ServiceWorker: Send state change events via SWProviderHost
[chromium-blink-merge.git] / base / message_loop / message_pump_win.cc
bloba219aa6b79255de7fb6e3027b0512407b730a8ff
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/message_loop/message_pump_win.h"
7 #include <math.h>
9 #include "base/debug/trace_event.h"
10 #include "base/message_loop/message_loop.h"
11 #include "base/metrics/histogram.h"
12 #include "base/process/memory.h"
13 #include "base/profiler/scoped_tracker.h"
14 #include "base/strings/stringprintf.h"
15 #include "base/win/wrapped_window_proc.h"
17 namespace base {
19 namespace {
21 enum MessageLoopProblems {
22 MESSAGE_POST_ERROR,
23 COMPLETION_POST_ERROR,
24 SET_TIMER_ERROR,
25 MESSAGE_LOOP_PROBLEM_MAX,
28 } // namespace
30 static const wchar_t kWndClassFormat[] = L"Chrome_MessagePumpWindow_%p";
32 // Message sent to get an additional time slice for pumping (processing) another
33 // task (a series of such messages creates a continuous task pump).
34 static const int kMsgHaveWork = WM_USER + 1;
36 //-----------------------------------------------------------------------------
37 // MessagePumpWin public:
39 void MessagePumpWin::RunWithDispatcher(
40 Delegate* delegate, MessagePumpDispatcher* dispatcher) {
41 RunState s;
42 s.delegate = delegate;
43 s.dispatcher = dispatcher;
44 s.should_quit = false;
45 s.run_depth = state_ ? state_->run_depth + 1 : 1;
47 RunState* previous_state = state_;
48 state_ = &s;
50 DoRunLoop();
52 state_ = previous_state;
55 void MessagePumpWin::Quit() {
56 DCHECK(state_);
57 state_->should_quit = true;
60 //-----------------------------------------------------------------------------
61 // MessagePumpWin protected:
63 int MessagePumpWin::GetCurrentDelay() const {
64 if (delayed_work_time_.is_null())
65 return -1;
67 // Be careful here. TimeDelta has a precision of microseconds, but we want a
68 // value in milliseconds. If there are 5.5ms left, should the delay be 5 or
69 // 6? It should be 6 to avoid executing delayed work too early.
70 double timeout =
71 ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF());
73 // If this value is negative, then we need to run delayed work soon.
74 int delay = static_cast<int>(timeout);
75 if (delay < 0)
76 delay = 0;
78 return delay;
81 //-----------------------------------------------------------------------------
82 // MessagePumpForUI public:
84 MessagePumpForUI::MessagePumpForUI()
85 : atom_(0) {
86 InitMessageWnd();
89 MessagePumpForUI::~MessagePumpForUI() {
90 DestroyWindow(message_hwnd_);
91 UnregisterClass(MAKEINTATOM(atom_),
92 GetModuleFromAddress(&WndProcThunk));
95 void MessagePumpForUI::ScheduleWork() {
96 if (InterlockedExchange(&have_work_, 1))
97 return; // Someone else continued the pumping.
99 // Make sure the MessagePump does some work for us.
100 BOOL ret = PostMessage(message_hwnd_, kMsgHaveWork,
101 reinterpret_cast<WPARAM>(this), 0);
102 if (ret)
103 return; // There was room in the Window Message queue.
105 // We have failed to insert a have-work message, so there is a chance that we
106 // will starve tasks/timers while sitting in a nested message loop. Nested
107 // loops only look at Windows Message queues, and don't look at *our* task
108 // queues, etc., so we might not get a time slice in such. :-(
109 // We could abort here, but the fear is that this failure mode is plausibly
110 // common (queue is full, of about 2000 messages), so we'll do a near-graceful
111 // recovery. Nested loops are pretty transient (we think), so this will
112 // probably be recoverable.
113 InterlockedExchange(&have_work_, 0); // Clarify that we didn't really insert.
114 UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", MESSAGE_POST_ERROR,
115 MESSAGE_LOOP_PROBLEM_MAX);
118 void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
120 // We would *like* to provide high resolution timers. Windows timers using
121 // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup
122 // mechanism because the application can enter modal windows loops where it
123 // is not running our MessageLoop; the only way to have our timers fire in
124 // these cases is to post messages there.
