Improve back button behavior.
[chromium-blink-merge.git] / crypto / p224_spake.cc
bloba6dec40568a6dfc4ae028fb89fb7c0cf7e5b2ccc
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // This code implements SPAKE2, a variant of EKE:
6 // http://www.di.ens.fr/~pointche/pub.php?reference=AbPo04
8 #include <crypto/p224_spake.h>
10 #include <algorithm>
12 #include <base/logging.h>
13 #include <crypto/p224.h>
14 #include <crypto/random.h>
15 #include <crypto/secure_util.h>
17 namespace {
19 // The following two points (M and N in the protocol) are verifiable random
20 // points on the curve and can be generated with the following code:
22 // #include <stdint.h>
23 // #include <stdio.h>
24 // #include <string.h>
26 // #include <openssl/ec.h>
27 // #include <openssl/obj_mac.h>
28 // #include <openssl/sha.h>
30 // static const char kSeed1[] = "P224 point generation seed (M)";
31 // static const char kSeed2[] = "P224 point generation seed (N)";
33 // void find_seed(const char* seed) {
34 // SHA256_CTX sha256;
35 // uint8_t digest[SHA256_DIGEST_LENGTH];
37 // SHA256_Init(&sha256);
38 // SHA256_Update(&sha256, seed, strlen(seed));
39 // SHA256_Final(digest, &sha256);
41 // BIGNUM x, y;
42 // EC_GROUP* p224 = EC_GROUP_new_by_curve_name(NID_secp224r1);
43 // EC_POINT* p = EC_POINT_new(p224);
45 // for (unsigned i = 0;; i++) {
46 // BN_init(&x);
47 // BN_bin2bn(digest, 28, &x);
49 // if (EC_POINT_set_compressed_coordinates_GFp(
50 // p224, p, &x, digest[28] & 1, NULL)) {
51 // BN_init(&y);
52 // EC_POINT_get_affine_coordinates_GFp(p224, p, &x, &y, NULL);
53 // char* x_str = BN_bn2hex(&x);
54 // char* y_str = BN_bn2hex(&y);
55 // printf("Found after %u iterations:\n%s\n%s\n", i, x_str, y_str);
56 // OPENSSL_free(x_str);
57 // OPENSSL_free(y_str);
58 // BN_free(&x);
59 // BN_free(&y);
60 // break;
61 // }
63 // SHA256_Init(&sha256);
64 // SHA256_Update(&sha256, digest, sizeof(digest));
65 // SHA256_Final(digest, &sha256);
67 // BN_free(&x);
68 // }
70 // EC_POINT_free(p);
71 // EC_GROUP_free(p224);
72 // }
74 // int main() {
75 // find_seed(kSeed1);
76 // find_seed(kSeed2);
77 // return 0;
78 // }
80 const crypto::p224::Point kM = {
81 {174237515, 77186811, 235213682, 33849492,
82 33188520, 48266885, 177021753, 81038478},
83 {104523827, 245682244, 266509668, 236196369,
84 28372046, 145351378, 198520366, 113345994},
85 {1, 0, 0, 0, 0, 0, 0, 0},
88 const crypto::p224::Point kN = {
89 {136176322, 263523628, 251628795, 229292285,
90 5034302, 185981975, 171998428, 11653062},
91 {197567436, 51226044, 60372156, 175772188,
92 42075930, 8083165, 160827401, 65097570},
93 {1, 0, 0, 0, 0, 0, 0, 0},
96 } // anonymous namespace
98 namespace crypto {
100 P224EncryptedKeyExchange::P224EncryptedKeyExchange(
101 PeerType peer_type, const base::StringPiece& password)
102 : state_(kStateInitial),
103 is_server_(peer_type == kPeerTypeServer) {
104 memset(&x_, 0, sizeof(x_));
105 memset(&expected_authenticator_, 0, sizeof(expected_authenticator_));
107 // x_ is a random scalar.
108 RandBytes(x_, sizeof(x_));
110 // Calculate |password| hash to get SPAKE password value.
111 SHA256HashString(std::string(password.data(), password.length()),
112 pw_, sizeof(pw_));
114 Init();
117 void P224EncryptedKeyExchange::Init() {
118 // X = g**x_
119 p224::Point X;
120 p224::ScalarBaseMult(x_, &X);
122 // The client masks the Diffie-Hellman value, X, by adding M**pw and the
123 // server uses N**pw.
