Update V8 to version 4.7.44.
[chromium-blink-merge.git] / crypto / ghash.cc
blob1acd474cbc69a9c066b09f4655ab1d393b14f674
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "crypto/ghash.h"
7 #include <algorithm>
9 #include "base/logging.h"
10 #include "base/sys_byteorder.h"
12 namespace crypto {
14 // GaloisHash is a polynomial authenticator that works in GF(2^128).
16 // Elements of the field are represented in `little-endian' order (which
17 // matches the description in the paper[1]), thus the most significant bit is
18 // the right-most bit. (This is backwards from the way that everybody else does
19 // it.)
21 // We store field elements in a pair of such `little-endian' uint64s. So the
22 // value one is represented by {low = 2**63, high = 0} and doubling a value
23 // involves a *right* shift.
25 // [1] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
27 namespace {
29 // Get64 reads a 64-bit, big-endian number from |bytes|.
30 uint64 Get64(const uint8 bytes[8]) {
31 uint64 t;
32 memcpy(&t, bytes, sizeof(t));
33 return base::NetToHost64(t);
36 // Put64 writes |x| to |bytes| as a 64-bit, big-endian number.
37 void Put64(uint8 bytes[8], uint64 x) {
38 x = base::HostToNet64(x);
39 memcpy(bytes, &x, sizeof(x));
42 // Reverse reverses the order of the bits of 4-bit number in |i|.
43 int Reverse(int i) {
44 i = ((i << 2) & 0xc) | ((i >> 2) & 0x3);
45 i = ((i << 1) & 0xa) | ((i >> 1) & 0x5);
46 return i;
49 } // namespace
51 GaloisHash::GaloisHash(const uint8 key[16]) {
52 Reset();
54 // We precompute 16 multiples of |key|. However, when we do lookups into this
55 // table we'll be using bits from a field element and therefore the bits will
56 // be in the reverse order. So normally one would expect, say, 4*key to be in
57 // index 4 of the table but due to this bit ordering it will actually be in
58 // index 0010 (base 2) = 2.
59 FieldElement x = {Get64(key), Get64(key+8)};
60 product_table_[0].low = 0;
61 product_table_[0].hi = 0;
62 product_table_[Reverse(1)] = x;
64 for (int i = 0; i < 16; i += 2) {
65 product_table_[Reverse(i)] = Double(product_table_[Reverse(i/2)]);
66 product_table_[Reverse(i+1)] = Add(product_table_[Reverse(i)], x);
70 void GaloisHash::Reset() {
71 state_ = kHashingAdditionalData;
72 additional_bytes_ = 0;
73 ciphertext_bytes_ = 0;
74 buf_used_ = 0;
75 y_.low = 0;
76 y_.hi = 0;
79 void GaloisHash::UpdateAdditional(const uint8* data, size_t length) {
80 DCHECK_EQ(state_, kHashingAdditionalData);
81 additional_bytes_ += length;
82 Update(data, length);
85 void GaloisHash::UpdateCiphertext(const uint8* data, size_t length) {
86 if (state_ == kHashingAdditionalData) {
87 // If there's any remaining additional data it's zero padded to the next
88 // full block.
89 if (buf_used_ > 0) {
90 memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_);
91 UpdateBlocks(buf_, 1);
92 buf_used_ = 0;
94 state_ = kHashingCiphertext;
97 DCHECK_EQ(state_, kHashingCiphertext);
98 ciphertext_bytes_ += length;
99 Update(data, length);
102 void GaloisHash::Finish(void* output, size_t len) {
103 DCHECK(state_ != kComplete);
105 if (buf_used_ > 0) {
106 // If there's any remaining data (additional data or ciphertext), it's zero
107 // padded to the next full block.
108 memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_);
109 UpdateBlocks(buf_, 1);
110 buf_used_ = 0;
113 state_ = kComplete;
115 // The lengths of the additional data and ciphertext are included as the last
116 // block. The lengths are the number of bits.
117 y_.low ^= additional_bytes_*8;
118 y_.hi ^= ciphertext_bytes_*8;
119 MulAfterPrecomputation(product_table_, &y_);
121 uint8 *result, result_tmp[16];
122 if (len >= 16) {
123 result = reinterpret_cast<uint8*>(output);
124 } else {
125 result = result_tmp;
128 Put64(result, y_.low);
129 Put64(result + 8, y_.hi);
131 if (len < 16)
132 memcpy(output, result_tmp, len);
135 // static
136 GaloisHash::FieldElement GaloisHash::Add(
137 const FieldElement& x,
138 const FieldElement& y) {
139 // Addition in a characteristic 2 field is just XOR.