126 // To provide sub-10ms timers, we process timers directly from our run loop.
127 // For the common case, timers will be processed there as the run loop does
128 // its normal work. However, we *also* set the system timer so that WM_TIMER
129 // events fire. This mops up the case of timers not being able to work in
130 // modal message loops. It is possible for the SetTimer to pop and have no
131 // pending timers, because they could have already been processed by the
132 // run loop itself.
134 // We use a single SetTimer corresponding to the timer that will expire
135 // soonest. As new timers are created and destroyed, we update SetTimer.
136 // Getting a spurrious SetTimer event firing is benign, as we'll just be
137 // processing an empty timer queue.
139 delayed_work_time_ = delayed_work_time;
141 int delay_msec = GetCurrentDelay();
142 DCHECK_GE(delay_msec, 0);
143 if (delay_msec < USER_TIMER_MINIMUM)
144 delay_msec = USER_TIMER_MINIMUM;
146 // Create a WM_TIMER event that will wake us up to check for any pending
147 // timers (in case we are running within a nested, external sub-pump).
148 BOOL ret = SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this),
149 delay_msec, NULL);
150 if (ret)
151 return;
152 // If we can't set timers, we are in big trouble... but cross our fingers for
153 // now.
154 // TODO(jar): If we don't see this error, use a CHECK() here instead.
155 UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", SET_TIMER_ERROR,
156 MESSAGE_LOOP_PROBLEM_MAX);
159 //-----------------------------------------------------------------------------
160 // MessagePumpForUI private:
162 // static
163 LRESULT CALLBACK MessagePumpForUI::WndProcThunk(
164 HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) {
165 // TODO(vadimt): Remove ScopedTracker below once crbug.com/440919 is fixed.
166 tracked_objects::ScopedTracker tracking_profile(
167 FROM_HERE_WITH_EXPLICIT_FUNCTION(
168 "440919 MessagePumpForUI::WndProcThunk"));
170 switch (message) {
171 case kMsgHaveWork:
172 reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage();
173 break;
174 case WM_TIMER:
175 reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage();
176 break;
178 return DefWindowProc(hwnd, message, wparam, lparam);
181 void MessagePumpForUI::DoRunLoop() {
182 // IF this was just a simple PeekMessage() loop (servicing all possible work
183 // queues), then Windows would try to achieve the following order according
184 // to MSDN documentation about PeekMessage with no filter):
185 // * Sent messages
186 // * Posted messages
187 // * Sent messages (again)
188 // * WM_PAINT messages
189 // * WM_TIMER messages
191 // Summary: none of the above classes is starved, and sent messages has twice
192 // the chance of being processed (i.e., reduced service time).
194 for (;;) {
195 // If we do any work, we may create more messages etc., and more work may
196 // possibly be waiting in another task group. When we (for example)
197 // ProcessNextWindowsMessage(), there is a good chance there are still more
198 // messages waiting. On the other hand, when any of these methods return
199 // having done no work, then it is pretty unlikely that calling them again
200 // quickly will find any work to do. Finally, if they all say they had no
201 // work, then it is a good time to consider sleeping (waiting) for more
202 // work.
204 bool more_work_is_plausible = ProcessNextWindowsMessage();
205 if (state_->should_quit)
206 break;
208 more_work_is_plausible |= state_->delegate->DoWork();
209 if (state_->should_quit)
210 break;
212 more_work_is_plausible |=
213 state_->delegate->DoDelayedWork(&delayed_work_time_);
214 // If we did not process any delayed work, then we can assume that our
215 // existing WM_TIMER if any will fire when delayed work should run. We
216 // don't want to disturb that timer if it is already in flight. However,
217 // if we did do all remaining delayed work, then lets kill the WM_TIMER.
218 if (more_work_is_plausible && delayed_work_time_.is_null())
219 KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
220 if (state_->should_quit)
221 break;
223 if (more_work_is_plausible)
224 continue;
226 more_work_is_plausible = state_->delegate->DoIdleWork();
227 if (state_->should_quit)
228 break;
230 if (more_work_is_plausible)
231 continue;
233 WaitForWork(); // Wait (sleep) until we have work to do again.
237 void MessagePumpForUI::InitMessageWnd() {
238 // Generate a unique window class name.