124 p224::Point MNpw;
125 p224::ScalarMult(is_server_ ? kN : kM, pw_, &MNpw);
127 // X* = X + (N|M)**pw
128 p224::Point Xstar;
129 p224::Add(X, MNpw, &Xstar);
131 next_message_ = Xstar.ToString();
134 const std::string& P224EncryptedKeyExchange::GetNextMessage() {
135 if (state_ == kStateInitial) {
136 state_ = kStateRecvDH;
137 return next_message_;
138 } else if (state_ == kStateSendHash) {
139 state_ = kStateRecvHash;
140 return next_message_;
143 LOG(FATAL) << "P224EncryptedKeyExchange::GetNextMessage called in"
144 " bad state " << state_;
145 next_message_ = "";
146 return next_message_;
149 P224EncryptedKeyExchange::Result P224EncryptedKeyExchange::ProcessMessage(
150 const base::StringPiece& message) {
151 if (state_ == kStateRecvHash) {
152 // This is the final state of the protocol: we are reading the peer's
153 // authentication hash and checking that it matches the one that we expect.
154 if (message.size() != sizeof(expected_authenticator_)) {
155 error_ = "peer's hash had an incorrect size";
156 return kResultFailed;
158 if (!SecureMemEqual(message.data(), expected_authenticator_,
159 message.size())) {
160 error_ = "peer's hash had incorrect value";
161 return kResultFailed;
163 state_ = kStateDone;
164 return kResultSuccess;
167 if (state_ != kStateRecvDH) {
168 LOG(FATAL) << "P224EncryptedKeyExchange::ProcessMessage called in"
169 " bad state " << state_;
170 error_ = "internal error";
171 return kResultFailed;
174 // Y* is the other party's masked, Diffie-Hellman value.
175 p224::Point Ystar;
176 if (!Ystar.SetFromString(message)) {
177 error_ = "failed to parse peer's masked Diffie-Hellman value";
178 return kResultFailed;
181 // We calculate the mask value: (N|M)**pw
182 p224::Point MNpw, minus_MNpw, Y, k;
183 p224::ScalarMult(is_server_ ? kM : kN, pw_, &MNpw);
184 p224::Negate(MNpw, &minus_MNpw);
186 // Y = Y* - (N|M)**pw
187 p224::Add(Ystar, minus_MNpw, &Y);
189 // K = Y**x_
190 p224::ScalarMult(Y, x_, &k);
192 // If everything worked out, then K is the same for both parties.
193 key_ = k.ToString();
195 std::string client_masked_dh, server_masked_dh;
196 if (is_server_) {
197 client_masked_dh = message.as_string();
198 server_masked_dh = next_message_;
199 } else {
200 client_masked_dh = next_message_;
201 server_masked_dh = message.as_string();
204 // Now we calculate the hashes that each side will use to prove to the other
205 // that they derived the correct value for K.
206 uint8 client_hash[kSHA256Length], server_hash[kSHA256Length];
207 CalculateHash(kPeerTypeClient, client_masked_dh, server_masked_dh, key_,
208 client_hash);
209 CalculateHash(kPeerTypeServer, client_masked_dh, server_masked_dh, key_,
210 server_hash);
212 const uint8* my_hash = is_server_ ? server_hash : client_hash;
213 const uint8* their_hash = is_server_ ? client_hash : server_hash;
215 next_message_ =
216 std::string(reinterpret_cast<const char*>(my_hash), kSHA256Length);
217 memcpy(expected_authenticator_, their_hash, kSHA256Length);
218 state_ = kStateSendHash;
219 return kResultPending;
222 void P224EncryptedKeyExchange::CalculateHash(
223 PeerType peer_type,
224 const std::string& client_masked_dh,
225 const std::string& server_masked_dh,
226 const std::string& k,
227 uint8* out_digest) {
228 std::string hash_contents;
230 if (peer_type == kPeerTypeServer) {
231 hash_contents = "server";
232 } else {
233 hash_contents = "client";
236 hash_contents += client_masked_dh;
237 hash_contents += server_masked_dh;
238 hash_contents +=
239 std::string(reinterpret_cast<const char *>(pw_), sizeof(pw_));
240 hash_contents += k;
242 SHA256HashString(hash_contents, out_digest, kSHA256Length);
245 const std::string& P224EncryptedKeyExchange::error() const {
246 return error_;
249 const std::string& P224EncryptedKeyExchange::GetKey() const {
250 DCHECK_EQ(state_, kStateDone);
251 return GetUnverifiedKey();
254 const std::string& P224EncryptedKeyExchange::GetUnverifiedKey() const {
255 // Key is already final when state is kStateSendHash. Subsequent states are
256 // used only for verification of the key. Some users may combine verification
257 // with sending verifiable data instead of |expected_authenticator_|.
258 DCHECK_GE(state_, kStateSendHash);
259 return key_;
262 void P224EncryptedKeyExchange::SetXForTesting(const std::string& x) {
263 memset(&x_, 0, sizeof(x_));
264 memcpy(&x_, x.data(), std::min(x.size(), sizeof(x_)));
265 Init();
268 } // namespace crypto