140 FieldElement z = {x.low^y.low, x.hi^y.hi};
141 return z;
144 // static
145 GaloisHash::FieldElement GaloisHash::Double(const FieldElement& x) {
146 const bool msb_set = x.hi & 1;
148 FieldElement xx;
149 // Because of the bit-ordering, doubling is actually a right shift.
150 xx.hi = x.hi >> 1;
151 xx.hi |= x.low << 63;
152 xx.low = x.low >> 1;
154 // If the most-significant bit was set before shifting then it, conceptually,
155 // becomes a term of x^128. This is greater than the irreducible polynomial
156 // so the result has to be reduced. The irreducible polynomial is
157 // 1+x+x^2+x^7+x^128. We can subtract that to eliminate the term at x^128
158 // which also means subtracting the other four terms. In characteristic 2
159 // fields, subtraction == addition == XOR.
160 if (msb_set)
161 xx.low ^= 0xe100000000000000ULL;
163 return xx;
166 void GaloisHash::MulAfterPrecomputation(const FieldElement* table,
167 FieldElement* x) {
168 FieldElement z = {0, 0};
170 // In order to efficiently multiply, we use the precomputed table of i*key,
171 // for i in 0..15, to handle four bits at a time. We could obviously use
172 // larger tables for greater speedups but the next convenient table size is
173 // 4K, which is a little large.
175 // In other fields one would use bit positions spread out across the field in
176 // order to reduce the number of doublings required. However, in
177 // characteristic 2 fields, repeated doublings are exceptionally cheap and
178 // it's not worth spending more precomputation time to eliminate them.
179 for (unsigned i = 0; i < 2; i++) {
180 uint64 word;
181 if (i == 0) {
182 word = x->hi;
183 } else {
184 word = x->low;
187 for (unsigned j = 0; j < 64; j += 4) {
188 Mul16(&z);
189 // the values in |table| are ordered for little-endian bit positions. See
190 // the comment in the constructor.
191 const FieldElement& t = table[word & 0xf];
192 z.low ^= t.low;
193 z.hi ^= t.hi;
194 word >>= 4;
198 *x = z;
201 // kReductionTable allows for rapid multiplications by 16. A multiplication by
202 // 16 is a right shift by four bits, which results in four bits at 2**128.
203 // These terms have to be eliminated by dividing by the irreducible polynomial.
204 // In GHASH, the polynomial is such that all the terms occur in the
205 // least-significant 8 bits, save for the term at x^128. Therefore we can
206 // precompute the value to be added to the field element for each of the 16 bit
207 // patterns at 2**128 and the values fit within 12 bits.
208 static const uint16 kReductionTable[16] = {
209 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0,
210 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0,
213 // static
214 void GaloisHash::Mul16(FieldElement* x) {
215 const unsigned msw = x->hi & 0xf;
216 x->hi >>= 4;
217 x->hi |= x->low << 60;
218 x->low >>= 4;
219 x->low ^= static_cast<uint64>(kReductionTable[msw]) << 48;
222 void GaloisHash::UpdateBlocks(const uint8* bytes, size_t num_blocks) {
223 for (size_t i = 0; i < num_blocks; i++) {
224 y_.low ^= Get64(bytes);
225 bytes += 8;
226 y_.hi ^= Get64(bytes);
227 bytes += 8;
228 MulAfterPrecomputation(product_table_, &y_);
232 void GaloisHash::Update(const uint8* data, size_t length) {
233 if (buf_used_ > 0) {
234 const size_t n = std::min(length, sizeof(buf_) - buf_used_);
235 memcpy(&buf_[buf_used_], data, n);
236 buf_used_ += n;
237 length -= n;
238 data += n;
240 if (buf_used_ == sizeof(buf_)) {
241 UpdateBlocks(buf_, 1);
242 buf_used_ = 0;
246 if (length >= 16) {
247 const size_t n = length / 16;
248 UpdateBlocks(data, n);
249 length -= n*16;
250 data += n*16;
253 if (length > 0) {
254 memcpy(buf_, data, length);
255 buf_used_ = length;
259 } // namespace crypto