239 string16 class_name = StringPrintf(kWndClassFormat, this);
241 HINSTANCE instance = GetModuleFromAddress(&WndProcThunk);
242 WNDCLASSEX wc = {0};
243 wc.cbSize = sizeof(wc);
244 wc.lpfnWndProc = base::win::WrappedWindowProc<WndProcThunk>;
245 wc.hInstance = instance;
246 wc.lpszClassName = class_name.c_str();
247 atom_ = RegisterClassEx(&wc);
248 DCHECK(atom_);
250 message_hwnd_ = CreateWindow(MAKEINTATOM(atom_), 0, 0, 0, 0, 0, 0,
251 HWND_MESSAGE, 0, instance, 0);
252 DCHECK(message_hwnd_);
255 void MessagePumpForUI::WaitForWork() {
256 // Wait until a message is available, up to the time needed by the timer
257 // manager to fire the next set of timers.
258 int delay = GetCurrentDelay();
259 if (delay < 0) // Negative value means no timers waiting.
260 delay = INFINITE;
262 DWORD result;
263 result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT,
264 MWMO_INPUTAVAILABLE);
266 if (WAIT_OBJECT_0 == result) {
267 // A WM_* message is available.
268 // If a parent child relationship exists between windows across threads
269 // then their thread inputs are implicitly attached.
270 // This causes the MsgWaitForMultipleObjectsEx API to return indicating
271 // that messages are ready for processing (Specifically, mouse messages
272 // intended for the child window may appear if the child window has
273 // capture).
274 // The subsequent PeekMessages call may fail to return any messages thus
275 // causing us to enter a tight loop at times.
276 // The WaitMessage call below is a workaround to give the child window
277 // some time to process its input messages.
278 MSG msg = {0};
279 DWORD queue_status = GetQueueStatus(QS_MOUSE);
280 if (HIWORD(queue_status) & QS_MOUSE &&
281 !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) {
282 WaitMessage();
284 return;
287 DCHECK_NE(WAIT_FAILED, result) << GetLastError();
290 void MessagePumpForUI::HandleWorkMessage() {
291 // If we are being called outside of the context of Run, then don't try to do
292 // any work. This could correspond to a MessageBox call or something of that
293 // sort.
294 if (!state_) {
295 // Since we handled a kMsgHaveWork message, we must still update this flag.
296 InterlockedExchange(&have_work_, 0);
297 return;
300 // Let whatever would have run had we not been putting messages in the queue
301 // run now. This is an attempt to make our dummy message not starve other
302 // messages that may be in the Windows message queue.
303 ProcessPumpReplacementMessage();
305 // Now give the delegate a chance to do some work. He'll let us know if he
306 // needs to do more work.
307 if (state_->delegate->DoWork())
308 ScheduleWork();
311 void MessagePumpForUI::HandleTimerMessage() {
312 KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
314 // If we are being called outside of the context of Run, then don't do
315 // anything. This could correspond to a MessageBox call or something of
316 // that sort.
317 if (!state_)
318 return;
320 state_->delegate->DoDelayedWork(&delayed_work_time_);
321 if (!delayed_work_time_.is_null()) {
322 // A bit gratuitous to set delayed_work_time_ again, but oh well.
323 ScheduleDelayedWork(delayed_work_time_);
327 bool MessagePumpForUI::ProcessNextWindowsMessage() {
328 // TODO(vadimt): Remove ScopedTracker below once crbug.com/440919 is fixed.
329 tracked_objects::ScopedTracker tracking_profile1(
330 FROM_HERE_WITH_EXPLICIT_FUNCTION(
331 "440919 MessagePumpForUI::ProcessNextWindowsMessage1"));
333 // If there are sent messages in the queue then PeekMessage internally
334 // dispatches the message and returns false. We return true in this
335 // case to ensure that the message loop peeks again instead of calling
336 // MsgWaitForMultipleObjectsEx again.
337 bool sent_messages_in_queue = false;
338 DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE);
339 if (HIWORD(queue_status) & QS_SENDMESSAGE)
340 sent_messages_in_queue = true;
342 // TODO(vadimt): Remove ScopedTracker below once crbug.com/440919 is fixed.
