyCompiler::CondMaskedEqual(int argno,
503 ErrorCode::ArgType width,
504 uint64_t mask,
505 uint64_t value,
506 const ErrorCode& passed,
507 const ErrorCode& failed) {
508 return ErrorCode(argno,
509 width,
510 mask,
511 value,
512 &*conds_.insert(passed).first,
513 &*conds_.insert(failed).first);
516 ErrorCode PolicyCompiler::Kill(const char* msg) {
517 return Trap(BPFFailure, const_cast<char*>(msg));
520 } // namespace bpf_dsl
521 } // namespace sandbox