343 tracked_objects::ScopedTracker tracking_profile2(
344 FROM_HERE_WITH_EXPLICIT_FUNCTION(
345 "440919 MessagePumpForUI::ProcessNextWindowsMessage2"));
347 MSG msg;
348 if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) != FALSE)
349 return ProcessMessageHelper(msg);
351 return sent_messages_in_queue;
354 bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
355 // TODO(vadimt): Remove ScopedTracker below once crbug.com/440919 is fixed.
356 tracked_objects::ScopedTracker tracking_profile1(
357 FROM_HERE_WITH_EXPLICIT_FUNCTION(
358 "440919 MessagePumpForUI::ProcessMessageHelper1"));
360 TRACE_EVENT1("base", "MessagePumpForUI::ProcessMessageHelper",
361 "message", msg.message);
362 if (WM_QUIT == msg.message) {
363 // Repost the QUIT message so that it will be retrieved by the primary
364 // GetMessage() loop.
365 state_->should_quit = true;
366 PostQuitMessage(static_cast<int>(msg.wParam));
367 return false;
370 // While running our main message pump, we discard kMsgHaveWork messages.
371 if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_)
372 return ProcessPumpReplacementMessage();
374 // TODO(vadimt): Remove ScopedTracker below once crbug.com/440919 is fixed.
375 tracked_objects::ScopedTracker tracking_profile2(
376 FROM_HERE_WITH_EXPLICIT_FUNCTION(
377 "440919 MessagePumpForUI::ProcessMessageHelper2"));
379 if (CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode))
380 return true;
382 // TODO(vadimt): Remove ScopedTracker below once crbug.com/440919 is fixed.
383 tracked_objects::ScopedTracker tracking_profile3(
384 FROM_HERE_WITH_EXPLICIT_FUNCTION(
385 "440919 MessagePumpForUI::ProcessMessageHelper3"));
387 uint32_t action = MessagePumpDispatcher::POST_DISPATCH_PERFORM_DEFAULT;
388 if (state_->dispatcher) {
389 // TODO(vadimt): Remove ScopedTracker below once crbug.com/440919 is fixed.
390 tracked_objects::ScopedTracker tracking_profile4(
391 FROM_HERE_WITH_EXPLICIT_FUNCTION(
392 "440919 MessagePumpForUI::ProcessMessageHelper4"));
394 action = state_->dispatcher->Dispatch(msg);
396 if (action & MessagePumpDispatcher::POST_DISPATCH_QUIT_LOOP)
397 state_->should_quit = true;
398 if (action & MessagePumpDispatcher::POST_DISPATCH_PERFORM_DEFAULT) {
399 // TODO(vadimt): Remove ScopedTracker below once crbug.com/440919 is fixed.
400 tracked_objects::ScopedTracker tracking_profile5(
401 FROM_HERE_WITH_EXPLICIT_FUNCTION(
402 "440919 MessagePumpForUI::ProcessMessageHelper5"));
404 TranslateMessage(&msg);
406 // TODO(vadimt): Remove ScopedTracker below once crbug.com/440919 is fixed.
407 tracked_objects::ScopedTracker tracking_profile6(
408 FROM_HERE_WITH_EXPLICIT_FUNCTION(
409 "440919 MessagePumpForUI::ProcessMessageHelper6"));
411 DispatchMessage(&msg);
414 return true;
417 bool MessagePumpForUI::ProcessPumpReplacementMessage() {
418 // When we encounter a kMsgHaveWork message, this method is called to peek
419 // and process a replacement message, such as a WM_PAINT or WM_TIMER. The
420 // goal is to make the kMsgHaveWork as non-intrusive as possible, even though
421 // a continuous stream of such messages are posted. This method carefully
422 // peeks a message while there is no chance for a kMsgHaveWork to be pending,
423 // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
424 // possibly be posted), and finally dispatches that peeked replacement. Note
425 // that the re-post of kMsgHaveWork may be asynchronous to this thread!!
427 bool have_message = false;
428 MSG msg;
429 // We should not process all window messages if we are in the context of an
430 // OS modal loop, i.e. in the context of a windows API call like MessageBox.
431 // This is to ensure that these messages are peeked out by the OS modal loop.
432 if (MessageLoop::current()->os_modal_loop()) {
433 // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above.
434 have_message = PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) ||
435 PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE);
436 } else {
437 have_message = PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) != FALSE;
440 DCHECK(!have_message || kMsgHaveWork != msg.message ||
441 msg.hwnd != message_hwnd_);
443 // Since we discarded a kMsgHaveWork message, we must update the flag.
444 int old_have_work = InterlockedExchange(&have_work_, 0);
445 DCHECK(old_have_work);
447 // We don't need a special time slice if we didn't have_message to process.
448 if (!have_message)
449 return false;
451 // Guarantee we'll get another time slice in the case where we go into native
452 // windows code. This ScheduleWork() may hurt performance a tiny bit when
453 // tasks appear very infrequently, but when the event queue is busy, the
454 // kMsgHaveWork events get (percentage wise) rarer and rarer.
455 ScheduleWork();
456 return ProcessMessageHelper(msg);
459 //-----------------------------------------------------------------------------
460 // MessagePumpForIO public:
462 MessagePumpForIO::MessagePumpForIO() {
463 port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1));
464 DCHECK(port_.IsValid());
467 void MessagePumpForIO::ScheduleWork() {
468 if (InterlockedExchange(&have_work_, 1))
469 return; // Someone else continued the pumping.
471 // Make sure the MessagePump does some work for us.
472 BOOL ret = PostQueuedCompletionStatus(port_.Get(), 0,
473 reinterpret_cast<ULONG_PTR>(this),
474 reinterpret_cast<OVERLAPPED*>(this));
475 if (ret)
476 return; // Post worked perfectly.
478 // See comment in MessagePumpForUI::ScheduleWork() for this error recovery.
479 InterlockedExchange(&have_work_, 0); // Clarify that we didn't succeed.
480 UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", COMPLETION_POST_ERROR,
481 MESSAGE_LOOP_PROBLEM_MAX);
484 void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
485 // We know that we can't be blocked right now since this method can only be
486 // called on the same thread as Run, so we only need to update our record of
487 // how long to sleep when we do sleep.
488 delayed_work_time_ = delayed_work_time;
491 void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
492 IOHandler* handler) {
493 ULONG_PTR key = HandlerToKey(handler, true);
494 HANDLE port = CreateIoCompletionPort(file_handle, port_.Get(), key, 1);
495 DPCHECK(port);
498 bool MessagePumpForIO::RegisterJobObject(HANDLE job_handle,
499 IOHandler* handler) {
500 // Job object notifications use the OVERLAPPED pointer to carry the message
501 // data. Mark the completion key correspondingly, so we will not try to
502 // convert OVERLAPPED* to IOContext*.
503 ULONG_PTR key = HandlerToKey(handler, false);
504 JOBOBJECT_ASSOCIATE_COMPLETION_PORT info;
505 info.CompletionKey = reinterpret_cast<void*>(key);
506 info.CompletionPort = port_.Get();
507 return SetInformationJobObject(job_handle,
508 JobObjectAssociateCompletionPortInformation,
509 &info,
510 sizeof(info)) != FALSE;
513 //-----------------------------------------------------------------------------
514 // MessagePumpForIO private:
516 void MessagePumpForIO::DoRunLoop() {
517 for (;;) {
518 // If we do any work, we may create more messages etc., and more work may
519 // possibly be waiting in another task group. When we (for example)
520 // WaitForIOCompletion(), there is a good chance there are still more
521 // messages waiting. On the other hand, when any of these methods return
522 // having done no work, then it is pretty unlikely that calling them
523 // again quickly will find any work to do. Finally, if they all say they
524 // had no work, then it is a good time to consider sleeping (waiting) for
525 // more work.
527 bool more_work_is_plausible = state_->delegate->DoWork();
528 if (state_->should_quit)
529 break;
531 more_work_is_plausible |= WaitForIOCompletion(0, NULL);
532 if (state_->should_quit)
533 break;
535 more_work_is_plausible |=
536 state_->delegate->DoDelayedWork(&delayed_work_time_);
537 if (state_->should_quit)
538 break;
540 if (more_work_is_plausible)
541 continue;
543 more_work_is_plausible = state_->delegate->DoIdleWork();
544 if (state_->should_quit)
545 break;
547 if (more_work_is_plausible)
548 continue;
550 WaitForWork(); // Wait (sleep) until we have work to do again.
554 // Wait until IO completes, up to the time needed by the timer manager to fire
555 // the next set of timers.
556 void MessagePumpForIO::WaitForWork() {
557 // We do not support nested IO message loops. This is to avoid messy
558 // recursion problems.
559 DCHECK_EQ(1, state_->run_depth) << "Cannot nest an IO message loop!";
561 int timeout = GetCurrentDelay();
562 if (timeout < 0) // Negative value means no timers waiting.
563 timeout = INFINITE;
565 WaitForIOCompletion(timeout, NULL);
568 bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
569 IOItem item;
570 if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) {
571 // We have to ask the system for another IO completion.
572 if (!GetIOItem(timeout, &item))
573 return false;
575 if (ProcessInternalIOItem(item))
576 return true;
579 // If |item.has_valid_io_context| is false then |item.context| does not point
580 // to a context structure, and so should not be dereferenced, although it may
581 // still hold valid non-pointer data.
582 if (!item.has_valid_io_context || item.context->handler) {
583 if (filter && item.handler != filter) {
584 // Save this item for later
585 completed_io_.push_back(item);
586 } else {
587 DCHECK(!item.has_valid_io_context ||
588 (item.context->handler == item.handler));
589 WillProcessIOEvent();
590 item.handler->OnIOCompleted(item.context, item.bytes_transfered,
591 item.error);
592 DidProcessIOEvent();
594 } else {
595 // The handler must be gone by now, just cleanup the mess.
596 delete item.context;
598 return true;
601 // Asks the OS for another IO completion result.
602 bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
603 memset(item, 0, sizeof(*item));
604 ULONG_PTR key = NULL;
605 OVERLAPPED* overlapped = NULL;
606 if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key,
607 &overlapped, timeout)) {
608 if (!overlapped)
609 return false; // Nothing in the queue.
610 item->error = GetLastError();
611 item->bytes_transfered = 0;
614 item->handler = KeyToHandler(key, &item->has_valid_io_context);
615 item->context = reinterpret_cast<IOContext*>(overlapped);
616 return true;
619 bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
620 if (this == reinterpret_cast<MessagePumpForIO*>(item.context) &&
621 this == reinterpret_cast<MessagePumpForIO*>(item.handler)) {
622 // This is our internal completion.
623 DCHECK(!item.bytes_transfered);
624 InterlockedExchange(&have_work_, 0);
625 return true;
627 return false;
630 // Returns a completion item that was previously received.
631 bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) {
632 DCHECK(!completed_io_.empty());
633 for (std::list<IOItem>::iterator it = completed_io_.begin();
634 it != completed_io_.end(); ++it) {
635 if (!filter || it->handler == filter) {
636 *item = *it;
637 completed_io_.erase(it);
638 return true;
641 return false;
644 void MessagePumpForIO::AddIOObserver(IOObserver *obs) {
645 io_observers_.AddObserver(obs);
648 void MessagePumpForIO::RemoveIOObserver(IOObserver *obs) {
649 io_observers_.RemoveObserver(obs);
652 void MessagePumpForIO::WillProcessIOEvent() {
653 FOR_EACH_OBSERVER(IOObserver, io_observers_, WillProcessIOEvent());
656 void MessagePumpForIO::DidProcessIOEvent() {
657 FOR_EACH_OBSERVER(IOObserver, io_observers_, DidProcessIOEvent());
660 // static
661 ULONG_PTR MessagePumpForIO::HandlerToKey(IOHandler* handler,
662 bool has_valid_io_context) {
663 ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler);
665 // |IOHandler| is at least pointer-size aligned, so the lowest two bits are
666 // always cleared. We use the lowest bit to distinguish completion keys with
667 // and without the associated |IOContext|.
668 DCHECK((key & 1) == 0);
670 // Mark the completion key as context-less.
671 if (!has_valid_io_context)
672 key = key | 1;
673 return key;
676 // static
677 MessagePumpForIO::IOHandler* MessagePumpForIO::KeyToHandler(
678 ULONG_PTR key,
679 bool* has_valid_io_context) {
680 *has_valid_io_context = ((key & 1) == 0);
681 return reinterpret_cast<IOHandler*>(key & ~static_cast<ULONG_PTR>(1));
684 } // namespace base